
Supporting Model Reusability with Pattern-based Composition Units
Andrey Nechypurenko

Siemens Corporate Technology
Munich, Germany

andrey.nechypurenko@siemens.com

 Douglas C. Schmidt
Vanderbilt University,

Nashville, TN, USA
 d.schmidt@vanderbilt.edu

Abstract

The growing complexity and criticality of distributed sys-
tems motivates software developers to raise the level of
abstraction used to develop these systems. A promising
approach for improving the quality and productivity of
software development is to (1) assemble applications from
higher-level building blocks that represent solution tem-
plates for certain application domains and (2) apply
model-driven development techniques and tools to ma-
nipulate the building blocks and automate key tasks related
to system specification, implementation, configuration, and
deployment, rather than (re)writing the applications manu-
ally using third-generation programming languages. To
simplify the manipulation of component building blocks,
however, requires a well-formed set of rules and relation-
ships. This paper contributes to the study of these topics by
describing pattern feature inheritance relationships, show-
ing how pattern feature inheritance can improve the reus-
ability of models, and illustrating our approach with a con-
crete example adding the remoting aspect to a GUI appli-
cation.

Keywords
Model-Driven Development (MDD), patterns, inheritance.

1. Introduction
Emerging trends. The growth in the size and complexity
of large-scale distributed systems is exceeding the ability of
IT professionals and organizations to develop software for
these systems with acceptable and affordable time and ef-
fort. To address this problem requires new technologies
that enable developers to improve the productivity and
quality of the software development process. A promising
approach involves the combination of (1) component mid-
dleware [21], which provide mechanisms to configure and
control key distributed computing aspects (such as connect-
ing event sources to event sinks and managing transac-
tional behavior) separately from the functional aspects of
applications, with (2) model driven development (MDD)
[1][22], which are generative technologies that help reduce
complexity by raising the level of abstraction at which
software is developed, validated, and disseminated.

The technical foundations of component middleware con-
sist of various patterns and frameworks that have been cov-
ered extensively in earlier publications [4][5][10][14][17].

The technical foundations of MDD are less well codified,
but the emerging consensus [11][22] is that the MDD para-
digm involves (1) metamodeling, which define type sys-
tems that precisely express key characteristics and con-
straints associated with particular application domains,
such as e-commerce, telecommunications, and automotive
control, (2) domain-specific languages, which provide pro-
gramming notations that formalize the process of specify-
ing business logic and quality of service (QoS)-related re-
quirements, and (3) model transformations and code gen-
erators, which help to automate and assure the consistency
of software implementations using analysis information
associated with functional and QoS specifications captured
by models. Although there are various approaches [1][20]
to realizing the MDD paradigm, MDD tools and techniques
share a common goal of reducing complexity by raising the
level of abstraction used to specify, implement, configure,
and deploy software systems.

Unresolved problems. Despite improvements in third-gen-
eration programming languages (such as Java or C++) and
run-time platforms (such as component and grid middle-
ware), the levels of abstraction at which application logic is
typically integrated with the set of rules and behavior dic-
tated by conventional design and programming techniques
remains low relative to the (1) concepts and concerns
within the application domains themselves and (2) ad-
vanced technologies available in the solution space, as de-
scribed below:

• Gap between domain and implementation abstrac-
tion levels. A large gap exists in the levels of abstrac-
tion between (1) third-generation programming lan-
guages used by software engineers versus (2) the do-
main-specific terminology used by systems engineers
to describe applications that are being built. The con-
ventional solution is to apply a design process (such as
object-oriented design or structured design) to map
from the higher-level domain-specific abstractions to
the much lower-level abstraction provided by main-
stream third-generation programming languages. This
mapping has historically been performed manually by
conventional software development methodologies,
such as RUP [25], which introduce various problems,
ranging from simple implementation errors to missing
customer requirements [22].

• Gap between state-of-the-art and state-of-the-prac-
tice. Another gap exists between the levels of abstrac-
tion and composition that represent (1) the state-of-the-
art in software engineering R&D versus (2) the state-
of-the-practice applied by most developers. In par-
ticular, third-generation languages do not intuitively
reflect the concepts used by cutting-edge software re-
searchers and developers [9], who increasingly express
their system architectures and designs using languages
and tools that directly support higher-level concerns,
such as persistence, remoting, and synchronization.

Both these gaps can be narrowed by introducing intermedi-
ate abstraction layers that reduce the distance between
problem domain abstractions and available solution domain
abstractions. As discussed in [22], this approach motivates
the development of generative MDD technologies that cre-
ate families of domain-specific languages (DSLs). These
DSLs can then be applied to express domain-specific prob-
lems more effectively and intuitively than general-purpose
third-generation programming languages, thereby en-
hancing software productivity and quality.

Despite the promising benefits of MDD, however, other
unresolved problems remain due to the fact that models of
distributed systems can themselves be large and complex as
applications grow in size and scope. In particular, it is hard
to change and maintain models using conventional Model-
Driven Architecture (MDA) techniques [1][20]. which pro-
vide only a slightly higher level of abstraction and plat-
form-independence than third-generation programming lan-
guages, such as C++ or Java. As a result, the gap between
expressing problems in the domain space and representing
them in the solution space remains too large.

Solution approach Compose software systems from
higher-level building blocks that are solution templates
for certain problems. In previous work [2][3] we moti-
vated the need for higher-level MDD abstractions that com-
bine patterns, component middleware, and aspect-oriented
software development (AOSD) techniques [13] to

• Resolve recurring distributed system development
problems so they have fewer dependencies on plat-
form-specific details, such as communication proto-
cols, object models, and threading models, and

• Automate key system evolution tasks, such as imple-
menting new customer requirements, refactoring cer-
tain parts of the system, and migrating to the newer
versions (or versions from other vendors) of libraries
and middleware used for development.

Our previous work, however, does not show how the pat-
tern-based composition of different aspects and models
could be implemented in component-based systems. This
paper therefore explores another point in the solution
space: illustrating a new design and problem decomposi-

tion approach that applies patterns for modeling different
aspects of distributed systems to simplify model transfor-
mations and code generators for component-based sys-
tems. In particular, we investigate the relationships between
patterns that can improve their substitutability and compos-
ability, thereby contributing to methodologies that can be
applied to manipulate role-based solution templates as first
class system composition units. We introduce the concept
of pattern feature inheritance relationships and use a con-
crete example to illustrate the benefits of using the sub-
stitutability property of feature inheritance. It is our posi-
tion that formalizing sets of composition and manipulation
rules will enable greater automation of key modeling and
code generation concerns that are hard to handle with con-
ventional MDD technologies.

Paper organization. The remainder of this paper is organ-
ized as following: Section 2 describes how feature inheri-
tance relationships between patterns help to support vari-
ability without degrading software symmetry [26][27]; Sec-
tion 3 examines a concrete example that illustrates the ap-
plicability of concepts presented in Section 2 to solve the
problems outlined in Section 1; Section 4 compares our
approach with related work; and Section 5 presents con-
cluding remarks and outlines future work.

2. Pattern Inheritance as a Key Mechanism
to Encapsulate Variability and Improve
Reusability

To manage software development effort and enhance soft-
ware productivity and quality, the IT industry is continually
trying to improve reusability and localize the impact of
variability found in product families [8]. The paradigms
developed over the past 3-4 decades range from functional
decomposition to object-oriented decomposition and re-
cently aspect-oriented decomposition [6][13]. Each para-
digm prescribes a methodology for modularizing different
dimensions of software systems. A theme that increasingly
pervades all these software development paradigms is pat-
terns [12][10][14], which are technology-independent,
role-based descriptions of common ways to resolve key
forces associated with recurring problems encountered
when developing software.

Based on our experience developing and applying pattern-
based [10][12][14] frameworks [4][5] and middleware plat-
forms [16][17] for distributed systems over the past two
decades, we believe that patterns are a valuable addition to
the portfolio of higher-level system building blocks avail-
able to software developers. To enable patterns to become
first-class citizens in MDD environments, it is necessary to
define a set of composition rules and express relationships
between patterns precisely. As discussed in [26], it is possi-
ble to substitute implementation artifacts that have inheri-
tance relationships without affecting key properties of an

Douglas C. Schmidt
Andrey, we’re getting *really* close to having a very powerful intro! The last thing we need to do here is to explicit tie this discussion together with our earlier point about “narrowing the gap” between the problem domain space and the solution space. Can you please update this paragraph to make that point crystal clear?!

entire system. This type of transformation can be treated as
a symmetry [29], which is a special type of model transfor-
mation that preserves the key properties of a model. Exam-
ples of model properties include persistence, which is the
ability to read/write the state of an object to persistent stor-
age and remoting, which is the ability to communicate with
other system components over a network.

Coplien and Zhao [26] describe how object-oriented inheri-
tance can also be treated as a symmetrical transformation
because it preserves key behavioral aspects defined by base
class. In turn, the concept of pattern feature inheritance in-
troduced in this paper also preserves the key properties of
the base pattern, so that substituting derived patterns pro-
vide variability without changing key system properties.
This section describes how feature inheritance relationships
between patterns help to support variability without de-
grading software symmetry. In particular, we treat trans-
formation and inheritance as enabling mechanisms to sim-
plify the substitution of certain system components without
affecting other key system properties. These mechanisms
also make it easier to handle the variabilities that are often
encountered when developing MDD tools to support prod-
uct-line architectures.

2.1 Handling Variability via Inheritance
Inheritance is a powerful mechanism for shielding certain
parts of applications from side-effects caused by the need
to customize certain functional aspects. To illustrate in-
heritance, consider the following classical Observer pattern
[12] example shown in Figure 1. In this example, the Sub-
ject class is shielded from the variability introduced by
different implementations of the Observer interface. The
enabling mechanism in this case is inheritance, which in
accordance to the Liskov Substitutability Principe (LSP)
[7] allows Observable to work uniformly with all Ob-
server subclasses, such as Notifier and Logger.

It would be nice to achieve the same level of substitutabil-
ity with pattern-based building blocks. To achieve this
functionality, therefore, we need to identify similar rela-
tionships between patterns. These relationships, in turn,
should be used to facilitate the development of MDD tools
that can automate pattern manipulation tasks and support
the level of substitutability and transformation needed to
address the challenges presented in Section 1.

2.2 Inheritance Relationships between Pat-
terns

To explore the value of expressing inheritance relationships
between patterns, we will examine the following set of pat-
terns:

• Observer [12], which defines a one-to-many depend-
ency between objects so that when one object changes

state, all its dependents are notified and updated auto-
matically.

• Reactor [10], allows event-driven applications to de-
multiplex and dispatch service requests that are deliv-
ered to an application from one or more clients.

• Interceptor [10], which allows services to be added
transparently to a framework and triggered automati-
cally when certain events occur.

Figure 1. Observer Pattern Structure

There are common roles and responsibilities that cross-cut
these patterns, e.g., there are certain events that can occur
in a system, certain entities that need to be notified when
such events occur, and certain ways these entities can ex-
press their desire to handle certain events by registering
their interest. While this description characterizes the Ob-
server pattern, it does not mean that Reactor and Intercep-
tor are simply different variants of Observer since each
pattern has different forces and goals. Yet there are also
similarities that stem from the fact that these patterns share
a higher-level relationship than just “different variants of
Observer.” We contend that this relationship can be repre-
sented by feature inheritance.

To explore feature inheritance relationships between pat-
terns more concretely, consider again the Observer exam-
ple presented in Section 2.1. The Notifier and Logger
subclasses have different functionality and goals, i.e., no-
tify users via a pop-up window and an output trace record,
respectively, but they still conform to the “is a” relationship
to the Observer base class. There are similar relation-
ships for the Observer, Interceptor, and Reactor patterns, as
shown in Figure 2.

Douglas C. Schmidt
Andrey, for completeness, it would be great if you could give a very concise definition of “feature inheritance”!

Figure 2. Relationships between Patterns

The pattern feature inheritance tree shown in Figure 2 de-
fines the relationships between four patterns. At the root of
the hierarchy is the Callback pattern [30], which defines
the basic feature – control inversion – used by all the
related patterns. In the Observer pattern, all registered
Observers are called back by a registered Subject.
Likewise, for the Reactor and Interceptor patterns the regis-
tered Event Handlers and Interceptors are called
back, respectively, when the certain triggering conditions
occur.

Figure 3. Extending the Observer Pattern with the
Event Source Role

To illustrate different implementations of the Event-
Source role, the following cases could be considered:

• Different implementations of EventSource, e.g.,
example the family of different reactors, such as the
ACE_Select_Reactor, ACE_WFMO_Reactor,
and ACE_Dev_Poll_Reactor [5].

Despite the similarities between these four patterns, there
are also some differences that bear mentioning because
they motivate the Observer pattern as a basis for the set
of related patterns and allow a cleaner connection between
the patterns at Figure 2. In particular, a key difference be-
tween the Reactor and Interceptor patterns is the event
source. The Reactor’s event source is a demultiplexor, such
as the select() or WaitForMultipleObjects()
system calls, whereas the Interceptor’s event source is an
incoming control flow, such as callback method invocation
by CORBA Portable Interceptors [28] that are triggered
during the remote invocation request/response flow. There
is, however, no such role as event source in classical Ob-
server pattern description – instead, that role is merged
with the subject role. We therefore suggest the Observer
pattern be extended, as shown in Figure 3.

• A GUI event loop, which typically blocks on an OS
demultiplexer, such as select() or WaitForMul-
tipleObjects(), to detect incoming events (e.g., a
mouse click) and then dispatch this event to the corre-
sponding handlers (e.g., a button) , which in turn noti-
fies observers about a change in state (e.g., button
down).

• Hardware interrupt handlers can also be considered as
event sources, which typically delegate event process-
ing to observers in the OS kernel.

The Visitor pattern [12] could be also viewed as inheriting
from Observer, where the event source is the traversing
algorithm visiting various concrete nodes. For example, the
Boost Graph Library (BGL) uses Observer pattern termi-
nology (notify) for their generic visitor implementations of
graph traversing algorithms [19].

The new EventSource role shown in Figure 3 is respon-
sible for monitoring possible condition changes and then
initiating a notification propagation mechanism by trigger-
ing the Subject implementation, e.g., by invoking the
triggerUpdates() method on the Subject. Intro-
ducing the EventSource role allows a cleaner separation
of responsibilities for the Observer pattern. Moreover,
compared with the previous approach shown in Figure 1,
the Subject role is now only responsible for maintaining
observers list and iterating over this list when notifications
are propagated.

We have identified other examples of inheritance relation-
ships between patterns, as shown in Figure 4, which illus-
trates the set of patterns that solve similar problems using
different methods.

Figure 4. Example of Inheritance Relationships Be-
tween Patterns

Despite differences in structure and intent, the core mecha-
nism used by these patterns in Figure 4 is the indirection
between two collaborating parties, which is why the In-
direction pattern forms the root of this feature inheri-
tance tree. The second level in the tree shows the Re-
modularization pattern, which enables collaboration
between two objects even if a mismatch occurs between a
provided interface and an interface expected by a collabo-
rator. In turn, there are different circumstances and types of
remodularization required in each concrete case, which is
why the three other patterns in Figure 3 are specializations
of the Remodularization pattern.

Figure 5. Concern-based Modeling Process

This figure shows how domain-specific models are used as
an input for various modeling tools. Next, the set of prede-
fined role-based solutions can be introduced by means of a
role mapping step. Finally, after completing the role map-
ping process, platform-specific models can be generated,
followed by a runnable application.

3. Remote Button Example
This section presents a concrete example that further illus-
trates how the approach presented in Section 2 could be
applied in practice.

2.3 Applying Feature Inheritance in Practice
Section 2.2 shows how feature inheritance relationships
between concerns can be presented in the form of patterns
or other role-based definitions. Using this concept, we can
provide a powerful mechanism to encapsulate variability at
a higher level of abstraction than is possible via third-gen-
eration programming languages. For example, we can en-
capsulate the impact of variability in the communication
infrastructure (such as standard middleware or custom
frameworks) on the rest of large-scale distributed systems.

3.1 Scenario
Consider a standalone application that is based on the
refactored Observer pattern shown in Figure 3. This appli-
cation has a simple GUI in the form of dialog box with a
single button. Pressing this button causes the invocation of
a method that implements application-specific functional-
ity. As shown in Figure 6, the button plays the Subject
role in the Observer pattern and the application-specific
class plays the Observer role (with the application-
specific processing implemented in the Observer’s no-
tify() method), and the GUI event processing loop
plays the EventSource role.

The primary advantage of using feature inheritance in this
manner is to systematically introduce changes to a system
using roles defined by certain role-based solution descrip-
tions. For example, if a developer wants to add a Visitor
pattern implementation to the code, a wizard provided by
an MDD tool could guide the user through the role map-
ping process to ensure that all roles defined by the Visitor
pattern are mapped by the developer to the appropriate
classes. The benefit of expressing feature inheritance rela-
tionships in this case is that after the mapping for the base
pattern role is complete, subsequent substitutions of this
pattern with concrete patterns can either be done automati-
cally or semi-automatically (e.g., guided by wizards).

Figure 6 also represents the mapping between roles defined
by Observer pattern (i.e., Subject, Observer, and
EventSource) and the application-specific classes (i.e.,
Button and the GUI event loop implementation). As a
result of feature inheritance, the Observer pattern can be
replaced with derived patterns without breaking the key
functional properties of this example system, i.e., “business
class should be notified whenever the button is pressed.”
This example illustrates how pattern feature inheritance
supports transformation without breaking symmetry. Figure 5 shows a high -level view of the complete model-

ing process described above.

Figure 6. GUI Example Structure

3.2 Introducing the Remoting Aspect
The initial implementation of our GUI program shown in
Section 3.1 was a standalone application. To work in a
client/server environment, assume that the scenario’s re-
quirements change so that it is necessary to split this appli-
cation in two parts that communicate across a network. The
first part (i.e., the GUI client) will receive the push button
event and then send this event over the network to the sec-
ond part (i.e., the business server), which will then process
this event the same way as in the initial scenario. After this
substitution, sample GUI application will be split into two
parts that communicate with each other across a network.
We thus introduce the remoting aspect to the application,
without changing key properties of the application, i.e., the
BusinessClass will be notified when a button push
event occurs.

We now analyze the impact of these changes on our initial
application, in particular, on the server-side of the new
client/server application. At one level, little has changed
except for the event source, i.e., the source of the event
notifications occurring in the system. In the standalone
version, the event source was the GUI event loop that sent
the mouse click notification to the standalone application.
In the client/server configuration, conversely, the event
source for the server-side will arrive from the network, i.e.,
the event source now is an OS demultiplexing, such as se-
lect() or WaitFor-MultipleObjects().
Naturally, the Reactor pattern implementation is only
part of the necessary interprocess communication (IPC)
infrastructure. Introducing the remoting aspect for larger
applications will therefore require more pattern implemen-
tations and associated aspects [17]. For the sake of clarity,
however, this example assumes that the Reactor pattern

implementation provides sufficient functionality to support
our simple IPC infrastructure.

3.3 Substituting Observer with Reactor
Based on the discussion in Section 2.2, if the Reactor
pattern inherits from the Observer pattern, we can sub-
stitute our Observer-based implementation with a Reactor-
based implementation without affecting the business com-
ponents, i.e., the Button and BusinessClass classes,
which are written in terms of the Observer base class.
The following list summarizes the steps made as a result of
the substitution outlined above, focusing on the server-side
modifications, which can be performed as follows:

1. Instead of running GUI event loop, the server needs to
call the Reactor’s run_event_loop() method,
which will substitute the event source in the server ap-
plication. Since this portion of the application is not
part of the business logic and it will not require
changes to application functionality, i.e., the imple-
mentation of Observer’s notify() method by
BusinessClass need not be changed.

2. The business logic implementation (i.e., the Ob-
server role) contains registration logic (sub-
scribe()) for events of interest. With the Reactor-
based implementation the same step is required, i.e.,
event handlers should be registered with a reactor and
need to pass an event mask that describes what types
of events are of interest (e.g., the fact that there is data
available in a socket). Once again, nothing should
change in the application functionality.

3. The Observer (i.e., the event handler) will be noti-
fied by the reactor when there data is available in a
socket registered with the reactor. After the reactor
dispatches the handler, the handler can access the in-
coming data and perform the required processing
steps.

Based on this analysis, it is clear that the processing steps
for the original application functionality remain the same
before and after adding the remoting aspect. In a larger
example, it may also be desirable to devise a solution that
affects as little of the infrastructure software as possible.
The approach described above does not provide this level
of transparency due to differences in the APIs used for
various tasks, such as accessing the event attributes, which
in the case of GUI events come from GUI toolkit supplied
data structures associated with the event and in the case of
network events come from a socket. There are ways to fur-
ther enhance the solution to minimize code perturbation,
including:

• Using a patterns-oriented software library that is de-
signed for composition and thus using uniform meth-

ods for accessing notification information. For exam-
ple, the ACE [4][5] and TAO [15, 16] middleware
platforms could be applied to our example application
to minimize infrastructure rework.

• Remodularize the base code using aspect-oriented
techniques. For example, [9] proposes an approach
that uses the notion of collaboration interfaces for re-
modularization of interfaces that were not designed to
interact with each other initially.

We believe that the second approach is more flexible and
will concentrate our future research work in this direction.

4. Related Work
This section reviews work related to our approach.

Generative programming (GP) [23] is a type of program
transformation concerned with designing and implementing
software modules that can be combined to generate spe-
cialized and highly optimized systems fulfilling specific
application requirements. The goals of GP are to (1) de-
crease the conceptual gap between program code and do-
main concepts (known as achieving high intentionality), (2)
achieve high reusability and adaptability, (3) simplify man-
aging many variants of a component, and (4) increase effi-
ciency (both in space and execution time). GP typically
concentrates on single classes that can be parameterized to
achieve the required functionality. Despite the powerful
customization mechanisms, GP approach generally still
remain at the level of abstraction supported by third-
generation programming languages. In contrast, our ap-
proach focused on higher-level building blocks, such as
patterns and domain-specific languages, which can be in-
stantiated similar to the way that templates are parameter-
ized in GP. Role-based descriptions of the solution could
thus be treated as a type of template that spans multiple
classes.

Aspect-oriented software development (AOSD) is a GP
technology designed to more explicitly separate concerns
in software development. AOSD techniques [13] make it
possible to modularize crosscutting aspects of complex
distributed systems. An aspect is a piece of code or higher-
level construct, such as implementation artifacts captured
in an MDA platform-specific model (PSM), which de-
scribes a recurring property of a program that crosscuts the
software application. In our approach, a role-based solution
could represent either a crosscutting concern or a concern
that could be modularized using OO techniques. In the case
of crosscutting concerns, we need to implement model
transformation to distribute the particular functionality over
the application logic. This task is similar to the task typi-
cally performed by weavers in AOP.

Scope, Commonality, and Variability (SCV) analysis [24]
is related work on domain engineering that focuses on

identifying common and variable properties of an applica-
tion domain. SCV uses this information to guide decisions
about where and how to address possible variability and
where the more “static” implementation strategies could be
used. Our approach supports SCV and makes it possible to
capture commonality and variability at a level that is closer
to the problem domain compared with third-generation
programming languages. In addition, pattern feature inheri-
tance provides a powerful mechanism to deal with variabil-
ity at higher abstraction levels by enabling the substitution
of pattern-based system building blocks, similar to the sub-
stitution at the class supported provided by inheritance in
OO design and programming.

In [18] the authors describe a role-based approach to for-
ward and reverse-engineering to introduce or find pattern
instances in existing code. Their approach is similar to
what we suggesting in this paper. The main difference is
that the feature inheritance relationships between patterns
that we propose are designed to allow better substitution
and composition at the model level.

5. Concluding Remarks
This paper presents the novel approach to pattern classifi-
cation and composition by introducing the feature inheri-
tance relationships between patterns. We also demonstrate
how patterns can be used as higher-level building blocks to
support the introduction of new aspects without affecting
the main application logic. This approach is possible be-
cause of relationships between patterns that are analogous
with inheritance in OO programming languages.

The work described in this paper provides the conceptual
foundation for a certain type of model transformation that
preserves key properties of applications being developed.
This type of transformation can be treated as a symmetrical
transformation and used to allow better substitutability of
model parts defined as role-based solution templates. Our
work also enables the automation of role-mapping process
by MDD tools based on feature inheritance relationships
between patterns. Pattern feature inheritance is an example
of symmetrical transformation that is important for the next
generation of modeling tools, which need to manipulate
higher-level building blocks, such patterns or other role-
based solutions.

The ultimate goal of our work is to create an Integrated
Concern Manipulation Environment (ICME) [2][3], which
is an MDD toolsuite that allows manipulation (i.e., adding,
removing, and specializing) different aspects of large-scale
distributed software systems using higher level building
blocks (such as patterns and aspect-oriented techniques) to
merge these blocks unobtrusively with the application logic
implementations. To provide such ICME manipulation
functionality we need to determine how to formalize pat-
tern composition rules. In the pattern literature, forces,

Douglas C. Schmidt
Andrey, can you please briefy outline their approach and also figure out how to more distinctly contrast what we’re doing with what they propose since right now the description here makes it sound like we’re doing basically the same thing! In general, for an academic style venue, it’s *really* important to emphasize the differences in our work vs. alternatives, even if the differences seem minor to us!

benefits, and liabilities are mentioned as key factors to
make decisions about which pattern to use in which con-
texts and how to combine patterns together effectively. Our
future work will analyze these descriptions in various pat-
terns and devise MDD-based formalisms and tools that
support automated and/or semi-automated analysis of pat-
tern usage and composability. For example, MDD wizards
can guide users through decision processes by asking ques-
tions and navigating through a graph of patterns to select
suitable patterns.

References
[1] OMG: “Model Driven Architecture (MDA)” Document num-

ber ormsc/2001-07-01 Architecture Board ORMSC1, July 9,
2001.

[2] A. Nechypurenko, T. Lu, G. Deng, D. C. Schmidt, A. Gok-
hale. “Applying MDA and Component Middleware to Large-
scale Distributed Systems: A Case Study,” Proceedings of
First European Workshop on Model Driven Architecture
with Emphasis on Industrial Application, University of
Twente, Enschede, The Netherlands, 2004.

[3] A. Nechypurenko, T. Lu, G. Deng, E. Turkay, D. C.
Schmidt, A. Gokhale. “Concern-based Composition and Re-
use of Distributed Systems.” Proceedings of the 8th Interna-
tional Conference on Software Reuse, 2004.

[4] D. C. Schmidt, S. D. Huston. C++ Network Programming:
Mastering Complexity Using ACE and Patterns. Addison-
Wesley Longman, 2003.

[5] D. C. Schmidt, S. D. Huston. C++ Network Programming:
Systematic Reuse with ACE and Frameworks. Addison-
Wesley Longman, 2003.

[6] P. Tarr, H. Ossher, W. Harrison,S.M. Sutton Jr., “N Degrees
of Separation: Multidimensional Separation of Concerns,”
Proceedings of the 21st International Conference on Soft-
ware Engineering, ACM, New York, 1999, pp. 107--119.

[7] B. Liskov, “Data Abstraction and Hierarchy”. SIGPLAN
Notices, 23,5, May 1988, p. 25.

[8] D. M. Weiss. “Defining Families: The Commonality Analy-
sis,” Proceedings of the 21st International Conference on
Software Engineering, Los Angeles, 1999, pp. 671 - 672.

[9] M. Mezini and K. Ostermann. “Integrating Independent
Components with On-Demand Remodularization,” Proceed-
ings of the 17th ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications
(OOSPLA), Seattle, Washington, USA, November 4-8,
2002.

[10] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
“Pattern-Oriented Software Architecture: Patterns for Con-
current and Networked Objects”, Volume 2, Wiley & Sons,
New York, 2000.

[11] J. Gray, J. Sztipanovits, T. Bapty Sandeep Neema, A. Gok-
hale, and D. C. Schmidt, “Two-level Aspect Weaving to Sup-
port Evolution of Model-Based Software,” Aspect-Oriented
Software Development, Edited by Robert Filman, Tzilla El-
rad, Mehmet Aksit, and Siobhan Clarke, Addison-Wesley,
2003.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object-Oriented Software.”
Addison Wesley, 1995.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. “Aspect-oriented pro-
gramming”, Proceedings of ECOOP’97, Jyvaskyla, Finland,
1997.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, “Pattern-Oriented Software Architecture—A System
of Patterns”, John Wiley and Sons, 1996

[15] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design
and Performance of Real-Time Object Request Brokers”
Computer Communications, vol. 21, no. 4, pp. 294–324, Apr.
1998.

[16] D. C. Schmidt et. al, “TAO: A Pattern-Oriented Object Re-
quest Broker for Distributed Real-time and Embedded Sys-
tems”, IEEE Distributed Systems Online, vol. 3, no. 2, Feb.
2002.

[17] M. Völter, A. Schmid, E. Wolff. Server Component Pat-
terns: Component Infra-structures Illustrated with EJB,
Wiley and Sons, 2002.

[18] Gert Florijn, Marco Meijers, and Pieter van Winsen, “Tool
Support for Object-Oriented Patterns” Proceedings of
ECOOP’97, Jyvaskyla, Finland, 1997.

[19] J. G. Siek, L. Lee, A. Lumsdaine. “Boost Graph Library, the
User Guide and Reference Manual”. Addison Wesley.

[20] “eXecutable UML (xUML),” Kennedy Carter,
http://www.kc.com.

[21] George T. Heineman and Bill T. Councill, “Component-
Based Software Engineering: Putting the Pieces Together”,
Addison-Wesley, Reading, Massachusetts, 2001.

[22] Jack Greenfield, Keith Short, Steve Cook, and Stuart Kent,
“Software Factories: Assembling Applications with Patterns,
Models, Frameworks, and Tools”, John Wiley & Sons, New
York, 2004.

[23] Krzysztof Czarnecki, Ulrich Eisenecker. “Generative Pro-
gramming: Methods, Tools, and Applications”. Addison-
Wesley Pub Co.

[24] J. Coplien, D. Hoffman, D. Weiss, "Commonality and Vari-
ability in Software Engineering", IEEE Software, Novem-
ber/December 1999, pp. 37-45.

[25] I. Jacobson, G. Booch, J. Rumbaugh. “The Unified Software
Development Process”. Addison-Wesley Professional, 1999.

[26] J. Coplien and L. Zhao. “Symmetry Breaking in Software
Patterns,” Springer Lecture Notes in Computer Science Se-
ries. , 2001.

[27] J. Coplien. “The Future of Language: Symmetry or Broken
Symmetry?” Proceedings of VS Live 2001, San Francisco,
California, January 2001.

[28] Priya Narasimhan, Louise E. Moser, and P. M. Melliar-
Smith, “Using Interceptors to Enhance CORBA,” IEEE
Computer, July 1999.

[29] J. Rosen, “Symmetry in Science: An Introduction to the Gen-
eral Theory,” pp 9-10. New York: Springer-Verlag, 1995.

[30] Steve Berczuk, A Pattern for Separating Assembly and Proc-
essing, Pattern Languages of Program Design: Volume 1,
Addison-Wesley, 1995.

Andrey Nechypurenko
Doug, this is a book. Please see the following link for more details: http://www.amazon.com/exec/obidos/tg/detail/-/0387948368/qid=1091363326/sr=1-1/ref=sr_1_1/103-2449477-5439820?v=glance&s=books

	Introduction
	Unresolved problems. D
	Pattern Inheritance as a Key Mechanism to Encapsulate Variability and Improve Re˜usability
	Handling Variability via Inheritance
	Inheritance Relationships between Pat˜terns
	Applying Feature Inheritance in Practice

	Remote Button Example
	Scenario
	Introducing the Remoting Aspect
	Substituting Observer with Reactor

	Related Work
	Concluding Remarks
	References

