
DOVE: A Distributed Object Visualization Environment

Applying CORBA, Java Beans, and C++ to Monitor and

Visualize Distributed Systems and Applications

Michael Kircher�and Douglas C. Schmidt
mlkirche@rupert.informatik.uni-stuttgart.de, schmidt@cs.wustl.edu

Department of Computer Science

Washington University
St. Louis, MO 63130, (314) 935-4215

This paper appeared in the March 1999 C++ Report.

1 Introduction

Large-scale distributed systems typically contain many hetero-
geneous components [16]. To manage these types of systems,
applications and administrators must be able to monitor the
status and proper functioning of system resources. This pa-
per describes the design and use of adistributed object visual-
ization environment(DOVE) that supports monitoring and vi-
sualization of applications and services in heterogeneous dis-
tributed systems.

In this paper, we use DOVE as an exemplar to illustrate
how frameworks and components, such as CORBA services
and Java Beans, can be combined with patterns, such as Visi-
tor and Observer, to build reusable, scalable, and maintainable
software monitoring tools and distributed applications. DOVE
itself is a framework, which provides an integrated set of com-
ponents that defines a reusable architecture for a family of re-
lated monitoring and visualization applications.

Conventional monitoring and visualization tools, such as
BMC Patrol [1] or IBM NetView, have generally evolved
without explicit concern for software qualities like modular-
ity, reuse, or flexibility. Therefore, it’s hard for these legacy
tools to adapt rapidly to changing application requirements
and endsystem/network environments. Support for adaptabil-
ity is important since requirements of customers and environ-
mental changes force developers to constantly maintain and
enhance their software. In this paper, we illustrate how DOVE
achieves a high degree of modularity, reuse, and flexibility by
using OO techniques, patterns, CORBA, Java, and C++.

This paper is organized as follows: Section 2 gives an
overview of the DOVE software architecture; Section 3 de-

�Contact author.

scribes the design of DOVE’s main components,i.e., the
DOVE Browser, DOVE Agent, and DOVE MIB; and Section 4
presents concluding remarks.

2 Overview of DOVE

2.1 Example Application of DOVE

It is hard to monitor distributed or embedded systems since ap-
plication components in these systems are often not connected
directly to user interfaces [10]. Moreover, many real-time ap-
plications lack spare computing cycles in which to process sta-
tus or performance information and provide feedback to users
or administrators. DOVE supports monitoring of these types
of systems by minimizing the amount of computing overhead
in the monitored application through the use ofagents, as
shown in Figure 1.

DOVE
Agent

Figure 1: Applying DOVE to Avionics Simulation Systems

1

This figure illustrates a DOVE-based monitoring system for
a real-time avionics pilot training simulation system. In this
application, it is important to monitor system metrics, such as
scheduled jobs-per-second or communication delay and jitter,
in order to provide feedback to operators who calibrate the
simulation’s behavior interactively. In this example, DOVE
monitors the system components via a central agent that con-
solidates the information of many aircraft and displays the re-
sults on one or more operator consoles. A DOVE Agent, de-
scribed below, is used to offload most monitoring and visual-
ization processing from aircraft simulation components.

2.2 The DOVE Software Architecture

The key components in the Distributed Object Visualization
Environment (DOVE) are shown in Figure 2. DOVE-enabled

DOVE
Agent

DOVE
Browser

DOVE
MIB

Visualization

Component

Visualization

Component

Application
Proxy

Figure 2: Components in the DOVE Software Architecture

Applicationspublish information regarding their status and
performance metrics to DOVEAgentsusing DOVE Appli-
cation Proxies. In turn, DOVE Agents monitor and pub-
lish the advertised information to DOVE-enabledBrowsers.
Agents store management information in DOVE Management
Information Bases (MIBs) and/or push it to DOVE-enabled
Browsers on-demand.

Browsers are connected to one or more DOVE Agents,
which they query for services advertised in the distributed
system. The Browsers decide which metrics to display. A
DOVE-enabled Browser’s display manages information pub-
lished by applications viaVisualization Components. These
components control how monitoring information is presented
to end-users, such as human operators. TheVisualization
Componentsare Java Beans that facilitate dynamic enhance-
ment of strategies used to display information to end-users.

Java Beans can be updated on-the-fly, without the need to stat-
ically reconfigure the entire system.

In complex system management environments, such as a
central office network operation center or a large-scale dis-
tributed interactive simulation system, there can be many
DOVE-enabled Browsers that interact with many DOVE
Agents. The DOVE communication framework uses CORBA
to provide a transparent and scalable infrastructure for large-
scale distributed system management.

Each component in DOVE’s software architecture is de-
scribed in more detail below:

DOVE application: DOVE applications use pre-defined
and/or automatically-generated C++ or Java APIs to commu-
nicate with DOVE Agents in order to store and retrieve in-
formation residing in a DOVE MIB. DOVE’s configuration
process supports highly dynamic applications via the Service
Configurator pattern [6]. It is not necessary, therefore, to re-
compile, relink, or restart applications in order to change their
monitoring configurations.

DOVE MIB: A DOVE MIB is a repository of information
in DOVE. It stores configuration information, such as the iden-
tify of advertised services, about monitored applications. The
DOVE MIB also can be used to store monitoring data, which
can be retrieved later by applications and browsers. In addi-
tion, DOVE Agents can use this information to advertise their
services.

DOVE Agent: One or more DOVE Agents run in separate
processes on nodes in the distributed system and perform the
following tasks:

� Service advertisement– The DOVE Agent advertises the
monitored applications, locations, metrics and control
services available.

� Change notifications– A DOVE-enabled Browser can
automatically be updated when monitored metrics change
values.

� Data reduction and correlation– Filtering and corre-
lation are supported in DOVE Agents via the CORBA
Events Service [5].

� Visualization configuration– Visualization Components
can be integrated dynamically by specifying the name of
a Java Beans repository. The Java Beans are then loaded
and presented to the operator in order to display the mon-
itoring information in novel ways.

� MIB management– MIB management is performed
through DOVE-enabled Browsers, which can specify the
monitored information to be stored for later retrieval.
If an Application Proxy (dis)connects, the appropriate
DOVE MIB records this event.

2

DOVE-enabled Browsers: A DOVE-enabled Browser can
either run as a stand-alone application or a Java applet (e.g.,
in a standard Java-enabled Web browser like Netscape or In-
ternet Explorer). It serves as the display front-end to human
operators. During system initialization, the Browser connects
with one or more DOVE Agents and provides operators a list
of services available from the configured DOVE Agents. The
operator then selects which metrics to display. These metrics
are derived from information advertised by the Agent.

The following tasks are perform by DOVE-enabled
Browsers:

� Service discovery– The Browser uses Agents to discover
which server applications in a distributed system are of-
fering DOVE services. This discovery process is similar
to JavaSoft’s Jini framework [15].

� Visualization builder– This builder allows end-users to
bind graphical or data gathering components to data pub-
lished by DOVE-enabled Applications. The Browser
then packages the resulting tool in its own applet or appli-
cation. Likewise, the Browser can save this tool to a file
for later use. DOVE’s “build once, use frequently” mech-
anism is implemented using Java Beans, as described in
Section 3.4.

Visualization Component: The DOVE Visualization Com-
ponent is the conduit through which information from a
DOVE-enabled Application reaches the end-user. It’s also the
conduit though which configuration information from the user
reaches the application. Each Visualization Component is a
Java Bean, which registers for updates from Agents or Ap-
plication Proxies. The Visualization Component makes new
information public as it arrives and triggers events related to
those changes. Through the DOVE-enabled Browser, the user
can connect Visualization Components to these properties and
events to monitor and change the state of the application.

Application proxy: The Application Proxy extends a
DOVE Agent with application-specific functionality. An Ap-
plication Proxy is necessary when developers want the Agent
and Visualization Component to interact in ways that the
generic DOVE framework cannot provide. For example, de-
velopers may want to send special messages to the Visualiza-
tion Component when the application sets a flag in the DOVE
MIB.

Figure 3 illustrates the relationships between the various
DOVE Components in more detail, using a system developed
to monitor distributed electronic medical imaging systems [7].
In this figure, an Image Server publishes the outgoing number
of megabytes and updates the value every time a client fin-
ishes downloading an image. A network management appli-
cation may want to use the Visualization Component to chart

DOVE
Agent

DOVE
Browser

Visualization

Component

Visualization

Component

Image
Server

Application
Proxy

Figure 3: Components in the DOVE Software Architecture,
monitoring an Image Server

the average outgoing throughput. To achieve this functional-
ity, the Visualization Component would have a property called
“outgoing Megabytes,” the point data, timestamps indicating
the start and finish time of the connection, and an event called
”outgoing Megabytes updated,” as shown in Figure 4.

Figure 4: Example DOVE Visualization

3

To interact with DOVE, users can simply connect an averag-
ing graph to the “outgoing throughput” property. This causes
the graph to invisibly attach itself to the timestamp properties
and update events. When an update event occurs, the graph
updates the current average throughput in megabits per/sec us-
ing the new point datum and time elapsed. Finally, it plots the
next point on the graph.

2.3 The DOVE Middleware Infrastructure

To increase our productivity and to leverage existing develop-
ment effort, DOVE is based on the ACE framework [11], the
TAO real-time CORBA ORB [13], and Java Beans [14]. Each
middleware infrastructure component is summarized below.

Overview of ACE and TAO: The ADAPTIVE Communi-
cation Environment (ACE) is an OO framework developed by
the Distributed Object Computing (DOC) group at Washing-
ton University [12]. The ACE framework implements fun-
damental design patterns for communication software. ACE
is targeted for developers of high-performance communica-
tion services and applications on UNIX and Win32 platforms.
ACE simplifies the development of OO network applications
and services that utilize interprocess communication, event de-
multiplexing, explicit dynamic linking, and concurrency. ACE
automates system configuration and reconfiguration by dy-
namically linking services into applications at run-time and
executing these services in one or more processes or threads.

The ACE ORB (TAO) is an ORB endsystem architecture for
high-performance, real-time CORBA [13]. TAO implements
the CORBA 2.x standard and addresses performance limita-
tions with conventional ORBs. Like ACE, TAO was developed
by the DOC group at Washington University.

Both ACE and TAO are freely available using an open
source development model. They are used for many com-
mercial projects at companies like Bellcore, Siemens, Mo-
torola, Kodak, and Boeing, as well as in many academic
and industrial research projects. ACE and TAO have been
ported to a variety of OS platforms including Win32, most
UNIX/POSIX platforms, and real-time operating systems.
C++ and Java versions of ACE are available for downloading
atwww.cs.wustl.edu/ �schmidt/ACE.html .

Overview of Java Beans: A Java Bean is a reusable soft-
ware component. Common type of Java Beans are usually
small control programs, though Beans can also be complete
stand-alone applications. The Java Beans framework is de-
signed to allow objects to be written in such a way that their
properties and behavior can be modified without have to re-
code or recompile existing components.

In general, Java Beans are Java classes that conform to cer-
tain standards. Inheritance from a special base class is not

needed to create a Java Bean, though developers must con-
form to certain design guidelines [14]. For instance, method
names should conform to a naming convention so that reuse
and configuration are facilitated.

The naming convention for Java Beans is simple: a
method that sets any parameter of an Java Bean should be
namedset<parametername> (<parametername>)
and a method that gets some parameter of a Java Bean should
be named<parametername> get<parametername> .

3 The OO Design of DOVE

This section presents the OO design of DOVE, focusing on key
design challenges we faced and the solutions we employed to
resolve these challenges.

3.1 Motivating the Need for CORBA

3.1.1 Context

The first prototype of DOVE was developed before the ver-
sion that is the focus of this paper. This initial prototype used
Java as the programming language and was programmed us-
ing sockets for communication. Moreover, it was very restric-
tive, e.g., only one Application Proxy and one DOVE-enabled
Browser were allowed, and the types of data transported in-
cluded only weapons status, navigation information, and sta-
tistical data.

The prototype consists of a Java front-end that dis-
played a fix set of aircraft metrics, such available
weapons, an artificial horizon, and several statistical data
items. Statistical data were displayed in their own
Java-Canvas, the weapons were listed in a Java-Panel
(classDisplay Weapons) and the artificial horizon (class
Display Art Horizon), and all metrics were displayed
within one Java-Panel. ClassDisplay Weapons and
classDisplay Art Horizon inherited from an interface
called Display Object to allow other classes to ac-
cess them polymorphically. The Abstract Factory pattern
was used to define aDisplay Factory Object that
manage weapon and artificial horizon displays and creates
Display Object s.

Figure 5 illustrates the dependencies between the classes.
The communication between Application Proxy, the visual-
ization, and the DOVE-enabled Browser is solely performed
through sockets and TCP/IP. The Application proxy generates
random input, which is then fed into a socket connected to the
DOVE-enabled Browser.

4

Display_Input_Stream

Display

feedind data

create

Display_Object

create

Display_Output_Stream

Display_Client

Display_Server

Display_Art_Horizon Display_Weapons

Display_Object_Factory

feeding datacreate

connection via Sockets

Figure 5: Class Diagram for the Original DOVE-enabled
Browser

3.1.2 Problem

Although the first prototype served as a reasonable proof-of-
concept, is was hard to scale to large distribution topologies
and hard to extend with new functionality. The main problem
centered on the hard-coded socket-based connection between
the Application Proxy, which collected and sent metrics, and
the Visualization Components, which displayed the metrics.
In particular, the prototype didn’t support multiple instances
of Application Proxies, nor did it support multiple instances
of DOVE-enabled Browsers. Moreover, the first prototype
was not extensible since it used exposed the details of the data
types used to communicate between the various DOVE com-
ponents.

3.1.3 Solution

We introduced CORBA IDL definitions for DOVE compo-
nent interfaces and replaced the socket connection between
the Application Proxy and the DOVE-enabled Browser by
CORBA [18, 17] calls using the newly defined CORBA in-
terfaces. The DOVE-enabled Browser is implemented using
Java [2], which supports the use of Java Beans. Our scala-
bility problems were alleviated by implementing the DOVE
Agent with the CORBA Events Service, as discussed in Sec-
tion 3.3. Finally, the hard-coded connection between metrics
and visualization is alleviated by Java Beans, as described in
Section 3.4.

3.2 Bootstrapping the Naming Service

3.2.1 Context

Once DOVE was rewritten using CORBA, components like
Application Proxies and DOVE-enabled Browsers communi-
cate only through their IDL interfaces. Therefore, an object
reference to each remote component must be obtained in order
for clients to make calls. The CORBA Naming Service al-
lows easy storage and retrieval of these object references. Ob-
ject references are correlated with names, which can be used
to obtain bindings to the appropriate object references. If a
Naming Service was not used, these object references must be
provided through more tedious means, such as supplying them
via command-line parameters.

3.2.2 Problem

How does an ORB obtain the initial object reference to its
Naming Service?

3.2.3 Solution

We obtained the initial Naming Service object reference via a
“bootstrap protocol.” TAO implements the bootstrap protocol
for the Naming Service in the following way:1

� TAO’s Naming Service runs in a process that listens to a
well-defined multicast address and a well-defined port for
client multicast requests. TAO uses multicast instead of a
fixed host address to locate the Naming Service so that it
can reside on any machine in a domain. Thus, clients in
this domain need not know which machine the Naming
Service resides on since it’s transparent to them.

� The Naming Service expects to receive two bytes that de-
fine the port number in network byte order on which the
requesting machine expects the response from the Nam-
ing Service. The Naming Service then responds to this
address with a datagram containing the IOR of the Nam-
ing Service.

� Any client requesting the Naming Service IOR must mul-
ticast a UDP datagram containing the port number to the
multicast address. The port number in the packet refers
to the port on which the requesting client listens for the
response from the Naming Service. The client then waits
until the response arrives from the Naming Service or a
timeout occurs. If the Naming Service IOR is received,
the client ORB converts it into an object reference using
the standard CORBAstring to object operation.

1The OMG has recently standardized a “Interoperable Naming Service”
specification [3]. However, at the time this paper was written no ORBs imple-
ment this specification. We plan to make TAO conform to this specification
shortly.

5

Once a client has resolved its Naming Service object refer-
ence, other object services and application components can be
resolved via theresolve method on the Naming Service’s
Naming Context .

3.3 Enhancing the DOVE-enabled Browser
with the Events Service

3.3.1 Context

The communication mechanism between DOVE components
must be scalable so that multiple DOVE-enabled Browsers can
communicate efficiently with multiple DOVE-enabled Appli-
cations. Likewise, monitoring information must be trans-
ported generically so that its schemas can change without hav-
ing to change the communication protocols or DOVE compo-
nent interfaces.

3.3.2 Problem

The first DOVE prototype uses sockets to communicate by
sending bytestreams between the Application Proxy and the
DOVE-enabled Browser. Therefore, as discussed in Sec-
tion ??, the first protoype of DOVE scales poorly since
it allows only uni-direction communication between various
DOVE components. Moreover, this prototype hard-codes
the schema information directly into the applications, which
makes it hard to change the communication protocols without
changing the DOVE components.

3.3.3 Solution

Use the CORBA Events Service [5] as the communication
mechanism to multicast events from event suppliers to regis-
tered event consumers through an Event Channel. The DOVE
Agent is then implemented as an Event Channel. Figure 6
illustrates how event suppliers push events to the Event Chan-
nel, which then filters, correlates and finally forwards these
events to event suppliers. In this figure, DOVE-enabled
Browsers are event consumers and DOVE-enabled Applica-
tions are event suppliers.

The events in the OMG COS Specification of the
Events Service are defined as typeCORBA::Any . The
CORBA::Any type consists of the following two fields:

� The typecode– The typecode field describes which built-
in or derived data type the value field points to. The field
actually contains a pointer to a structure, in which infor-
mation about the data type is stored.

� The value– The value is a pointer tovoid . The CORBA
specification allows an application to assign any type to a
CORBA::Any .

Subscription
& Filtering

Event
Correlation

Dispatching
Module

EVENT
CHANNEL

Consumer

Consumer
Consumer

Supplier Supplier
Supplier

push (event)

push (event)

Consumer
Proxies

Supplier
Proxies

Priority
Timers

Event
Flow

Figure 6: Components in TAO’s CORBA Events Service

The value and type of aCORBA::Any can be set using
the copy-constructor, the assignment operator, thereplace
method, oroperator <<= . The stub or skeleton gener-
ated by the IDL compiler must ensure that the value(s) and
the type(s) are properly marshaled for transmission as the stub
and skeleton are responsible for proper (de)marshaling.

The CORBA Events Service uses theCORBA::Any type
to allow any type of application-specific data, such as avion-
ics sensor data, to be transported within its events. These data
items can then easily put into theCORBA::Any and trans-
ported generically throughout the network and DOVE compo-
nents.

Figure 7 shows the relationships of the Events Service parts
to the rest of DOVE. First the Application Proxy, serving
as event supplier, pushes information into the event channel,
which filters and correlates these events (containing the met-
rics) and pushes the events to the event consumer which then
updates information inside the DOVE-enabled Browser.

6

create

Display

Display_Weapons

feedind data

Border to the Event Service

Event Channel

Event Supplier

Border to the Event Service

Display_Event_Consumer

feeding data

Display_Server

Display_Client

Display_Art_Horizon

Display_Object

createcreate

Display_Object_Factory

Figure 7: Class Diagram for the Integration of the Events Ser-
vice into DOVE

3.4 Enhancing the DOVE-enabled Browser
with Java Beans

3.4.1 Context

The original DOVE prototype consisted of the following Visu-
alization Components: (1) a graph component, (2) a list-panel
to display the weapon status, and (3) an artificial horizon. The
way the viewer was built made it possible to have several of
these components running simultaneously, connected to dif-
ferent data sources. Thus, it was possible to display metrics
and graphs dynamically, though the set of Visualization Com-
ponents was hard-coded.

3.4.2 Problem

In the original DOVE prototype, both the set of Visualiza-
tion Components and the metric that could be viewed with
which Visualization Component were hard-coded. Thus, it
wasn’t possible to display a metric using different Visualiza-
tion Components, which is too inflexible. Having a generic
way to connect Visualization Components with metrics makes
it possible to view the same metric with different Visualization
Components, each displaying a different aspect of the met-
ric. Moreover the Visualization Components were not dynam-
ically loadable, so the set of Visualization Component could
not be enhanced at run-time.

3.4.3 Solution

We used the Observer pattern [4] to provide a generic mecha-
nism for registering and accessing Visualization Components.
This pattern decouples the metrics and the Visualization Com-
ponents, making it possible to connect a metric with any Vi-
sualization Component. It also allows several different Visu-
alization Components to be connected to the same metric.

The Observer pattern defines two roles for objects:Observ-
ablesandObservers. Observers register with one or more Ob-
servables. An Observable informs one or more registered Ob-
servers about changes as soon as its own state changes. Apply-
ing the Observer pattern to the DOVE-enabled Browser encap-
sulates the metrics in Observables and the Visualization Com-
ponents as Observers.

In addition, DOVE’s Visualization Components are both
Observersand Java Beans. Figure 8 shows the architecture
of new DOVE-enabled Browser using Java Beans. This fig-

NavWeap
DataHandler

Event Push
Channel
Event

Factory
VisComp

VisComp
Weapons Navigation

VisComp

Repository
JavaBeans

DemoObservable

VisComp

Observer

Double

Component
Visualization

DemoCore

Consumer

DataHandler

Observable
Cpu_UsageNavigation

Observable
Weapons

Observable

Observable

Figure 8: Class Diagram of the DOVE-enabled Browser

ure shows how all concrete Observables inherit from the Ob-
servable interface and all concrete Visualization Components,
i.e., the Java Beans, inherit from the Observer interface. Be-
cause communication between Observables and Observers is
performed only via the base class interface, independence be-
tween concrete Observables and Observers is ensured.

The functional model of the new DOVE-enabled Browser
is simple, as shown Figure 9. TheDemoCore object instructs
the VisCompFactory to create a new Visualization Com-
ponent with the properties necessary to display the chosen
Observable . Once created, theDemoCore is responsible
for connectingObservables with Observers (i.e., Visu-
alization Components). ConnectingObservables is done
through theDataHandler , which is a generic interface that
allows theDemoCore to request a list of Observables and
then to pick one specifically to connect it with an appropriate
Visualization Component.

7

Channel
Event PushEvent DataHandler

VisComp
Factory

Navigation
VisComp

notifyObservers

update

getObservablesList,push DemoCore

update

getObservable

Observable
Navigation

Consumer

DataHandler
NavWeap

Figure 9: Functional Model of the DOVE-enabled Browser

Updates of the Visualization Components occur as fol-
lows: TAO’s CORBA Event Channel pushes events to the
PushConsumer , which forwards the event data field to the
Data Handler, which is actually an concrete Data Handler,e.g.,
NavWeapDataHandler . This Data Handler then demulti-
plexes the event data structure into several metrics. The met-
rics recognize the value they contain has changed and trigger a
notification event to their Observers. These events contain an
object with the changed data. The Observers read the data field
of the notification event and update their graphical front-end
in the DOVE-enabled Browser. Figure 10 shows the interface
between Observables and Observers.

 NavigationObserver,
WeaponsObserver, ..)

public update (Observable, YYY)

public updateXXX() {

XXXObservable
(NavigationObservable,
 WeaponsObservable,
Cpu_UsageObservable, ...)

 notifyObservers (XXX)
 set the changed flag
 do some calculations

// get informed by an Observable for all Observers do

Operations:

Operations:
// inform the Observers about changes
private notifyObservers (XXX) {
 if changed then

 update (this, XXX)

YYYObserver
(DoubleObserver,

Figure 10: Interface Description between Observables and
Observers

Observer/Observable pairs can be categorized into two
classes depending on the data for which they are responsi-
ble. The first category uses only built-in Java types, such as
Double or Int . The second category uses derived types
(user defined classes) containing more sophisticated informa-
tion, such as Weapon status or Navigation information.

3.4.4 Implementation

As mentioned earlier, Java Beans is used as the
framework for the generic DOVE Visualization
Components. The Java JDK implements the Ob-

server pattern in the java.util.Observer and
java.util.Observable . Figure 11 illustrates the
GUI of a DOVE-enabled Browser that is configured for
the avionics simulation system described in Section 1. Six

Figure 11: The GUI of the DOVE-enabled Browser

Visualization Components are connected in this figure. One
of them is the Navigation Visualization Component, one is the
Weapon Status Visualization Component, the others are Dou-
ble Visualization Components connected to corresponding
metrics.

3.5 Building the DOVE Management Informa-
tion Base

3.5.1 Context

A Management Information Base (MIB) is a database con-
taining management information about so-called managed ob-
jects, such as routers, PCs, workstations, or software running
on machines. In this paper, we use MIBs to store not only
standard management information but also historical values of
monitoring statistics and associated metrics. Thus, a DOVE
MIB can store a complete history of information from moni-
toring applications.

3.5.2 Problem

One requirement for DOVE is to save all monitoring informa-
tion on persistent storage in the MIB. Once stored persistently,
this information can be used for analysis and debugging of the
monitored system. The stored information must be saved in a
human readable way.

The following are several alternative ways to build a DOVE
MIB:

8

Have a MIB connected directly to the Events Service:
The Events Service could implement the persistence storage
of events in itself. The CORBA Object Services specifica-
tion [9] states that an Event Channel can store events for “a
specified time, passing it along to any consumer who registers
with the channel during that period of time (e.g., it may keep
event notifications about changes to engineering specifications
for a week).” The advantages of this approach is the simple in-
terface and the fact that only a small number of objects would
be involved in a request for old messages, namely the Events
Service and the requesting object.

Have the MIB external to the Events Service: In this case,
the MIB would be a consumer to the Event Channel. The basic
idea is that this external object listens to all the events, stores
them on persistent storage with time, type and source ID. It
retrieves them on-demand, filtering them from the persistent
storage and supplying them to the Event Channel again. The
challenge with this approach is that care must be taken to en-
sure that no other components are affected by the repetition of
the events.

If the MIB is treated as an external object, there are the fol-
lowing two ways to contact the MIB:

� One way is to ensure that the external object,i.e., the
MIB, pushes the events directly to the consumer who re-
quested the stored events.

� Another way is to have the MIB contacted without in-
volving the Events Service. This requires that the re-
questing objects know whom to ask. The object reference
of the MIB could be supplied in response to a request to
the Events Service.

The main problem of the DOVE MIB is how to retrieve the
information published by the DOVE Agents. The informa-
tion is contained in aCORBA::Any , as mentioned in Sec-
tion 3.3.3. The DOVE MIB must read the typecode, analyze
it, extract the information, and timestamp the new entry in the
MIB. It is also necessary to ensure that the order of the events
is maintained. In particular, it’s important that new events
aren’t processed before earlier events.

3.5.3 Solution

DOVE’s MIB is designed as an external MIB, which receives
all events from the DOVE Agent’s Event Channel and stores
them as timestamped “type, member name and value” tuple
in persistent storage. This design requires that an external ob-
ject is connected as event consumer to the Event Channel. A
DOVE MIB listens to all events sent on the Event Channel and
stores the event data in persistent storage, using in a format
similar to the format used for declarations in C++.

Event data is contained in aCORBA::Any and no assump-
tions are made about the type of data in anAny. For instance,
the CORBA::Any could contain astruct , a double , a
long , etc. Moreover, several layers of types could be con-
tained,e.g., astruct may contain a nestedstruct , which
contain astring , etc. Figure 12 illustrates a class diagram
for this type of recursive type configuration.

visitDoubleNode (DoubleNode)
visitStringNode (StringNode)
visitLongNode (LongNode)
visitStructNode (StructNode)
Methods:

PrintVisitor
Methods:
Accept (NodeVisitor)
string getName ()
Node getChild (n) long getLong ()

string getName ()
Accept (NodeVisitor)
Methods: Methods:

Accept (NodeVisitor)

double getDouble ()
string getName ()

Accept (NodeVisitor)
string getName ()
string getString ()

Methods:

visitStructNode (StructNode)
Methods:

visitLongNode (LongNode)

StructNode LongNode StringNode DoubleNode

visitStringNode (StringNode)

Accept (NodeVisitor)

visitDoubleNode (DoubleNode)

Methods:

Node

NodeVisitor

Figure 12: Visitor and Tree Representing the Content of a
CORBA::Any

Figure 12 illustrates how all types of nodes,StructNode ,
DoubleNode , LongNode , ULongNode, StringNode ,
etc., inherit fromNode. Therefore, we used the Visitor pat-
tern [4] to traverse these trees. All Visitors inherit from
NodeVisitor . which provides the basic functionality to tra-
verse a tree. The visitor methodPrintVisitor accepts a
file name and a tree as input. It prints the value of the tree in a
format similar to the declaration format in C++.

Figure 13 shows the relation between the objects and meth-
ods in the Visitor pattern used in the DOVE MIB. The

getName ()

printVisitor->visitLongNode (this)

AnyAnalyser

Accept (printVisitor)

StructNode

printVisitor->visitStructNode (this)

getLong ()

LongNode PrintVisitor

getName ()

getChild (n)

Accept (this)

Figure 13: Functional Model of the Visitor Pattern in the
DOVE MIB

AnyAnalyzer creates a tree out of the type code and

9

value information in theCORBA::Any . It instantiates the
PrintVisitor and calls the root of the tree with a ref-
erence to thePrintVisitor . The node, in this case the
StructNode , then calls thePrintVisitor , which in turn
calls the StructNode again to obtain the properties of it. In this
case the properties are the name and references to children.

The primary advantage of the Visitor pattern is that the
nodes do not depend on what is done with the properties,e.g.,
if they are used for further computation, just printed or further
traversed. This independence assures that new Visitors can be
added without changing the node objects.

For example, thePrintVisitor uses references to
the children of theStructNode to traverse the tree.
The first child is a LongNode , it gets called by the
PrintVisitor via its Accept method and replies with
thevisitLongNode method call of thePrintVisitor .
In turn, the PrintVisitor gets the properties of the
LongNode and prints them. TheLongNode need not care
about what is done with its properties.

A wrapper calledAnyAnalyzer wraps the building of the
trees with thePrintVisitor so that theAnyAnalyzer
can be seen as one object to whichCORBA::Any s can be
given. The content of theCORBA::Any will be written to a
file.

The MIB application itself consists out of aEvent Push
Consumer and anAnyAnalyzer , as shown in Figure 14.
This design decouples the components as much as possible.

Consumer

Base
Information

Management
DOVE

LongNode

Event

PrintVisitor

Channel
Event Push AnyAnalyser

Node

StructNode

.....

Figure 14: Class Diagram of the DOVE Management Infor-
mation Base (MIB)

Therefore, a change in theEvent Push Consumer does
not influence theAnyAnalyzer and vice versa. Figure 14
shows the relations between the classes.

3.5.4 Implementation

Since the MIB does not require a GUI it was implement
using C++ and TAO. TheNode, fStruct, Double,
Long ... gNode, NodeVisitor, PrintVisitor and
AnyAnalyzer classes are mapped directly to C++ classes.
TheAnyAnalyzer class contains detailed knowledge about
the internals of aCORBA::Any . TheCORBA::Any in TAO
holds the value in two different ways, depending on if the ORB
owns the data or not.

If the ORB does own the data, a simple pointer to an allo-
cated memory area can be retrieved. If the ORB does not own
the data, it must be copied into a newly allocated memory area
and decoded. Analyzing theCORBA::Any involves check-
ing the type code information and creating a tree node with a
proper pointer to the actual memory location. The number of
bytes defined by the type code size is then skipped and this
scheme is reapplied recursively.

4 Concluding Remarks

The DOVE monitoring framework has proven to be a very
flexible and generic approach to meet the rapid pace of change
and growth in heterogeneous distributed systems. We learned
the following lessons while developing DOVE:

� Patterns are valuable for software development since they
simplify reuse and extensibility. In particular, applying
the patterns to DOVE made the software easier to under-
stand and maintain compared with earlier systems we de-
veloped that weren’t explicitly designed using patterns.
Some of the key design patterns we used in DOVE are
Observer, Factory, and Visitor [4].

� Using an interface definition language like CORBA IDL
simplifies the development of heterogeneous components
written in different programming languages. CORBA
IDL makes it easy to use the right programming lan-
guage for the right tasks,e.g., using Java for the GUI and
C++ for the Events Service, while ensuring smooth inter-
language interoperability between languages.

� CORBA takes the concept of generic interfaces a step fur-
ther and supports the transparent distribution of software
components. With its powerful features and common ob-
ject services, such as the Naming Service and Events Ser-
vice, it is an effective way to integrate C++ and Java code.
A good example of this in DOVE is its use of the TAO’s
Real-time Events Service, where end-to-end quality of
service can be guaranteed throughout the distributed ob-
jects, up to the GUI components in the DOVE-enabled
Browsers that are implemented in Java. Because human
operators typically interact with their consoles slower

10

than even the slowest Java implementation, the perceived
performance is generally meets the display requirements.

� Java Beans help increase the adaptability and maintain-
ability of DOVE applications and tools. For instance,
developers and even end-users can modify and enhance
different Beans rapidly.

� Though the performance of Java ORBs like Java IDL or
VisiBroker for Java is not as good as highly-optimized
real-time C++ ORBs like TAO, they are sufficient to sup-
port the connection of Java user interfaces to distributed
applications and components.

� When used properly, exception handling shortens com-
ponent debugging and testing time considerably since it’s
not possible to “ignore” errors [8]. Points of failure can
quickly be tracked down to the source.

� Memory management is highly problematic in C++ ap-
plications. Therefore, it’s essential to use memory man-
agement tools, such as Purify and Bounds Checker.

The complete C++ and Java source code, examples, and
documentation for ACE, TAO, and DOVE is freely available
at URLwww.cs.wustl.edu/ �schmidt/TAO.html .

References

[1] BMC. http://www.bmc.com. BMC, 1998.

[2] David Flanagan.JAVA in a Nutshell 2nd ed.O’Reilly,
1997.

[3] Dan Frantz, Michi Henning, Michael Neville, Tod
MacFadden, Jeff Mischkinski, and Martin Chapman.
ftp://ftp.omg.org/pub/docs/orbos/98-10-11.pdf. OMG,
1998.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[5] Timothy H. Harrison, David L. Levine, and Douglas C.
Schmidt. The Design and Performance of a Real-time
CORBA Event Service. InProceedings of OOPSLA ’97,
Atlanta, GA, October 1997. ACM.

[6] Prashant Jain and Douglas C. Schmidt. Service Con-
figurator: A Pattern for Dynamic Configuration of
Services. InProceedings of the3rd Conference on
Object-Oriented Technologies and Systems. USENIX,
June 1997.

[7] Prashant Jain, Seth Widoff, and Douglas C. Schmidt.
The Design and Performance of MedJava – A Dis-
tributed Electronic Medical Imaging System Developed

with Java Applets and Web Tools. InProceedings of
the4rd Conference on Object-Oriented Technologies and
Systems. USENIX, April 1998.

[8] Harald Mueller. Patterns for Handling Exception Han-
dling Successfully.C++ Report, 8(1), January 1996.

[9] OMG. CORBA services: Common Object Services Spec-
ification. OMG, 1997.

[10] Douglas C. Schmidt. The Reactor: An Object-Oriented
Interface for Event-Driven UNIX I/O Multiplexing (Part
1 of 2). C++ Report, 5(2), February 1993.

[11] Douglas C. Schmidt. ACE: an Object-Oriented Frame-
work for Developing Distributed Applications. InPro-
ceedings of the6th USENIX C++ Technical Conference,
Cambridge, Massachusetts, April 1994. USENIX Asso-
ciation.

[12] Douglas C. Schmidt.The ADAPTIVE Communicaton
Environment. DOC group, Washington University, 1994.

[13] Douglas C. Schmidt, David L. Levine, and Sumedh
Mungee. The Design and Performance of Real-Time
Object Request Brokers.Computer Communications,
21(4):294–324, April 1998.

[14] Sun. http://java.sun.com/beans/spec.html. Sun Mi-
crosystems, Inc, 1997.

[15] Sun.http://www.javasoft.com:81/products/jini/index.html.
Sun Microsystems, Inc, 1998.

[16] Steve Vinoski. CORBA: Integrating Diverse Applica-
tions Within Distributed Heterogeneous Environments.
IEEE Communications Magazine, 14(2), February 1997.

[17] Visigenic. VisiBroker for JAVA 3.1 documentation. Visi-
genic, 1998.

[18] Andreas Vogel and Keith Duddy.Java Programming
with CORBA. Wiley & Sons, 1997.

11

