
Evaluating the Performance of LLM-Generated Code for
ChatGPT-4 and AutoGen Along with Top-Rated Human Solutions

Ashraf Elnashar, Max Moundas, Douglas C. Schmidt, Jesse Spencer-Smith, Jules White
{ashraf.elnashar, maximillian.r.moundas, d.schmidt, jesse.spencer-smith, jules.white}@vanderbilt.edu

Department of Computer Science, Vanderbilt University, Nashville, Tennessee, USA

Abstract
In the domain of software development, making informed

decisions about the utilization of large language models
(LLMs) requires a thorough examination of their advan-
tages, disadvantages, and associated risks. This paper pro-
vides several contributions to such analyses. It first con-
ducts a comparative analysis, pitting the best-performing
code solutions selected from a pool of 100 generated by
ChatGPT-4 against the highest-rated human-produced code
on Stack Overflow. Our findings reveal that, across a spec-
trum of problems we examined, choosing from ChatGPT-4’s
top 100 solutions proves competitive with or superior to the
best human solutions on Stack Overflow.

We next delve into the AutoGen framework, which har-
nesses multiple LLM-based agents that collaborate to tackle
tasks. We employ prompt engineering to dynamically gen-
erate test cases for 50 common computer science prob-
lems, both evaluating the solution robustness of AutoGen
vs ChatGPT-4 and showcasing AutoGen’s effectiveness in
challenging tasks and ChatGPT-4’s proficiency in basic sce-
narios. Our findings demonstrate the suitability of genera-
tive AI in computer science education and underscore the
subtleties of their problem-solving capabilities and their po-
tential impact on the evolution of educational technology
and pedagogical practices.

Keywords: Large Language Models (LLMs), Auto-
mated Code Generation, ChatGPT-4 vs. AutoGen Perfor-
mance, Software Development Efficiency, Stack Overflow
Solution Analysis, Computer Science Education, Prompt
Engineering in AI Code, Quality Assessment, Runtime Per-
formance Benchmarking, Dynamic Testing Environments.

1 Introduction
Emerging trends, challenges, and research foci. Large

language models (LLMs) (5), such as ChatGPT (4) and
Copilot (git), have the ability to generate complex code to
meet a set of natural language requirements (7). Software
developers can use LLMs to generate human descriptions

of desired functionality or requirements, as well as synthe-
size code in a variety of languages ranging from Python to
Java to Clojure. These tools are currently being integrated
into popular Integrated Development Environments (IDEs),
such as IntelliJ (15) and Visual Studio.

LLMs are now easily accessible through the Internet and
within IDEs, and developers are increasingly leveraging
them to guide many programming tasks. In many cases, the
questions and code samples to which developers apply these
LLMs are the same questions and code samples they pre-
viously would have sought help on via discussion forums.
For example, Stack Overflow (stackoverflow.com) is
a popular online forum where developers ask questions and
obtain guidance on code samples.

There has been significant discussion and research (git;
3; 18) on applying LLMs to generate code with respect to
the quality of the code from a security and defect perspec-
tive. First-generation LLM-based tools often produced poor
quality code due to their ability to ”hallucinate” convinc-
ing text or code that was fundamentally flawed, although
it appeared correct. In addition, LLMs trained on human-
produced code in open-source projects often had vulnera-
bilities or eschewed best practices. Much discussion on the
code quality generated by LLMs has therefore focused on
functional correctness and security.

Although using LLMs before fully comprehending their
capabilities and limitations is risky, there are also clear pro-
ductivity benefits for developers in certain areas. For exam-
ple, LLMs can help to automate repetitive, tedious, or bor-
ing coding tasks and perform these tasks faster—and often
better—than developers (9). This productivity boost is par-
ticularly apparent when coding tasks involve APIs or algo-
rithms that developers are unfamiliar with and thus require
study to master before performing the tasks. When these
APIs and algorithms are included in an LLM’s training set
it often generates code for them swiftly and accurately.

In addition, a key benefit related to code performance
is how to employ LLMs via prompting and prompt en-
gineering for many different potential solutions and then
automatically benchmark them to identify the fastest so-

1



lution(s). A prompt is the natural language input to an
LLM (16). Prompt engineering is an emerging discipline
that structures interactions with LLM-based computational
systems to solve complex problems via natural language in-
terfaces (13).

This paper expands upon our prior work (Elnashar et al.)
that compared the runtime performance of code produced
by humans vs. code generated by ChatGPT-3.5. We first
replicate our earlier experiments replacing ChatGPT-3.5
with ChatGPT-4 (11), which is a more advanced version of
the GPT model. As shown below, ChatGPT-4 demonstrates
a marked improvement in understanding complex problem
statements and generating more efficient code due to its en-
hanced training data and refined algorithms, which interpret
prompts more accurately and increase generated code effi-
ciency.

We next conduct a comparative analysis of AutoGen (19)
and ChatGPT-4, revealing notable differences in their suc-
cess rates and error handling capabilities. In particular, our
results reveal that ChatGPT-4’s solutions present a 9.8%
failure rate and a 90.2% pass rate, whereas AutoGen’s so-
lutions have a 15.6% failure rate and an 84.4% pass rate.
Moreover, we apply visual tools for clarity and present in-
sights into the potential educational applications of each ap-
proach.

Paper organization. The remainder of this paper is or-
ganized as follows: Section 2 summarizes the open research
questions we address and outlines our technical approach;
Section 3 explains our testbed environment configuration
and analyzes results from experiments that compare the top
Stack Overflow coding solutions against solutions gener-
ated by ChatGPT-4; Section 4 examines the effectiveness
of the AutoGen approach in generating programming solu-
tions and compares its performance with ChatGPT-4; Sec-
tion 5 compares our work with related research; and Sec-
tion 6 presents the lessons learned from our study and out-
lines future work.

2 Summary of Open Research Questions and
Technical Approach

This section summarizes the open research questions we
address in this paper and outlines our technical approach for
each question.

Q1: How do the most efficient LLM-generated codes
from GPT-3.5 Turbo and GPT-4 compare with the
top human-produced code in terms of runtime perfor-
mance? Section 3 investigates the runtime performance of
code generated by both GPT-3.5 Turbo and GPT-4, contrast-
ing it with human-produced code. Our analysis includes a
comparison of human-written Stack Overflow solutions to
those generated by ChatGPT-4 and GPT-3.5 Turbo using
diverse prompting strategies. We focus on the efficiency of
the fastest solutions from both LLMs compared to the best

human answers, representing a real-world scenario where
developers might seek the most efficient solution through
iterative LLM querying. This investigation provides a foun-
dational understanding of LLMs’ utility in practical coding
applications.

Q2: What is the range and reliability of coding so-
lutions generated by GPT-3.5 Turbo and GPT-4, com-
pared to a diverse set of human-produced code, in terms
of runtime efficiency and practical application? Sec-
tion 3 expands the scope of our analysis beyond optimal so-
lutions, examining the runtime efficiency of the most com-
mon, as well as the best and worst, LLM-generated codes.
This study offers a comprehensive view of the coding effi-
ciency that GPT-3.5 Turbo and GPT-4 can achieve, bench-
marked against human solutions. By analyzing a range of
LLM-generated solutions, we provide insights into the vari-
ability and reliability of LLMs as coding assistants.

Q3: Against which human-produced solutions should
LLM outputs from GPT-3.5 Turbo and GPT-4 be bench-
marked, and what represents the average developer’s
capability? Section 3 tackles the challenge of setting ap-
propriate benchmarks for LLM-generated code by select-
ing a representative sample of human solutions for compar-
ison. This analysis helps determine where GPT-3.5 Turbo
and GPT-4 stand in relation to average developer skill lev-
els. The chosen benchmarks range from highly optimized
to average human solutions, offering a balanced perspective
on LLMs’ capabilities.

Q4: How does AutoGen, with its systematic and
structured LLM prompting, compare with the more
flexible and generalized approach of ChatGPT-4 in
terms of efficiency, accuracy, and adaptability in code
generation? Section 4 expands upon the experiments in
Section 3 to assess whether AutoGen’s structured prompt-
ing leads to more efficient and/or accurate code outputs
compared to ChatGPT-4. We apply both AutoGen and
ChatGPT-4 to evaluate these LLMs’ capabilities in com-
prehending and producing Python code, by presenting them
with a sequence of increasingly complex problems. Each
generated solution underwent thorough testing for both cor-
rectness and efficiency, thus highlighting the LLMs’ flexi-
bility and accuracy in code generation.

When addressing these questions, we consider various
factors, such as the stochastic nature of LLMs, that may
yield different outputs for the same prompt. We also con-
sider the variance in human-provided coding solutions in
terms of quality and efficiency. The comparison between
AutoGen and ChatGPT-4 further extends this investigation
by analyzing the impact of different technical approaches
on the quality of the generated code.

Our prior work (21) shows how prompt wording influ-
ences the quality of LLM output. We therefore focus on
how prompt wording influences the quality of generated

2



code. In particular, we investigate if varying the wording
causes LLMs to generate faster code more consistently.

3 Comparing Stack Overview and ChatGPT-
4-generated Solutions

This section analyzes the results from our comparison of
top human-provided Stack Overflow coding solutions and
the corresponding ChatGPT-4-generated solutions.

3.1 Experiment Configuration

This section explains the configuration of our testbed en-
vironment and analyzes the results from experiments that
compare the top Stack Overflow coding solutions against
solutions generated by ChatGPT-4.

3.1.1 Overview of Our Approach
Our analysis was conducted on code samples written in
Python since (1) it is relatively easy to extract and experi-
ment with stand-alone code samples in Python compared to
other languages, (2) ChatGPT-4 appears to generate more
correct code in Python vs. less popular languages (such as
Clojure), and (3) Python is a popular language in domains
like Data Science where developers often have more famil-
iarity and comfort with LLMs.

Our problem set was manually curated from Stack Over-
flow by browsing questions related to Python. We searched
for questions pertaining to categories, such as “array ques-
tions” since these questions are readily tested for perfor-
mance at increasing input sizes. We then analyzed each
question and its candidate solutions to select question/so-
lution pairs that could be isolated and inserted into our test
harness.

We avoided questions that relied heavily on third-party
libraries to minimize complexity, such as version discrep-
ancies and dependency issues. These complexities can ob-
scure the assessment of the core algorithmic efficiency of
the code (a potential threat to validity, as discussed in Sec-
tion 3.3). Instead, we focused on solutions built on core
libraries and capabilities within Python itself.

Wherever possible, we selected the top-voted solution as
the comparison. In some cases, multiple languages were
present in the solutions and we selected the first Python
solution, mimicking developers looking for the first solu-
tion in their target language. These decisions and related
methodological considerations are discussed further in Sec-
tion 3.3.4.

For each selected question, we extracted the question’s
title posted on Stack Overflow and used it as a prompt for
ChatGPT-4, leveraging OpenAI’s ChatGPT-4 API for this
process. This API allowed us to automate sending prompts
and receiving code responses, thereby facilitating a consis-
tent and efficient analysis of the model’s code generation ca-
pabilities. This decision meant that ChatGPT-4 was not pro-

vided the full information in the question, which may hand-
icap it in providing better performing solutions. Our ratio-
nale for only using question titles as prompts for ChatGPT-4
both reflects common real-world scenarios faced by devel-
opers and assesses its ability to generate solutions based on
limited information.

The original Stack Overflow posts, human-produced so-
lutions, and ChatGPT-4-generated code solutions—along
with our entire set of questions and generated answers—
can be accessed in our Github repository at github.com/
elnashara/CodePerformanceComparison. We
encourage readers to replicate our results and submit issues
and pull requests for possible improvements.

We measured the runtime performance of each code
sample using Python’s timeit package. Code samples were
provided with small, medium, and large inputs. These in-
puts were progressively increased in size to show the ef-
fects of scaling on the generated code. What constituted
small, medium, and large was problem-specific, as shown
in Section 3.2 below. For each input size, we generated 100
random inputs of the given size to run tests on. In addition,
for each input, we tested the given code 100 times on the
input using the Python timeit package.

3.1.2 Overview of the Coding Problems
A total of 7 problems from Stack Overflow, all pertaining
to array operations, were selected for our analysis. These
problems encompass a range of array-related challenges, in-
cluding PA1: identifying missing number(s) in an unsorted
array, PA2: detecting a duplicate number in an array that is
not sorted, PA3: finding the indices of the k smallest num-
bers in an unsorted array, PA4: counting pairs of elements
in an array with a given sum, PA5: finding duplicates in
a array, PA6: removing array duplicates, and PA7: imple-
menting the Quicksort algorithm.

3.1.3 Prompting Strategies
In this experiment we applied various prompting strategies
to generate Python code with ChatGPT-4, including

1. Naive approach, which used only the title from Stack
Overflow as the prompt, e.g., ”How to count the fre-
quency of the elements in an unordered array”,

2. Ask for speed approach, which added a requirement
for speed at the end of the prompt, e.g., ”How to count
the frequency of the elements in an unordered array,
where the implementation should be fast”,

3. Ask for speed at scale approach, which provided
more detailed information about how the code should
be optimized for speed as the size of the array grows,
e.g., ”How to count the frequency of the elements in an
unordered array, where the implementation should be
fast as the size of the array grows”,

3



4. Ask for the most optimal time complexity, which
prioritized achieving the most optimal time complex-
ity, e.g., ”How to count the frequency of the elements
in an unordered array, where implementation should
have the most optimal time complexity possible”, and

5. Ask for the chain-of-thought (23), which generated
coherent text by providing a series of related prompts,
e.g., ”Please explain your chain of thought to create a
solution to the problem: How to count the frequency of
the elements in an unordered array First, explain your
chain of thought. Next, provide a step by step descrip-
tion of the algorithm with the best possible time com-
plexity to solve the task. Finally, describe how to im-
plement the algorithm step-by-step in the fastest possi-
ble way.”

ChatGPT-4 was prompted 100 times with each prompt
per coding problem, yielding up to 100 different coding
solutions per prompt.1 We tested the performance of all
ChatGPT-4-generated code, however, and did not remove
duplicate solutions. If two different prompts had identical
solutions, we benchmarked each and left the results with
the expectation that 100 timing runs on 100 different in-
puts would average out any negligible differences in perfor-
mance.

3.2 Analysis of Experiment Results

The results of our experiment that evaluated the perfor-
mance of code provided by Stack Overflow and generated
by ChatGPT-4 100 times for all seven coding problems
with three different input sizes—small (1,000), medium
(10,000), and large (100,000)—are shown in Figures 1, 2
and 3. Figure 4 shows the minimum average performance
across all input. These figures show the number of problems

Figure 1. Number of Solutions within X% of
the Best Runtime (Input Size 1,000)

for each prompt where the best of the 100 solutions gener-
ated by each prompt was within 1%, 5%, etc. of the best
solution found across all prompts and the human. For each
problem, a total of up to 601 solutions were benchmarked
(6 prompts * 100 solutions per prompt + 1 human solution).

1In practice, fewer than 100 unique coding solutions were sometimes
produced since ChatGPT-4 often generated logically equivalent programs.

Figure 2. Number of Solutions within X% of
the Best Runtime (Input Size 10,000)

The best performing solution was used as the ”Best Run-
time” solution in the figures against which other solutions
were compared. Figures 1, 2, 3 and 4 collectively demon-

Figure 3. Number of Solutions within X% of
the Best Runtime (Input Size 100,000)

strate how ChatGPT-4 selected the best-performing solution
out of 100 attempts when employing chain-of-thought rea-
soning in response to prompts. These solutions were com-
petitive with—and in many cases surpassed—the human-
provided solutions from Stack Overflow. This finding is
significant as it underscores the potential of LLMs in gen-
erating efficient solutions when prompted with a structured
approach that includes chain-of-thought reasoning.

Figure 4. Number of Solutions within X% of
the Best Runtime (All Input Sizes)

The human solution was the fastest solution for only one
of the problems, specifically the ”P2 Find Duplicate Num-
ber,” as depicted in Figure 5. We used the title of the ques-
tion as the input to ChatGPT-4. All the code samples pro-
duced code with respect to the title of the Stack Overflow
post. Since we directly translated the titles into prompts for
ChatGPT-4, however, there may have been additional con-
textual information in the question that ChatGPT-4 could

4



have used to further improve its solution, as discussed in
Section 3.3.2.

Figure 5. Comparison of Average Execution
Time for Different Prompts in P2 Find Dupli-
cate Numbers

Our results also demonstrate a significant improvement
in performance when using ChatGPT-4 compared to its pre-
decessor, GPT-3.5 Turbo. This advancement in LLMs un-
derscores the progressive enhancements in AI-driven cod-
ing solutions. Despite this progress, the human-crafted so-
lution still outperformed both GPT-4 and GPT-3.5 Turbo
for problem P2. This finding suggests that while LLMs are
becoming increasingly competent in generating code, there
remains an edge that human experience and intuition can
provide, particularly in certain complex or nuanced tasks.

Conversely, when evaluating the ”P1 Find Missing Num-
ber” problem, a distinct change in the hierarchy of solu-
tion efficiency was evident. As shown in Figure 6, the hu-
man solution was surprisingly the least efficient in terms
of execution time, which highlights scenarios where LLMs
may exceed human performance. Interestingly, when struc-
tured prompt engineering is applied—especially the chain-
of-thought method—GPT-3.5 Turbo’s capability to devise
effective code solutions improves significantly.

In general, however, the most pronounced enhancement
is seen with GPT-4, which out-performs both human so-
lutions and GPT-3.5 Turbo when equipped with the same
structured prompting techniques. This finding signifies the
remarkable advancements in LLMs, especially in the realm
of intricate problem-solving. The findings presented in Fig-
ure 6 confirm the superior performance of GPT-4 in opti-
mizing code execution time and setting a new threshold in
AI-assisted coding (which will likely be surpassed with sub-
sequent releases of ChatGPT).

The contrasting results—with humans prevailing in one
case, yet falling behind in another—provides insight into
the multifaceted nature of coding solutions within the cur-
rent LLM landscape. Our research suggests that while
LLMs like ChatGPT-4 can outstrip human coders in cer-
tain instances, the creativity and specialized skill of human
programmers continue to be invaluable assets in complex
scenarios. This dynamic highlights the promising potential
of a synergistic approach, wherein human expertise is en-
hanced by the efficiency and evolving capabilities of LLMs,

Figure 6. Comparison of Average Execution
Time for Different Prompts in P1 Find Missing
Number

to elevate the process of developing coding solutions.

3.3 Threats to Validity

Threats to the validity of our experiment results are dis-
cussed below.
3.3.1 Sample Size
Although the results presented in Section 3.2 are promis-
ing, they are based on a relatively small sample size since
our study considered a total of seven computer science (CS)
problems, each subjected to 100 testing iterations. While
this number of problems and iterations was sufficient to
demonstrate initial trends, it does not capture the perfor-
mance characteristics and potential edge cases encountered
in larger datasets. More work on a larger sample size is
therefore needed to increase the robustness of our findings.

In general, the software engineering and LLM commu-
nities will benefit from a large-scale set of benchmarks that
associate (1) code needs (expressed as natural language re-
quirements), questions, specifications, and rules with (2)
highly optimized human code, as well as associated bench-
marks and interfaces. These communities can then apply
the benchmarks to measure and validate LLM coding per-
formance over time to ensure research is headed in the right
direction regarding the development and use of generative
AI tools.

3.3.2 Prompt Construction
The construction of prompts posed an additional threat
to validity because it relied solely on the titles of Stack
Overflow questions. In particular, incorporating no addi-
tional details from question bodies prevented ChatGPT-4
from utilizing further code to inform its responses. We did
not want ChatGPT-4 completing/improving fundamentally
flawed code. However, this prompt design choice risked
depriving ChatGPT-4 of information it could have used to
generate better solutions.

3.3.3 Problem Scope
Another risk area was the variety of coding problems we an-
alyzed. The problems were relatively narrow in scope and
data structure type. A wider range of problem types is thus
needed to ensure hidden risks regarding specific problem

5



structures do not occur. There may be classes of problems
that trigger poor performing hallucinations or code struc-
tures we are not aware of yet. This risk is particularly prob-
lematic when attempting to generalize our results.

3.3.4 Selection Bias
Another threat to validity was the inherent question and
code sample selection bias in our study. These questions
and answers were selected manually to focus on problems
and code samples that could be tested and benchmarked
readily. We may therefore have inappropriately influenced
the problem types selected and not chosen samples repre-
sentative of what developers would ask in certain domains.

4 ChatGPT-4 vs. AutoGen: A Comparative
Study in Programming Automation

Computer science and its application domains evolve
continuously, requiring more efficient and reliable auto-
mated systems capable of solving complex problems. This
section systematically compares ChatGPT-4 and AutoGen,
which are two generative AI-based systems that enable au-
tomated problem-solving. Our comparison evaluates the ca-
pability of ChatGPT-4 and AutoGen to (1) generate accurate
solutions for a set of predefined computer science problems
and (2) successfully pass rigorous tests designed to validate
the correctness of these solutions.

ChatGPT-4 was developed as part of OpenAI’s GPT se-
ries and is adept at a wide range of natural language tasks,
catering to diverse users from various domains. Its flexibil-
ity and interactivity make it suitable for general inquiries,
creative writing, and educational support. In contrast, Auto-
Gen excels in automated code generation through structured
and systematic prompting methods that harness predefined
patterns and algorithms to craft solutions optimized for ac-
curacy, performance, and readability.

4.1 Problem Statement

AutoGen and ChatGPT-4 both support automated
problem-solving and algorithm generation. Little research
has been conducted, however, to determine their efficiency
and accuracy in producing viable solutions under varying
conditions and constraints, especially when the tests them-
selves are dynamically generated as part of the problem-
solving process. Addressing this knowledge gap raises a
critical question (question Q4 in Section 2): How reliable
are AutoGen and ChatGPT-4 when faced with dynamically
changing success criteria, particularly when these criteria
are crafted through prompt engineering to match the prob-
lem’s specific nature?’

The study presented in this section aims to fill the cur-
rent gap regarding the adaptability and precision of Auto-
Gen and ChatGPT-4 in such fluid testing environments. The
absence of predefined tests means the evaluation of these

systems must account for their ability to interpret problem
statements, generate corresponding tests, and produce so-
lutions that satisfy these tests. What is needed, therefore,
is a method that assesses the quality of the generated so-
lutions, as well as the appropriateness and thoroughness of
the spontaneously created tests.

By addressing these challenges, we provide a nuanced
understanding of the capabilities of ChatGPT-4 and Auto-
Gen. We also explore the extent to which these systems
can autonomously generate both problems and their cor-
responding tests, which is becoming common in continu-
ous integration pipelines and automated software develop-
ment processes (2). The results of our comparative analy-
sis evaluate the potential of these LLM-driven systems to
contribute to and enhance the field of automated software
testing and development.

4.2 Dataset Overview and Analysis
The dataset under consideration comprises a collection

of 50 computer science problems, each characterized by
a unique sequence number, a difficulty level (Category),
a ProblemType, and a detailed problem statement. These
problems are classified into various categories, reflecting
different areas of computer science, such as algorithm de-
sign, data structures, and computational theory. The prob-
lems are categorized by difficulty levels, ranging from easy
to more challenging problems.

This dataset includes a broad spectrum of test cases
for each problem, ensuring a comprehensive evaluation of
skills from basic functionality to intricate scenarios. For ex-
ample, test cases for ’Calculating the average of an array of
numbers’ vary in array sizes and types, while ’Graph traver-
sal’ problems test diverse graph structures. This method,
akin to our previous study on arrays in Section 3, show-
cases the range of topics in the dataset, from fundamen-
tal algorithms like ”Binary Search” to advanced techniques
like ”Depth-First Search.”

The analysis of the distribution of computer science
problems by type uncovers the wide range of topics encom-
passed within the dataset. The pie chart shown in Figure 7
depicts the percentage of problems in each type, providing

Figure 7. Problem Types Distribution

a visual representation of which areas are emphasized more

6



heavily. This distribution is crucial for understanding the
breadth and focus areas of the dataset.

Figure 8. Distribution of Problems by Diffi-
culty Level

The pie chart shown in Figure 8 presents the distribu-
tion of problems across different difficulty levels (i.e., easy,
medium, and hard) within the dataset. This chart visualizes
the proportion of problems in each category, thereby eluci-
dating the distribution pattern. It accentuates the prevalence
of specific categories and offers insights into the relative
emphasis placed on each difficulty level in our dataset.

4.3 Methodology and Experiment Design
Our experiment design covers the evolving landscape of

automated problem-solving and algorithm generation, fo-
cusing on the capabilities of ChatGPT-4 and AutoGen. Cen-
tral to our study is the uniform prompting strategy em-
ployed, which is pivotal in harnessing the capabilities of
ChatGPT-4 and AutoGen. This strategy applies a con-
sistently structured prompt crafted to convey problem re-
quirements and context uniformly to both AI models. This
prompt facilitates a direct comparison of ChatGPT-4 and
AutoGen in terms of problem-solving efficiency, accuracy,
and adaptability.

By employing this single, standardized prompt across
all tests, our study compares and contrasts the performance
of these two systems in a controlled and comparable man-
ner. Given the dynamic nature of our problem-solving
environment—where tests are not static but generated in re-
sponse to each unique problem—our study evaluates the ef-
ficiency and accuracy of these systems under these varying
conditions.
4.3.1 Problem-Solving and Test Generation Approach
Our approach is anchored in prompt engineering (8), which
guides LLMs to interpret problem statements and generate
corresponding solutions and tests. We give both ChatGPT-
4 and AutoGen the same structured prompt shown in Fig-
ure 9, which provides the foundation for both systems to
understand and approach the problem. This prompt was
crafted to outline the problem statement, solution devel-
opment requirements, script necessities, test case execution

and preparation, and execution process. Our approach en-
ables a fair comparison between ChatGPT-4 and AutoGen,
ensuring the focus remains on the ability of these systems
to generate solutions, as well as create relevant and compre-
hensive test cases.

Figure 9. Structured Prompt Example for LLM-
Based Solution Generation in CS Problems.

4.3.2 Evaluating ChatGPT-4 and AutoGen
The evaluation of ChatGPT-4 and AutoGen involved multi-
ple layers. First, we assessed these systems’ ability to inter-
pret problem statements accurately and generate viable so-
lutions. Second, we examined the appropriateness and thor-
oughness of the spontaneously created test cases. These test
cases were vital to our evaluation process since they rep-
resented the dynamic criteria against which the generated
solutions were measured.

Our assessment compared the solutions and tests gen-
erated by each system under identical problem conditions.
This comparative analysis evaluated the adaptability, preci-
sion, and reliability of ChatGPT-4 and AutoGen in a fluid
testing environment where both the problems and their cor-
responding tests were generated autonomously.

This study provided a nuanced understanding of the
capabilities of ChatGPT-4 and AutoGen in automated
problem-solving and test generation. Our work is par-
ticularly pertinent in contexts like continuous integration
pipelines and automated software development processes,
where the ability to autonomously generate and test solu-
tions is vital. The findings of our study provide insight into
the potential role of LLM-based systems in enhancing auto-
mated software testing and development.

4.4 Analysis of ChatGPT-4 Experiment Results

The experiment conducted using ChatGPT-4’s solution
generation capabilities provided a comprehensive view of

7



its performance across a range of computer science prob-
lems. To ensure a fair and accurate comparison, the same
set of 50 distinct problems, along with identical prompts,
were utilized for both ChatGPT-4 and AutoGen in the tests.
Figure 10 providing valuable insights into the effectiveness
of the generated solutions.

Figure 10. ChatGPT-4 - Pass Rate of Solutions

4.4.1 Overall Success Rate
ChatGPT-4’s overall success rate was approximately
90.2%, as shown in Figure 11. This success rate indicates

Figure 11. ChatGPT-4 - Pass Rate of Solutions

ChatGPT-4’s capability in accurately solving a broad spec-
trum of computational tasks. The high percentage of cor-
rectly solved problems demonstrates the effectiveness of its
generated solutions in various contexts.

4.4.2 Error Analysis
Distinct patterns emerged when examining ChatGPT-4’s
failed cases, highlighting areas where it faced challenges.
The most frequent error encountered was related to ”Invalid
input. Please provide valid numeric values,” followed by is-
sues like ”max() arg is an empty sequence” and ”division by
zero.” These errors indicate that while ChatGPT was profi-
cient in many areas, there were specific scenarios where im-
provements were needed, particularly involving input vali-
dation and handling exceptional cases.

4.4.3 Problem Difficulty vs. Success Rate
An interesting aspect of ChatGPT-4’s behavior is the cor-
relation between problem difficulty and success rate. Sur-
prisingly, ’medium’ difficulty problems had a higher suc-
cess rate (around 93.48%) compared to ’easy’ (87.50%) and
’hard’ (91.11%) difficulties, as shown in Figure 12. This

Figure 12. ChatGPT-4 - Problem Difficulty vs.
Success Rate

finding suggests a potential discrepancy in the perceived
versus actual complexity of the problems or a higher adapt-
ability of the system in solving medium complexity tasks.

4.4.4 Problem Type Analysis
ChatGPT-4’s success rate also varied significantly across
different problem types. Types such as ”Binary Search” and
”Sorting algorithms” demonstrated a notably high success
rate (over 90%), whereas ”Graph traversal” and ”Calculat-
ing the average of an array of numbers” exhibited lower suc-
cess rates. This variation highlighted ChatGPT-4’s strengths
and weaknesses in different computational domains and of-
fered insights for targeted improvements in specific areas of
problem-solving.

4.4.5 Insights and Future Directions
Overall, our analysis of ChatGPT-4’s experiment results re-
veals that it was highly effective in solving a wide range of
computer science problems. However, the insights gained
from the error analysis and the variation in success rates
across problem types and difficulties suggest areas for fur-
ther enhancement. Improving input validation, error han-
dling, and adapting strategies for specific problem types
could yield even higher success rates and more robust
problem-solving for ChatGPT-4. These findings help in-
form future developments to refine the solution generation
capabilities of ChatGPT-4.

4.5 Analysis of AutoGen Experiment Results

The experiment conducted on the auto-generation sys-
tem for computer science problems provided a wealth of
data, allowing an in-depth analysis of its performance. The
dataset comprises results from tests conducted on 50 differ-
ent computer science problems shown in Figure 13, where
each test was evaluated across multiple parameters.

8



Figure 13. Number of Pass and Fail Test
Cases for Each Problem Using AutoGen

4.5.1 Overall Success Rate
AutoGen achieved an overall success rate of approximately
84.35% Figure 14. This high percentage indicates that it

Figure 14. AutoGen - Pass Rate of Solutions

solves the majority of the problems correctly by the auto-
generated solutions. It reflects AutoGen’s proficiency in
handling a range of computational tasks and its effective-
ness in producing accurate solutions.

4.5.2 Problem Difficulty vs. Success Rate
Understanding the relationship between problem difficulty
and success rate is crucial to assess the effectiveness of so-
lution generation methods. The bar chart shown in Fig-
ure 15 visualizes the success rates of solutions across dif-

Figure 15. AutoGen - Problem Difficulty vs.
Success Rate

ferent problem difficulties in our dataset and distinguishes
problem difficulties, such as ’easy’, ’medium’, and ’hard’,

represented by individual bars. The height of each bar sig-
nifies the percentage of successful solutions within that spe-
cific difficulty category. This visualization enables an intu-
itive comparison of success rates across different levels of
problem complexity.

AutoGen’s approach, characterized by structured LLM
prompting, is highly effective for complex problems, which
may account for the lower success rates in ’easy’ problems.
Its design seems tailored for intricate scenarios requiring
deep analysis, leading to better performance in ’medium’
and ’hard’ problems. This insight helps explain AutoGen’s
proficiency with complex issues and its less effective han-
dling of simpler tasks.

Contrary to expectations, Figure 15 reveals that ’easy’
problems have the lowest success rate, suggesting a mis-
match between perceived simplicity and actual solution ef-
fectiveness. Conversely, as we move towards ’medium’ and
’hard’ problems, there is a noticeable increase in success
rates, which implies that more complex problems might
be better suited to the solution generation and testing pro-
cesses, leading to higher success rates. The quantification
of success in percentages adds precision to our analysis, en-
abling a more accurate evaluation of solution performance
across different problem types.

4.5.3 Failed Cases Analysis
Two distinct patterns were identified in our analysis of
failed cases, shedding light on specific challenges faced by
AutoGen. One issue occurred in problems dealing with the
calculation of the average of an array of numbers, where it
struggled with handling ’NoneType’ values. In particular,
AutoGen yielded errors where a floating-point number was
expected as a string or a real number, but ’NoneType’ was
encountered instead.

Another area of difficulty was observed in sorting algo-
rithms. In this area AutoGen faced challenges due to string
data type limitations, as shown by errors indicating that a
string does not support item assignment. This finding indi-
cated potential issues in AutoGen’s approach to implement-
ing or understanding the intricacies of sorting strings.

These insights suggest that while AutoGen was largely
successful, it can be improved in certain areas. In particular,
its handling of edge cases and specific data types requires
attention. These patterns can guide future enhancements
to AutoGen for better accuracy and robustness in solution
generation.

4.6 Comparative Analysis of ChatGPT-4 and Au-
toGen Experiment Results

Conducting a detailed comparative analysis between the
ChatGPT-4 and AutoGen experiment results revealed sev-
eral key distinctions and similarities. It also offered in-
sightful perspectives on the performance and application of

9



each system. Our analysis begins by examining the over-
all success rates of both systems, as shown in Figure 16.
This figure shows ChatGPT-4 achieved a higher success rate

Figure 16. Success Rate Comparison

(sim90.2%) indicating its effectiveness in generating cor-
rect solutions for the given programming problems. In con-
trast, AutoGen demonstrated a somewhat lower success rate
(∼84.35%), though it is still a substantial majority. This
finding suggests that while AutoGen is largely reliable, it
may encounter more challenges or inconsistencies in gener-
ating correct solutions.

With respect to error analysis, Figure 17 shows the dif-
ferences become more pronounced. Of the AutoGen tests

Figure 17. Error Rate Comparison

that did not pass, only two instances recorded specific ex-
ceptions. Most of the errors (39 out of 41) lacked detailed
exception information, which implied a range of underly-
ing issues, from logic errors to unhandled exceptions in the
code.

Conversely, ChatGPT-4 had a lower overall error rate,
with 16 instances of failed tests. Notably, ChatGPT-4 doc-
umented specific exceptions in one out of these 16 errors.
This result offers better insight into the nature of the issues,
which included input validation errors and undefined vari-
ables.

We also analyzed the complexity of problems and the
handling of solutions by both systems. Although tasked
with similar problems (primarily basic arithmetic opera-
tions), ChatGPT-4’s solutions exhibited capabilities for han-
dling more complex scenarios, such as error handling and

input validation. Conversely, AutoGen showed a higher er-
ror rate and its solutions lacked this complexity in error han-
dling within the sample data.

Summarizing our comparative analysis, both AutoGen
and ChatGPT-4 exhibit distinct strengths and limitations
in programming solution generation. AutoGen’s slightly
lower success rate suggests it is most effective for educa-
tional use and basic programming tests. Despite ChatGPT-
4’s higher error rate in complex scenarios, it shows ad-
vanced capabilities like robust error handling and input val-
idation, positioning it as a valuable tool for more advanced
learning and comprehensive testing environments. These
differences highlight the potential applications and suitabil-
ity of each system in varying contexts of programming ed-
ucation and automated solution testing.

5 Related Work

The evolution of LLMs in code generation has been piv-
otal, particularly in the discipline of prompt engineering,
which focuses on crafting effective natural language inputs
for LLMs, enabling them to solve complex problems across
diverse domains (8). Studies in this area have emphasized
the importance of prompt structure and leveraged external
tools and methods to enhance the capabilities of LLMs in
coding tasks (22). For instance, Yao et al. (2022) integrated
LLMs with external coding frameworks to augment their
utility, while Van et al. (2023) focused on maximizing the
inherent capabilities of LLMs in generating more complex
and efficient code structures (20). These advancements in
prompt engineering show particularly promising results in
domains like mathematics, where straightforward prompt-
ing often falls short, necessitating more sophisticated ap-
proaches for better outcomes (12).

Our study delves deeper into the impact of prompt de-
sign on the performance of LLM-generated code. Existing
research primarily employs direct queries from sources like
Stack Overflow, providing a baseline for our investigation.
However, the potential for refined prompting techniques to
yield more efficient and accurate code solutions suggests
an expansive field ripe for future exploration. This area of
research is critical, especially considering the increasing re-
liance on AI-driven solutions in software development.

Moreover, the reliability and security of code generated
by LLMs have become focal points in recent studies. Re-
searchers like Borji et al. (2023) and Frieder et al. (2023)
have identified and addressed various bugs and security vul-
nerabilities inherent in LLM-generated code (6; 12). The
comparison of the security profile of human-written code
versus LLM-generated code, as explored by Asare et al.
(2022), is also garnering significant attention (14; 17; 3).
This line of research is crucial in understanding the trade-
offs between human and AI-generated code, especially con-
cerning security and reliability aspects.

10



Another emerging area of interest is the impact of LLMs
on software development workflows and developer produc-
tivity. Studies have begun to assess how LLMs influence
the software development lifecycle, from initial design to
deployment, and their role in accelerating development pro-
cesses while maintaining, or even improving, code quality.
This aspect is particularly relevant as the industry gravitates
towards more AI-integrated development environments.

Overall, the body of research underscores the multi-
faceted impact of LLMs in programming. It highlights the
challenges in ensuring the reliability and security of LLM-
generated code while also exploring the opportunities in en-
hancing the efficiency and effectiveness of software devel-
opment practices. As LLMs continue to evolve, so too does
the landscape of research, continually pushing the bound-
aries of what can be achieved through AI-driven code gen-
eration and opening new frontiers in the intersection of AI
and software engineering.

6 Concluding Remarks
This paper presented a comprehensive analysis of pro-

gramming automation, comparing AutoGen and ChatGPT-
4, and evaluating top Stack Overflow solutions against those
generated by ChatGPT-4. We observed that ChatGPT-4 can
produce solutions competitive with human-crafted ones, es-
pecially when guided by chain-of-thought reasoning. This
approach enhances its problem-solving and code generation
capabilities.

In contrast, despite AutoGen’s slightly lower success
rate, it excels in handling complex programming challenges
with robust error handling and input validation, making it
suitable for advanced education and testing. ChatGPT-4,
however, demonstrated versatility in generating optimized
solutions for various problems when effectively prompted.

Key lessons learned from this research include:
• Our experiments demonstrated that prompting and au-

tomatically benchmarking generated code effectively
leverages LLMs for optimized code. As shown in Sec-
tion 3, prompting multiple times and selecting the best
solution is a promising aid for software engineers to
optimize performance-critical code sections.

• A key attribute of ChatGPT-4-based code generation is
its ability to search many coding solutions. Developers
will likely use LLM-based tools like Code Inspector
and Auto-GPT to generate and analyze multiple so-
lutions per query, as discussed in Section 4. Future
tools should enable defining metrics and automatically
prompting until a quality threshold is met, a prompt
limit is reached, and/or time runs out.

• ChatGPT-4 demonstrated a robust 90.2% success rate,
and was particularly effective for simpler arithmetic
tasks, making it valuable for education and automated
testing. As noted in Section 4.4.2, however, its error
diagnosis and reporting need further refinement.

• AutoGen’s 84.35% success rate demonstrated ad-
vanced solutions featuring error handling and input
validation, as described in Section 4.5. This finding
indicates AutoGen’s suitability for advanced education
and comprehensive testing environments where robust
error handling is essential

In summary, our analysis of program automation using
AutoGen and ChatGPT-4 reveals distinct strengths in each
system: AutoGen for basic educational use and straight-
forward problem-solving and ChatGPT-4 for advanced pro-
gramming solutions and robust error handling, particularly
when utilizing chain-of-thought reasoning.

Moreover, our analysis demonstrated that ChatGPT-4
can generate solutions competitive with—or superior to—
top Stack Overflow answers when given effective prompts.
This finding highlights the potential of LLMs in complex
coding tasks but also points to the limitations of using mini-
mal context from Stack Overflow titles. Optimized prompt-
ing strategies are essential to fully leverage LLM capabili-
ties in code generation. The choice between these two sys-
tems should therefore be guided by the specific needs of
the application, i.e., whether the priority lies in maximizing
successful outcomes or in handling complex programming
challenges with sophisticated error processing.

An intriguing direction for future work is exploring the
potential of leveraging LLM-based tools for full stack soft-
ware development. Rather than focusing solely on indi-
vidual modules or components, we plan to investigate how
LLMs perform at generating complete end-to-end systems
encompassing front-end, back-end, database, and infras-
tructure elements. Examining the effectiveness of LLMs
across the entire software lifecycle may reveal new capabil-
ities and limitations. Key areas of analysis include correct-
ness, security, scalability, maintainability, and modularity
of auto-generated systems. In addition, studying integration
with human developers in a blended workflow rather than as
a wholesale replacement will provide important insights.

Our future work will also consider if/how other code
quality metrics can be integrated to allow considering multi-
ple dimensions of code quality beyond performance. In par-
ticular, security and functional correctness are clearly im-
portant points of consideration, but must be supplemented
with additional analyses. Likewise, other quality attributes,
such as memory consumption, long-term maintainability,
and modularity, should also be analyzed. As LLMs con-
tinue to mature, understanding their role in higher-level
software creation and complementing human programmers
offer promising new frontiers.

Acknowledgements
We used ChatGPT-4’s Advanced Data Analysis capabi-

ity to generate code for the data visualizations and filter the
data sets.

11



References

[git] Github copilot · https://github.com/features/copilot.

[2] Arachchi, S. and Perera, I. (2018). Continuous integra-
tion and continuous delivery pipeline automation for ag-
ile software project management. In 2018 Moratuwa En-
gineering Research Conference (MERCon), pages 156–
161.

[3] Asare, O., Nagappan, M., and Asokan, N. (2022). Is
github’s copilot as bad as humans at introducing vulner-
abilities in code? arXiv preprint arXiv:2204.04741.

[4] Bang, Y., Cahyawijaya, S., Lee, N., Dai, W., Su, D.,
Wilie, B., Lovenia, H., Ji, Z., Yu, T., Chung, W., et al.
(2023). A multitask, multilingual, multimodal evaluation
of chatgpt on reasoning, hallucination, and interactivity.
arXiv preprint arXiv:2302.04023.

[5] Bommasani, R., Hudson, D. A., Adeli, E., Altman, R.,
Arora, S., von Arx, S., Bernstein, M. S., Bohg, J., Bosse-
lut, A., Brunskill, E., et al. (2021). On the opportu-
nities and risks of foundation models. arXiv preprint
arXiv:2108.07258.

[6] Borji, A. (2023). A categorical archive of chatgpt fail-
ures. arXiv preprint arXiv:2302.03494.

[7] Carleton, A., Klein, M. H., Robert, J. E., Harper, E.,
Cunningham, R. K., de Niz, D., Foreman, J. T., Good-
enough, J. B., Herbsleb, J. D., Ozkaya, I., and Schmidt,
D. C. (2022). Architecting the future of software engi-
neering. Computer, 55(9):89–93.

[8] Chen, B., Zhang, Z., Langrené, N., and Zhu, S. (2023).
Unleashing the potential of prompt engineering in large
language models: a comprehensive review.

[9] De Vito, G., Lambiase, S., Palomba, F., Ferrucci, F.,
et al. (2023). Meet c4se: Your new collaborator for soft-
ware engineering tasks. In 2023 49th Euromicro Con-
ference on Software Engineering and Advanced Appli-
cations (SEAA), pages 235–238.

[Elnashar et al.] Elnashar, A., Moundas, M., Schimdt,
D. C., Spencer-Smith, J., and White, J. Prompt engi-
neering of chatgpt to improve generated code & runtime
performance compared with the top-voted human solu-
tions.

[11] Espejel, J. L., Ettifouri, E. H., Alassan, M. S. Y.,
Chouham, E. M., and Dahhane, W. (2023). Gpt-3.5, gpt-
4, or bard? evaluating llms reasoning ability in zero-shot
setting and performance boosting through prompts. Nat-
ural Language Processing Journal, 5:100032.

[12] Frieder, S., Pinchetti, L., Griffiths, R.-R., Salvatori,
T., Lukasiewicz, T., Petersen, P. C., Chevalier, A., and
Berner, J. (2023). Mathematical capabilities of chatgpt.
arXiv preprint arXiv:2301.13867.

[13] Giray, L. (2023). Prompt engineering with chatgpt: A
guide for academic writers. Annals of biomedical engi-
neering, 51(12):2629—2633.

[14] Jalil, S., Rafi, S., LaToza, T. D., Moran, K., and
Lam, W. (2023). Chatgpt and software testing education:
Promises & perils. arXiv preprint arXiv:2302.03287.

[15] Krochmalski, J. (2014). IntelliJ IDEA Essentials.
Packt Publishing Ltd.

[16] Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and
Neubig, G. (2023). Pre-train, prompt, and predict: A
systematic survey of prompting methods in natural lan-
guage processing. ACM Computing Surveys, 55(9):1–35.

[17] Nair, M., Sadhukhan, R., and Mukhopadhyay, D.
(2023). Generating secure hardware using chatgpt re-
sistant to cwes. Cryptology ePrint Archive.

[18] Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., and
Karri, R. (2022). Asleep at the keyboard? assessing the
security of github copilot’s code contributions. In 2022
IEEE Symposium on Security and Privacy (SP), pages
754–768. IEEE.

[19] Porsdam Mann, S., Earp, B. D., Møller, N., Vynn, S.,
and Savulescu, J. (2023). Autogen: A personalized large
language model for academic enhancement—ethics and
proof of principle. The American Journal of Bioethics,
23(10):28–41.

[20] van Dis, E. A., Bollen, J., Zuidema, W., van Rooij, R.,
and Bockting, C. L. (2023). Chatgpt: five priorities for
research. Nature, 614(7947):224–226.

[21] White, J., Fu, Q., Hays, S., Sandborn, M., Olea,
C., Gilbert, H., Elnashar, A., Spencer-Smith, J., and
Schmidt, D. C. (2023). A prompt pattern catalog to en-
hance prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382.

[22] Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I.,
Narasimhan, K., and Cao, Y. (2022). React: Synergizing
reasoning and acting in language models. arXiv preprint
arXiv:2210.03629.

[23] Zhang, Z., Zhang, A., Li, M., and Smola, A. (2022).
Automatic chain of thought prompting in large language
models. arXiv preprint arXiv:2210.03493.

12


