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Abstract 

The growing complexity and criticality of distributed sys-
tems motivates software developers to raise the level of 
abstraction used to develop these systems. A promising 
approach for improving the quality and productivity of 
software development is to (1) assemble applications from 
higher-level building blocks that represent solution tem-
plates for certain application domains and (2) apply 
model-driven development techniques and tools to ma-
nipulate the building blocks and automate key tasks related 
to system specification, implementation, configuration, and 
deployment, rather than (re)writing the applications manu-
ally using third-generation programming languages. To 
simplify the manipulation of component building blocks, 
however, requires a well-formed set of rules and relation-
ships. This paper contributes to the study of these topics by 
describing pattern feature inheritance relationships, show-
ing how pattern feature inheritance can improve the reus-
ability of models, and illustrating our approach with a con-
crete example adding the remoting aspect to a GUI appli-
cation. 
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1. Introduction 
Emerging trends. The growth in the size and complexity 
of large-scale distributed systems is exceeding the ability of 
IT professionals and organizations to develop software for 
these systems with acceptable and affordable time and ef-
fort. To address this problem requires new technologies 
that enable developers to improve the productivity and 
quality of the software development process. A promising 
approach involves the combination of (1) component mid-
dleware [21], which provide mechanisms to configure and 
control key distributed computing aspects (such as connect-
ing event sources to event sinks and managing transac-
tional behavior) separately from the functional aspects of 
applications, with (2) model driven development (MDD) 
[1][22], which are generative technologies that help reduce 
complexity by raising the level of abstraction at which 
software is developed, validated, and disseminated. 

The technical foundations of component middleware con-
sist of various patterns and frameworks that have been cov-
ered extensively in earlier publications [4][5][10][14][17]. 

The technical foundations of MDD are less well codified, 
but the emerging consensus [11][22] is that the MDD para-
digm involves (1) metamodeling, which define type sys-
tems that precisely express key characteristics and con-
straints associated with particular application domains, 
such as e-commerce, telecommunications, and automotive 
control, (2) domain-specific languages, which provide pro-
gramming notations that formalize the process of specify-
ing business logic and quality of service (QoS)-related re-
quirements, and (3) model transformations and code gen-
erators, which help to automate and assure the consistency 
of software implementations using analysis information 
associated with functional and QoS specifications captured 
by models. Although there are various approaches [1][20] 
to realizing the MDD paradigm, MDD tools and techniques 
share a common goal of reducing complexity by raising the 
level of abstraction used to specify, implement, configure, 
and deploy software systems.   

Unresolved problems. Despite improvements in third-gen-
eration programming languages (such as Java or C++) and 
run-time platforms (such as component and grid middle-
ware), the levels of abstraction at which application logic is 
typically integrated with the set of rules and behavior dic-
tated by conventional design and programming techniques 
remains low relative to the (1) concepts and concerns 
within the application domains themselves and (2) ad-
vanced technologies available in the solution space, as de-
scribed below: 

• Gap between domain and implementation abstrac-
tion levels. A large gap exists in the levels of abstrac-
tion between (1) third-generation programming lan-
guages used by software engineers versus (2) the do-
main-specific terminology used by systems engineers 
to describe applications that are being built. The con-
ventional solution is to apply a design process (such as 
object-oriented design or structured design) to map 
from the higher-level domain-specific abstractions to 
the much lower-level abstraction provided by main-
stream third-generation programming languages. This 
mapping has historically been performed manually by 
conventional software development methodologies, 
such as RUP [25], which introduce various problems, 
ranging from simple implementation errors to missing 
customer requirements [22]. 



 

• Gap between state-of-the-art and state-of-the-prac-
tice. Another gap exists between the levels of abstrac-
tion and composition that represent (1) the state-of-the-
art in software engineering R&D versus (2) the state-
of-the-practice applied by most developers.  In par-
ticular, third-generation languages do not intuitively 
reflect the concepts used by cutting-edge software re-
searchers and developers [9], who increasingly express 
their system architectures and designs using languages 
and tools that directly support higher-level concerns, 
such as persistence, remoting, and synchronization. 

Both these gaps can be narrowed by introducing intermedi-
ate abstraction layers that reduce the distance between 
problem domain abstractions and available solution domain 
abstractions.  As discussed in [22], this approach motivates 
the development of generative MDD technologies that cre-
ate families of domain-specific languages (DSLs). These 
DSLs can then be applied to express domain-specific prob-
lems more effectively and intuitively than general-purpose 
third-generation programming languages, thereby en-
hancing software productivity and quality.  

Despite the promising benefits of MDD, however, other 
unresolved problems remain due to the fact that models of 
distributed systems can themselves be large and complex as 
applications grow in size and scope. In particular, it is hard 
to change and maintain models using conventional Model-
Driven Architecture (MDA) techniques [1][20]. which pro-
vide only a slightly higher level of abstraction and plat-
form-independence than third-generation programming lan-
guages, such as C++ or Java.  As a result, the gap between 
expressing problems in the domain space and representing 
them in the solution space remains too large. 

Solution approach  Compose software systems from 
higher-level building blocks that are solution templates 
for certain problems. In previous work [2][3] we moti-
vated the need for higher-level MDD abstractions that com-
bine patterns, component middleware, and aspect-oriented 
software development (AOSD) techniques [13] to  

• Resolve recurring distributed system development 
problems so they have fewer dependencies on plat-
form-specific details, such as communication proto-
cols, object models, and threading models, and 

• Automate key system evolution tasks, such as imple-
menting new customer requirements, refactoring cer-
tain parts of the system, and migrating to the newer 
versions (or versions from other vendors) of libraries 
and middleware used for development.  

Our previous work, however, does not show how the pat-
tern-based composition of different aspects and models 
could be implemented in component-based systems. This 
paper therefore explores another point in the solution 
space: illustrating a new design and problem decomposi-

tion approach that applies patterns for modeling different 
aspects of distributed systems to simplify model transfor-
mations and code generators for component-based sys-
tems. In particular, we investigate the relationships between 
patterns that can improve their substitutability and compos-
ability, thereby contributing to methodologies that can be 
applied to manipulate role-based solution templates as first 
class system composition units. We introduce the concept 
of pattern feature inheritance relationships and use a con-
crete example to illustrate the benefits of using the sub-
stitutability property of feature inheritance. It is our posi-
tion that formalizing sets of composition and manipulation 
rules will enable greater automation of key modeling and 
code generation concerns that are hard to handle with con-
ventional MDD technologies. 

Paper organization. The remainder of this paper is organ-
ized as following: Section 2 describes how feature inheri-
tance relationships between patterns help to support vari-
ability without degrading software symmetry [26][27]; Sec-
tion 3 examines a concrete example that illustrates the ap-
plicability of concepts presented in Section 2 to solve the 
problems outlined in Section 1; Section 4 compares our 
approach with related work; and Section 5 presents con-
cluding remarks and outlines future work. 

2. Pattern Inheritance as a Key Mechanism 
to Encapsulate Variability and Improve 
Reusability 

To manage software development effort and enhance soft-
ware productivity and quality, the IT industry is continually 
trying to improve reusability and localize the impact of 
variability found in product families [8]. The paradigms 
developed over the past 3-4 decades range from functional 
decomposition to object-oriented decomposition and re-
cently aspect-oriented decomposition [6][13]. Each para-
digm prescribes a methodology for modularizing different 
dimensions of software systems. A theme that increasingly 
pervades all these software development paradigms is pat-
terns [12][10][14], which are technology-independent, 
role-based descriptions of common ways to resolve key 
forces associated with recurring problems encountered 
when developing software. 

Based on our experience developing and applying pattern-
based [10][12][14] frameworks [4][5] and middleware plat-
forms [16][17] for distributed systems over the past two 
decades, we believe that patterns are a valuable addition to 
the portfolio of higher-level system building blocks avail-
able to software developers. To enable patterns to become 
first-class citizens in MDD environments, it is necessary to 
define a set of composition rules and express relationships 
between patterns precisely. As discussed in [26], it is possi-
ble to substitute implementation artifacts that have inheri-
tance relationships without affecting key properties of an 
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entire system. This type of transformation can be treated as 
a symmetry [29], which is a special type of model transfor-
mation that preserves the key properties of a model. Exam-
ples of model properties include persistence, which is the 
ability to read/write the state of an object to persistent stor-
age and remoting, which is the ability to communicate with 
other system components over a network. 

Coplien and Zhao [26] describe how object-oriented inheri-
tance can also be treated as a symmetrical transformation 
because it preserves key behavioral aspects defined by base 
class. In turn, the concept of pattern feature inheritance in-
troduced in this paper also preserves the key properties of 
the base pattern, so that substituting derived patterns pro-
vide variability without changing key system properties. 
This section describes how feature inheritance relationships 
between patterns help to support variability without de-
grading software symmetry. In particular, we treat trans-
formation and inheritance as enabling mechanisms to sim-
plify the substitution of certain system components without 
affecting other key system properties. These mechanisms 
also make it easier to handle the variabilities that are often 
encountered when developing MDD tools to support prod-
uct-line architectures. 

2.1 Handling Variability via Inheritance 
Inheritance is a powerful mechanism for shielding certain 
parts of applications from side-effects caused by the need 
to customize certain functional aspects.  To illustrate in-
heritance, consider the following classical Observer pattern 
[12] example shown in Figure 1. In this example, the Sub-
ject class is shielded from the variability introduced by 
different implementations of the Observer interface. The 
enabling mechanism in this case is inheritance, which in 
accordance to the Liskov Substitutability Principe (LSP) 
[7] allows Observable to work uniformly with all Ob-
server subclasses, such as Notifier and Logger. 

It would be nice to achieve the same level of substitutabil-
ity with pattern-based building blocks. To achieve this 
functionality, therefore, we need to identify similar rela-
tionships between patterns. These relationships, in turn, 
should be used to facilitate the development of MDD tools 
that can automate pattern manipulation tasks and support 
the level of substitutability and transformation needed to 
address the challenges presented in Section 1. 

2.2 Inheritance Relationships between Pat-
terns 

To explore the value of expressing inheritance relationships 
between patterns, we will examine the following set of pat-
terns:  

• Observer [12], which defines a one-to-many depend-
ency between objects so that when one object changes 

state, all its dependents are notified and updated auto-
matically. 

• Reactor [10], allows event-driven applications to de-
multiplex and dispatch service requests that are deliv-
ered to an application from one or more clients. 

• Interceptor [10], which allows services to be added 
transparently to a framework and triggered automati-
cally when certain events occur. 

 
Figure 1. Observer Pattern Structure 

There are common roles and responsibilities that cross-cut 
these patterns, e.g., there are certain events that can occur 
in a system, certain entities that need to be notified when 
such events occur, and certain ways these entities can ex-
press their desire to handle certain events by registering 
their interest. While this description characterizes the Ob-
server pattern, it does not mean that Reactor and Intercep-
tor are simply different variants of Observer since each 
pattern has different forces and goals. Yet there are also 
similarities that stem from the fact that these patterns share 
a higher-level relationship than just “different variants of 
Observer.” We contend that this relationship can be repre-
sented by feature inheritance. 

To explore feature inheritance relationships between pat-
terns more concretely, consider again the Observer exam-
ple presented in Section 2.1. The Notifier and Logger 
subclasses have different functionality and goals, i.e., no-
tify users via a pop-up window and an output trace record, 
respectively, but they still conform to the “is a” relationship 
to the Observer base class. There are similar relation-
ships for the Observer, Interceptor, and Reactor patterns, as 
shown in Figure 2. 
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Figure 2. Relationships between Patterns 

The pattern feature inheritance tree shown in Figure 2 de-
fines the relationships between four patterns. At the root of 
the hierarchy is the Callback pattern [30], which defines 
the basic feature – control inversion – used by all the 
related patterns. In the Observer pattern, all registered 
Observers are called back by a registered Subject. 
Likewise, for the Reactor and Interceptor patterns the regis-
tered Event Handlers and Interceptors are called 
back, respectively, when the certain triggering conditions 
occur.  

Figure 3. Extending the Observer Pattern with the 
Event Source Role 

To illustrate different implementations of the Event-
Source role, the following cases could be considered: 

• Different implementations of EventSource, e.g., 
example the family of different reactors, such as the 
ACE_Select_Reactor, ACE_WFMO_Reactor, 
and ACE_Dev_Poll_Reactor [5]. 

Despite the similarities between these four patterns, there 
are also some differences that bear mentioning because 
they motivate the Observer pattern as a basis for the set 
of related patterns and allow a cleaner connection between 
the patterns at Figure 2. In particular, a key difference be-
tween the Reactor and Interceptor patterns is the event 
source. The Reactor’s event source is a demultiplexor, such 
as the select() or WaitForMultipleObjects() 
system calls, whereas the Interceptor’s event source is an 
incoming control flow, such as callback method invocation 
by CORBA Portable Interceptors [28] that are triggered 
during the remote invocation request/response flow. There 
is, however, no such role as event source in classical Ob-
server pattern description – instead, that role is merged 
with the subject role. We therefore suggest the Observer 
pattern be extended, as shown in Figure 3. 

• A GUI event loop, which typically blocks on an OS 
demultiplexer, such as select() or WaitForMul-
tipleObjects(), to detect incoming events (e.g., a 
mouse click) and then dispatch this event to the corre-
sponding handlers (e.g., a button) , which in turn noti-
fies observers about a change in state (e.g., button 
down). 

• Hardware interrupt handlers can also be considered as 
event sources, which typically delegate event process-
ing to observers in the OS kernel. 

The Visitor pattern [12] could be also viewed as inheriting 
from Observer, where the event source is the traversing 
algorithm visiting various concrete nodes. For example, the 
Boost Graph Library (BGL) uses Observer pattern termi-
nology (notify) for their generic visitor implementations of 
graph traversing algorithms [19]. 

The new EventSource role shown in Figure 3 is respon-
sible for monitoring possible condition changes and then 
initiating a notification propagation mechanism by trigger-
ing the Subject implementation, e.g., by invoking the 
triggerUpdates() method on the Subject. Intro-
ducing the EventSource role allows a cleaner separation 
of responsibilities for the Observer pattern.  Moreover, 
compared with the previous approach shown in Figure 1, 
the Subject role is now only responsible for maintaining 
observers list and iterating over this list when notifications 
are propagated. 

We have identified other examples of inheritance relation-
ships between patterns, as shown in Figure 4, which illus-
trates the set of patterns that solve similar problems using 
different methods. 

 



 

 

 

Figure 4. Example of Inheritance Relationships Be-
tween Patterns 

Despite differences in structure and intent, the core mecha-
nism used by these patterns in Figure 4 is the indirection 
between two collaborating parties, which is why the In-
direction pattern forms the root of this feature inheri-
tance tree. The second level in the tree shows the Re-
modularization pattern, which enables collaboration 
between two objects even if a mismatch occurs between a 
provided interface and an interface expected by a collabo-
rator. In turn, there are different circumstances and types of 
remodularization required in each concrete case, which is 
why the three other patterns in Figure 3 are specializations 
of the Remodularization pattern. 

Figure 5. Concern-based Modeling Process 

This figure shows how domain-specific models are used as 
an input for various modeling tools. Next, the set of prede-
fined role-based solutions can be introduced by means of a 
role mapping step. Finally, after completing the role map-
ping process, platform-specific models can be generated, 
followed by a runnable application.  

3.  Remote Button Example 
This section presents a concrete example that further illus-
trates how the approach presented in Section 2 could be 
applied in practice. 

2.3 Applying Feature Inheritance in Practice 
Section 2.2 shows how feature inheritance relationships 
between concerns can be presented in the form of patterns 
or other role-based definitions.  Using this concept, we can 
provide a powerful mechanism to encapsulate variability at 
a higher level of abstraction than is possible via third-gen-
eration programming languages. For example, we can en-
capsulate the impact of variability in the communication 
infrastructure (such as standard middleware or custom 
frameworks) on the rest of large-scale distributed systems.  

3.1 Scenario 
Consider a standalone application that is based on the 
refactored Observer pattern shown in Figure 3. This appli-
cation has a simple GUI in the form of dialog box with a 
single button. Pressing this button causes the invocation of 
a method that implements application-specific functional-
ity. As shown in Figure 6, the button plays the Subject 
role in the Observer pattern and the application-specific 
class plays the Observer role (with the application-
specific processing implemented in the Observer’s no-
tify() method), and the GUI event processing loop 
plays the EventSource role.  

The primary advantage of using feature inheritance in this 
manner is to systematically introduce changes to a system 
using roles defined by certain role-based solution descrip-
tions. For example, if a developer wants to add a Visitor 
pattern implementation to the code, a wizard provided by 
an MDD tool could guide the user through the role map-
ping process to ensure that all roles defined by the Visitor 
pattern are mapped by the developer to the appropriate 
classes. The benefit of expressing feature inheritance rela-
tionships in this case is that after the mapping for the base 
pattern role is complete, subsequent substitutions of this 
pattern with concrete patterns can either be done automati-
cally or semi-automatically (e.g., guided by wizards). 

Figure 6 also represents the mapping between roles defined 
by Observer pattern (i.e., Subject, Observer, and 
EventSource) and the application-specific classes (i.e., 
Button and the GUI event loop implementation). As a 
result of feature inheritance, the Observer pattern can be 
replaced with derived patterns without breaking the key 
functional properties of this example system, i.e., “business 
class should be notified whenever the button is pressed.” 
This example illustrates how pattern feature inheritance 
supports transformation without breaking symmetry.  Figure 5 shows a high -level view of the complete model-

ing process described above. 
 



 

 
Figure 6. GUI Example Structure 

3.2 Introducing the Remoting Aspect 
The initial implementation of our GUI program shown in 
Section 3.1 was a standalone application. To work in a 
client/server environment, assume that the scenario’s re-
quirements change so that it is necessary to split this appli-
cation in two parts that communicate across a network. The 
first part (i.e., the GUI client) will receive the push button 
event and then send this event over the network to the sec-
ond part (i.e., the business server), which will then process 
this event the same way as in the initial scenario. After this 
substitution, sample GUI application will be split into two 
parts that communicate with each other across a network. 
We thus introduce the remoting aspect to the application, 
without changing key properties of the application, i.e., the 
BusinessClass will be notified when a button push 
event occurs. 

We now analyze the impact of these changes on our initial 
application, in particular, on the server-side of the new 
client/server application. At one level, little has changed 
except for the event source, i.e., the source of the event 
notifications occurring in the system. In the standalone 
version, the event source was the GUI event loop that sent 
the mouse click notification to the standalone application. 
In the client/server configuration, conversely, the event 
source for the server-side will arrive from the network, i.e., 
the event source now is an OS demultiplexing, such as se-
lect() or WaitFor-MultipleObjects(). 
Naturally, the Reactor pattern implementation is only 
part of the necessary interprocess communication (IPC) 
infrastructure. Introducing the remoting aspect for larger 
applications will therefore require more pattern implemen-
tations and associated aspects [17]. For the sake of clarity, 
however, this example assumes that the Reactor pattern 

implementation provides sufficient functionality to support 
our simple IPC infrastructure. 

3.3 Substituting Observer with Reactor 
Based on the discussion in Section 2.2, if the Reactor 
pattern inherits from the Observer pattern, we can sub-
stitute our Observer-based implementation with a Reactor-
based implementation without affecting the business com-
ponents, i.e., the Button and BusinessClass classes, 
which are written in terms of the Observer base class. 
The following list summarizes the steps made as a result of 
the substitution outlined above, focusing on the server-side 
modifications, which can be performed as follows: 

1. Instead of running GUI event loop, the server needs to 
call the Reactor’s run_event_loop() method, 
which will substitute the event source in the server ap-
plication. Since this portion of the application is not 
part of the business logic and it will not require 
changes to application functionality, i.e., the imple-
mentation of Observer’s notify() method by 
BusinessClass need not be changed. 

2. The business logic implementation (i.e., the Ob-
server role) contains registration logic (sub-
scribe()) for events of interest. With the Reactor-
based implementation the same step is required, i.e., 
event handlers should be registered with a reactor and 
need to pass an event mask that describes what types 
of events are of interest (e.g., the fact that there is data 
available in a socket). Once again, nothing should 
change in the application functionality. 

3. The Observer (i.e., the event handler) will be noti-
fied by the reactor when there data is available in a 
socket registered with the reactor. After the reactor 
dispatches the handler, the handler can access the in-
coming data and perform the required processing 
steps.  

Based on this analysis, it is clear that the processing steps 
for the original application functionality remain the same 
before and after adding the remoting aspect. In a larger 
example, it may also be desirable to devise a solution that 
affects as little of the infrastructure software as possible. 
The approach described above does not provide this level 
of transparency due to differences in the APIs used for 
various tasks, such as accessing the event attributes, which 
in the case of GUI events come from GUI toolkit supplied 
data structures associated with the event and in the case of 
network events come from a socket. There are ways to fur-
ther enhance the solution to minimize code perturbation, 
including: 

• Using a patterns-oriented software library that is de-
signed for composition and thus using uniform meth-



 

ods for accessing notification information. For exam-
ple, the ACE [4][5] and TAO [15, 16] middleware 
platforms could be applied to our example application 
to minimize infrastructure rework. 

• Remodularize the base code using aspect-oriented 
techniques. For example, [9] proposes an approach 
that uses the notion of collaboration interfaces for re-
modularization of interfaces that were not designed to 
interact with each other initially.  

We believe that the second approach is more flexible and 
will concentrate our future research work in this direction. 

4. Related Work 
This section reviews work related to our approach. 

Generative programming (GP) [23] is a type of program 
transformation concerned with designing and implementing 
software modules that can be combined to generate spe-
cialized and highly optimized systems fulfilling specific 
application requirements. The goals of GP are to (1) de-
crease the conceptual gap between program code and do-
main concepts (known as achieving high intentionality), (2) 
achieve high reusability and adaptability, (3) simplify man-
aging many variants of a component, and (4) increase effi-
ciency (both in space and execution time). GP typically 
concentrates on single classes that can be parameterized to 
achieve the required functionality. Despite the powerful 
customization mechanisms, GP approach generally still 
remain at the level of abstraction supported by third-
generation programming languages. In contrast, our ap-
proach focused on higher-level building blocks, such as 
patterns and domain-specific languages, which can be in-
stantiated similar to the way that templates are parameter-
ized in GP. Role-based descriptions of the solution could 
thus be treated as a type of template that spans multiple 
classes. 

Aspect-oriented software development (AOSD) is a GP 
technology designed to more explicitly separate concerns 
in software development.  AOSD techniques [13] make it 
possible to modularize crosscutting aspects of complex 
distributed systems.  An aspect is a piece of code or higher-
level construct, such as implementation artifacts captured 
in an MDA platform-specific model (PSM), which de-
scribes a recurring property of a program that crosscuts the 
software application. In our approach, a role-based solution 
could represent either a crosscutting concern or a concern 
that could be modularized using OO techniques. In the case 
of crosscutting concerns, we need to implement model 
transformation to distribute the particular functionality over 
the application logic. This task is similar to the task typi-
cally performed by weavers in AOP. 

Scope, Commonality, and Variability (SCV) analysis [24] 
is related work on domain engineering that focuses on 

identifying common and variable properties of an applica-
tion domain.  SCV uses this information to guide decisions 
about where and how to address possible variability and 
where the more “static” implementation strategies could be 
used. Our approach supports SCV and makes it possible to 
capture commonality and variability at a level that is closer 
to the problem domain compared with third-generation 
programming languages. In addition, pattern feature inheri-
tance provides a powerful mechanism to deal with variabil-
ity at higher abstraction levels by enabling the substitution 
of pattern-based system building blocks, similar to the sub-
stitution at the class supported provided by inheritance in 
OO design and programming. 

In [18] the authors describe a role-based approach to for-
ward and reverse-engineering to introduce or find pattern 
instances in existing code. Their approach is similar to 
what we suggesting in this paper. The main difference is 
that the feature inheritance relationships between patterns 
that we propose are designed to allow better substitution 
and composition at the model level. 

5. Concluding Remarks 
This paper presents the novel approach to pattern classifi-
cation and composition by introducing the feature inheri-
tance relationships between patterns. We also demonstrate 
how patterns can be used as higher-level building blocks to 
support the introduction of new aspects without affecting 
the main application logic. This approach is possible be-
cause of relationships between patterns that are analogous 
with inheritance in OO programming languages. 

The work described in this paper provides the conceptual 
foundation for a certain type of model transformation that 
preserves key properties of applications being developed. 
This type of transformation can be treated as a symmetrical 
transformation and used to allow better substitutability of 
model parts defined as role-based solution templates. Our 
work also enables the automation of role-mapping process 
by MDD tools based on feature inheritance relationships 
between patterns. Pattern feature inheritance is an example 
of symmetrical transformation that is important for the next 
generation of modeling tools, which need to manipulate 
higher-level building blocks, such patterns or other role-
based solutions. 

The ultimate goal of our work is to create an Integrated 
Concern Manipulation Environment (ICME) [2][3], which 
is an MDD toolsuite that allows manipulation (i.e., adding, 
removing, and specializing) different aspects of large-scale 
distributed software systems using higher level building 
blocks (such as patterns and aspect-oriented techniques) to 
merge these blocks unobtrusively with the application logic 
implementations. To provide such ICME manipulation 
functionality we need to determine how to formalize pat-
tern composition rules. In the pattern literature, forces, 
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benefits, and liabilities are mentioned as key factors to 
make decisions about which pattern to use in which con-
texts and how to combine patterns together effectively. Our 
future work will analyze these descriptions in various pat-
terns and devise MDD-based formalisms and tools that 
support automated and/or semi-automated analysis of pat-
tern usage and composability. For example, MDD wizards 
can guide users through decision processes by asking ques-
tions and navigating through a graph of patterns to select 
suitable patterns. 
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