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Abstract reuse, and enhances software maintainability over the system

. . _— o lifecycle. Projects are also increasingly relying upon commer-
The growing complexity of building and validating software Sial off-the-shelf (COTS) components and frameworks as the
a challenge for developers of distributed real-time and embeb 'sis for their distributed software infrastructure

ded (DRE) systems. While building blocks of DRE systems arg\lthough reuse of individual components is useful, it is
increasingly based on commercial off-the-shelf (COTS) Ccom '

" bstantial ti d effort tint i en more useful to compose the individual components into
ponents, substantialtime and etiort are spent integrating Coffls o jave| reusable components and even complete applica-
ponents into systems due to the lack of higher level abstr.

i f : | " A it - fions. Composition of software components is not as mature
;gressogtg%rfosggcﬁo?qg ?;jg,,s rf]msst. bes ?.trtisnu c;n(iortlsl esr'assembly of hardware components (such as motherboards
Y pecilic “glu u written, only k%eomposed from integrated circuits) or mechanical components

rewnt'ten from Scr"’?tCh when bu||d'|ng.subsequent systems. such as automobiles or aircrafts components from standard
This paper provides four contributions to the study of co

. . arts). Nevertheless, in the long-term, it should be possible to
posing reusable middleware from standard components

. . elop complex software applications built largely by com-
DRE systems: (1) it analyzes the problems with current P b PP gely by

o " . " posing and customizing pre-existing components.

proaches in middleware composition, (2) it quantifies the m?P:_ gh I Alth 9 ph 9 ¢ bp 4 soft q

imum set of requirements required of reusable middlewaﬁ'gy challenges. ough component-based software de-
lopment techniques are maturing for business and desktop

components, (3) it presents recurring patterns in the domaifs ‘ th | ture f o itical d .
of software composition and provides empirical evaluation Bf>.c>: ey are 1ess mature for mission-critical domains,
these patterns as applied to TAO, our open-source seco ch as distributed real-.tllme and embedded (DR.E) systems. n
generation Real-Time CORBA Object Request Broker (O E systems, composition of component functionality alone

and (4) it compares our approach to other research done 'ﬁwﬁOt suffic?ent sincelthese types of s:ystems must ensure .end—
the area of software composition. Our results show that ... to-end quality of service (QoS), of which components are sim-
ply the basic building blocks. Mixing QoS specifications and

enforcement mechanisms with the application functionality re-
1 Introduction sults in complications that tend to grow rapidly as the number
of components — and hence the complexity — of the software
Emerging trends. Software components are units of inddncreases.
pendent production, acquisition, and deployment that interact his paper focuses on the following challenges involved
to form a functioning system [1]. Software component moth QoS-enabled software composition in the context of the
els, such as COM+ and Javabeans, have long formed the bg&igrging component models:
for graphical user interfaces and other stand-alone system de-The need to minimize overly tight coupling of compo-

velopments. A component model is responsible for: nent meta-data with component functionality. To reuse a
o Describing the properties and semantics of compon&Rinponent in more contexts than it was designed originally,
building blocks and the component’s functionality and its feature set need to be

e Keeping the context sensitive dependencies to a mifigscribed in a manner that can be understood by component
mum and defining these explicitly when necessary. ~ USers. Component meta-data includes (but is not limited to)
information such as the list of files used to implement a com-

With the proliferation of enterprise component technolponent, version number information, a checksum to ensure
gies, such as the CORBA Component Model (CCM), .NEGomponent integrity, and information about the required priv-
and Enterprise Java Beans (EJB), large-scale distributed ilgges for this component to function. Various composition
plications are increasingly being developed and deployedpimblems occur when component meta-data is described at the
a modular fashion. Modularity elevates the level of abstrasame level of abstraction as the component functionality. In
tion used to program complex systems, encourages systenyaiticular, this tight coupling can require applications to be



written in the same language as the lower-level componentsPrior work on TAO has explored many dimensions of
which may not be feasible if these entities have been devah-performance and real-time ORB design and perfor-
oped independently and at different points in time. mance, including scalable event processing [4], request de-

e The need to specify component QoS requirements in f_nU|tipIexing [5], I/0 s.ubsystem [6] and protocol [7] integra-
a context-insensitive manner. Composition problems ariselion, connection architectures [8], asynchronous [9] and syn-
when QoS requirements of components are specified with fRfonous [10] concurrent request processing, adaptive load
plicit assumptions on properties of external entities (suchR@lancing [11], meta-programming mechanisms [12], and IDL
threading models required by a component or support for cStHb/skeleton optlmlzatlons'[13]. Th|§ paper describes how we
currency needed to run the component) outside a particmnﬁ\/e extendeq CIAO.to avoid the various challenges that arise
component of a software system. Unstated or underspeci%}?”@eVebpmg flexible and high-performance DRE systems.
assumptions related to QoS properties of components mak_%qgmflca_lly, the CIAO project addresses the challenges out-
hard to use the requirements effectively. The context in whighed earlier as follows:
these assumptions hold true are provided by the environment Reduced coupling by separating meta-data from func-
in ideal conditions. A component can malfunction due tinality. We provide a framework based osXtensible
failures of assumptions stemming from the lack of contexitarkup LanguaggXML)-based [14] mechanisms to define
dependent information. the grammar for describing component features. The XML-
e The need to validate component properties. A com- based approach makes components amenable to composition

ponent implementation’s properties (such as the implemerfi4-(1) independent portions of a larger system and (2) future
tion language, version of the component, level of privileges @Pplications that can parse XML. This results in a decoupling
quired, and dependencies on other components) must be 9hthe functional aspects of a component-based system (that
idated against its specification to avoid problems such as ¢& be written using a variety of COTS programming lan-
errors caused by misconfiguration, (2) attacks by maliciogidages) from the underlying QoS aspects and configuration
components that request resources from the underlying Of&sails. This decoupling increases composition flexibility and
improperly, and (3) lack of confidence that the QoS assurangé¥gtematic reuse. In the CIAQ project, we specify meta-data
provided by the middleware are sufficient from an applic8f & component via XML, using its content-agnostic metalan-
tion's perspective. Validation is required at the granularity 8/age properties to express QoS configuration templates and
an individual component, as well as at the system level. ~ conforming configuration files.

e The need to ensure that a Comp|ex software systemcan ® Context-insensitive SpeCification of QoS requirements.
be deployed seamlessly. It is hard to track the dependencie¥Ve identify critical QoS parameters of component-based DRE
of components upon other components and ensure that in3eftware systems and specify them using extensions to the
dependent components are initialized in a particular order. XL Document Type Definitions (DTD) for specifying prop-
ease this task, components need to be packaged as entitie€tfigs of components defined by CCM. There is considerable
provide a variety of information about the resident componefigxibility in the extension so that the requirements make sense
and capture the dependencies present in initialization. THigm the perspective of a component, as well as from the end-
packaging is necessary so that the deployment process cai@s$1d perspective needed for the system as a whole. All of a

automated completely or at least controlled by an administé@mponent’s assumptions are explicitly specified using meta-
tor. data and are present within each componieat,the compo-
nent is context-insensitive, and the amount of implicit contex-

Solution approach. Early ORBs did not provide featuredu@! information is minimal.
or optimizations to support the challenges of component-e Component Validation. After a componentis specified
based distributed systems described above — particularly @od packaged, it must be validated at deployment time. In the
for DRE systems with stringent QoS requirements. To b&tAO project, default attributes are generated by a component-
ter meet these requirements, we have developed a thedabled OMG Interface Definition Language (IDL) compiler
generation ORB called the Component-Integrated ACE ORB part of the meta-data for every component. These attributes
(CIAO) [2], which is based on the CORBA Component Modelan be modified or extended by the user. XML Document
(CCM) [?] specification that standardizes the developmentBfpe Definition (DTDs) can be used to (re)validate meta-data
platform- and language-independent component-based agitiibutesbeforecomponents are deployed, thereby avoiding
cations. CIAO extends our previous work on The ACE OR&ceptions during run-time. We provide methods to validate
(TAO) [3] by providing more powerful component-based al§l) configurations of components, (2) privileges of compo-
stractions using the specification, validation, packaging, amehts, and (3) QoS properties of the system both during and af-
deployment techniques discussed above. ter an application is composed from a set of component build-
ing blocks.
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e Component packaging and deployment. After speci- compares and contrasts our work on software composition in
fication and validation, component implementations must 6€M and CIAO with other approaches; and Section 6 presents
packaged and deployed. As shown in Figure 1, packagingaéencluding remarks.
volves grouping the implementation of component functional-
ity, which is typically stored in a dynamic link library (DLL), .
with other meta-data that describes properties of this part?e— Overview of Components and Com-

ular implementation. Packaged components are in “passive ponent Models

In the early days of computing, software was developed from
[ implementation ] [?p,emew scratch to achieve a particular goal on a specific ha.rdware plat-
from. Since computers were much more expensive than the

- - - - people who programmed them, relatively little attention was
aid to systematic software reuse and composition of appli-
) QD | | | = G bations from exist . ; o

" cations from existing software artifacts. Over the past four
eta-data Meta-data <

Camgara G decades, the following two general trends have spurred the
transition from hardware-centric to software-centric develop-

@S (istof Fies) - ment paradigms:

Meta-data e Economic factors— Due to advances in VLSI and the
commoditization of hardware, most computers are now
muchless expensive than the people who program them.

e Technological advances- With the advent of object-
oriented programming languages and distributed object
computing technologies, software can now be developed

Assembly Assembly Assembly in a much more modular fashion.
I é This section provides an introduction to components and
component models. We begin with an overview of the soft-
ware paradigms that culminated in component-based soft-
[DeploymentApplication } ware technologies and outline a promising new enhancement

to component models. We also describe the functionalities
shared by all component models and show how component
models differ from the popular object models.

Component Server

2.1 A Brief History of Software Programming
Paradigms

Below, we present a brief history of software program-
ming paradigms. A common theme underlying all of these
paradigms is the desire to compose and customize systems
largely from pre-existing software building blocks. What
mode,"i.e., all their functionality is present, but they are inediffers is the types of building blocks envisioned for each
object code. To function at run-time, components must trgraradigm.

sition to “active mode,” where the inter-connection betwednformation hiding and data abstraction. Composing
components is established. Deployment mechanisms arestdtware from reusable artifacts has been a goal of software
sponsible for transitioning components from passive to actiesearchers for over three decades. For example, Doug Mcll-
mode. roy [15] motivated the need for software “integrated circuits”
Paper organization. This paper is organized as follows(ICs) and mass-produced software ICs, as well as examines
Section 2 first gives a general overview of component modelse types of variability needed in software ICs and the types
Section 3 then focuses motivating and describing the capalmfiiCs that can be standardized usefully. Mcllroy envisioned
ties of the CORBA Component Model (CCM) and CIAO; Se@n IC to be a standard catalogue of routines, classified by pre-
tion 4 examines in detail the techniques used in CIAO to soleision, robustness, time-space performance, size limits, and
key challenges with component models and CCM; Sectiorbinding time of parameters.

Figure 1: Component Packaging and Deployment



Early efforts [16, 17, 18] to realize the vision of softwarset of external interfaces. Components and component models
ICs resulted in information hiding and data abstraction tedtiffer from objects and object models in the following ways:

niques that placed more emphasis on organization of data thag
the design of procedures. Data abstraction resulted in formal-
izing the concept ofnodulesas a set of related procedures and
the data that they manipulate, resulting in partitioning of pro-
grams so that data is hidden inside them.

These techniques were embodied in programming lan-
guages, such as Clu, Modula 2, and Ada. They provided mod,
ules as a fundamental language construct apart from explicit
control of the scopes of names (import/export), a module ini-
tialization mechanism, and a set of generally known and ac-
cepted styles of usage of the above mentioned features. Al-

though these languages allowed programmers to create and ap-

ply user-defined types, it was hard to extend these types to new
usages scenarios without modifying their interface definitions
and implementations.

Object-oriented techniques. The next major advance in
programming paradigms came from object-oriented design
techniques, such as the OMT and Booch notations/methods,
and object-oriented programming languages, such as C++ and
Java. Object-oriented techniques focus on decomposing soft-

ware systems into classes and objects that have crisply-defined

interfaces and are related via inheritance and aggregation. A
key advantage of object-oriented techniques is their direct sup;
port for the distinction between an class’s general properties
and its specific properties. Expressing this distinction and tak-
ing advantage of it programmatically was simplified by object-
oriented language support for inheritance, which allows the
commonality in class behavior to be explicit, as well as allow-
ing customization of this behavior by allowing redefinition of
methods in subclasses.

Component-based techniques. Although object-
orientation represented an advance over previous program-
ming paradigms approaches, it also had certain deficiencies.

For example, object-oriented techniques are based on as-

sumptions that different entities in a software system have

Component models define a higher level abstraction of
the run-time execution environment than the operating
systems level, which is often the case with object mod-
els. This helps in imposing policies on components and
verifying them at run-time using the execution environ-
ment.

Components are a higher-level abstraction than objects.
This abstraction leads to differences in the following top-
ics:

— External view — Object models treat objects at the
level of programming language abstractions of the
same name and associated interfaces are defined are
also defined on each such object. In contrast, com-
ponent models only associate semantics of func-
tionality with each component and allow flexibility
in the packaging and implementation of component

functionality.
Encapsulation — Component models provide

“tighter encapsulation” of component functionality
and hence limit the dependency on implementation
level artifacts in component usage.

Component programming is based on the Extension In-
terface design pattern [20], which defines a standard pro-
tocol for creating, composing, and evolving groups of
interacting components. Unlike object-oriented designs
(which reply on inheritance), component-based designs
generally rely on aggregation for composition, which is
more powerful since:

— A component might not share any commonality

with other components
— A component might need to be integrated with ex-

isting components written in languages that do not
support inheritance.

interfaces that are (1) amenable to inheritance and aggregatiqh Components are *“context-insensitive”, which allows

and (2) are written in the same programming langauge.
Many applications must run in multi-lingual and even multi-
paradigm [19] environments, however, which necessitates a
higher level of abstraction than can be provided by a single
programming language or programming paradigm.

These conditions outlined above motivated the need for
component-based software techniques [1]. A component is

clients to (1) interrogate a component to find out what

interfaces it supports and (2) nagivate amongst these in-
terfaces at run-time. This capability can be achieved

through the separation of the functional properties from

the behavioral properties and compositional aspects of
components.

an encapsulated part of a software system that implementsspect-oriented techniques. More recently, another pro-

specific service or set of services. A component model defiggamming paradigm has emerged that focuses on advanced
(1) the properties of components, such as the version of teehniques to separate common concerns in software sys-
component, its dependencies, language of implementation tés. Known asspect-oriented programmin@OP) [21],

the set of interfaces that components use to interact amorlgistparadigm provides a systematic, language-based approach
themselves and with other participants, and (3) the infrastrfle- programming separate facets, such as memory manage-
ture needed to support the composition, run-time behavior, anent, logging, and synchronization, that cross-cut program



functionality. Research on AOP has also concentrated on patterns [24, 25]. Below, we describe the most common capa-
abling development of component software through specihailities that are shared among these component models.

ized programming languages, such as Component PascalNfitiple views per component. Each component model
through introduction of higher-level constructs, such as Plugpecifies a collection of interfaces that a component can export
gable Composite Adapter [22], and language extensions, sughs clients. These interfaces vary in the capabilities that they
as AspectJ [23] that extends Java to support the compositgfer to clients. For example, [1] refers to so-callaleck in-

of separately developed software aspects. terfaces gray interfacesandwhite interfaceswith each type

of interface providing introspection capabilities with increas-
ingly powerful semantics, respectively.

Execution environment. Each component model defines an
environment, known as@ntainer within which components

The most commonly used component models today includé@n be instantiated and run. Containers shield components

Mi frs NET hich all devel ; i i from low-level details of the underlying middleware. They
VICTOSOTLS .TV » which allows developers lowrite applicay, o 515 responsible for locating and/or creating component
tion Iog|g in different languages and generate comppnents ances, interconnecting components together, and enforc-
assemblies targetted tq a Common Language Ruptlme (CLI "component policies (such as their life-cycle, security, and
CLR forms the foundation for the .NET Web services, whi rsistence state)
combine aspects of component-based development and Web . .
. . : . omponent identity. Each component model has a means
technologies. Like earlier Microsoft component models (su

as COM+ and ActiveX), .NET provides black-box functionaﬁO identify its components uniquely. For example, .NET uses

ity that can be described and reused without concern for hE\lilvb“C key cryptography tokens to tag each components inter-

a service is implemented. In practice, however, .NET is o ce to identify it uniquely across different software domains.

available on Windows platforms. Moreover, since .NET is tar-JB uses the Java Naming and Directory Service (JNDI),

. . o . ich encapsulates low-level naming services, such as LDAP,
geted at desktop and enterprise applications, it is not suit . . . .

. . . ,and DNS. EJB components are written using a hierarchi-
for DRE systems with stringent QoS requirements.

_ cal directory naming scheme typically associated with an orga-
Sun’s Enterprise Java Beans (EJB) technology allows de- njzation’s Internet domain. The CCM uses DCE “universally
velopers to create n-tier distributed systems by linking a NUGhique ids” (UUIDs) to identify component implementations.
ber of pre-built software services-called “beans” without haggaction?? explains other capabilities that CCM provides to
ing to write much code from scratch. Since EJB is built on t¢glentify components.

of Java technology, EJB service components can only be iseq on an underlying object model. Each of today’s

plemented using the Java language, which can be limiting fofi, jjar component models are based on an underlying object
applications that are written in other languages. Another dispdel. as outlined below:

advantage of EJB stems from Java’s inability to provide strin- i . :
gent real-time QoS guarantees, which makes it impractical fo* .EJB uses the Java Virtual Machine (JVM) as its underly-

use in DRE systems. Ing opject model. ,
) ¢ .NET is based on the Common Language Runtime (CLR)
OMG’s CORBA Component Model (CCM) , which de-

- o i and executes byte-code in Microsoft Intermediate Lan-
fines a superset of EJB capabilities that can be implemented guage (IL) [26].

using all the programming languages supported by CORBA., CCM is based on the CORBA object model.
Since CORBA and CCM are also platform-independent, the

can run atop most operating systems. It is possible to infd!® JYM and CLR are similar in that they provide a run-time

grate CCM and EJB components seamlessly since they Hgilironment that manages running code and simplifies soft-
use the Internet Inter-ORB Protocol (IIOP) as their undd¥@re developmentvia automatic memory management mech-
lying communication protocol. Since CORBA and its Suﬁ\_msms, translating bytecode into an action or operating sys-

port for capabilities (such as asynchronous messaging, p@i" call a;}commor; deploymentfmodel, and asecurlty.sysftem.
lisher/subscriber communication, fault tolerance, and re&€ JYM has mostly been used for byte-code generation from

time control of processor and networking resources) providé¥a. Likewise, in practice CLR is a run-time that works only

the middleware technology that is most well-suited for QognderWindows.

enabled DRE systems, our work (and Section 3 in this papgrjrhe use of _athual machine architecture is asource of non-
focuses on CCM. eterminism in DRE systems. In contrast, since CCM uses

CORBA as its underlying object model, it need not use a vir-
Although each of these component models differ from eatttal machine and hence is a more suitable platform for DRE
other, there are key similarities, particularly in terms of thesystems with stringent QoS requirements.

2.2 Common Capabilities in Component Mod-
els



3 Overview of the CORBA Component | sjgebar 1: Motivation for Using the CCM

Model (CCM) and CIAO , _ _
We base CIAO on the CCM since CORBA is the only COTS mijid-

The CORBA Component Model (CCM) is an OMG specif dleware that has made a substantial progress in satisfying thel QoS
cation that standardizes the development of component-bg requirements of DRE systems. For instance, the OMG has adagpted

g : : : the following DRE-related specifications in recent several years:
f':lppllcatlons. Since CCM uses ,CORBA as Its ynderlylng 9 e Minimum CORBA , which removes non-essential features
ject model, developers are not tied to any particular langug

| 3 ) from the full OMG CORBA specification to reduce footprint
or platform for their component implementations. The CC so that CORBA can be used in memory-constrained embed-

helps alleviate the problems with software composition ded systems.

separating some concerns and thus reducing coupling. S| e Real-time CORBA, which includes features that allow ap-
bar 1 explains why the CIAO project is based on CCM rath plications to reserve and manage network, CPU, and memory
than other popular component models, such as EJB or .NE resources predictably end-to-end.

e CORBA Messaging which exports additional QoS policies,
such as asynchronous invocations, timeouts, request priori-

ties, and queueing disciplines, to DRE applications.
e Fault-tolerant CORBA, which uses entity redundancy (

objects to support replication, fault detection, and failure |re-

covery.
These QoS specification and enforcement capabilities are essen-
tial to support DRE systems. Moreover, multiple interoperable and
robust implementations of these CORBA capabilities and services
are now available. Many of these CORBA implementations fare
freely-available in open-source format, which is conducive to|re-
search and whitebox evaluation. For these reasons, our work on
CIAO focuses on the CCM as the basis for QoS-enabled compo-
Container Container nent models to support DRE systems.

ComponentServer

External Interfaces

=

Facets

[o]e]

Receptacle

. Using adaptive strategies for creating components
. Configuring components

. Resolving dependencies automatically

. Maintaining component software

~N o oA~

Figure 2: Key Elements in the CORBA Component Model

Figure 2 illustrates the following key elements of the CCI\V/IVe also briefly outline how we have implemented these fea-

. L tures in CIAO and reference the material in Section 4 that de-
that we are implementing in CIAO: ; N .
P 9 scribes these key CIAO capabilities in more detail.

e Component, the basic building block

e ComponentHome, the component type manager 3.1 Identifying and Reusing Commonality in
e Container, the execution enivronment of a component Software Systems

e ComponentServer, the container manager

¢ ORB Services, middleware services Context. A family of applications exhibiting commonality

that can be refactored into reusable functional blocks.
The preceding discussion outlines the elements of the CCM
and CIAO, but does not motivate what these elements dog®fpiem. When applications are implemented in a mono-

more importantlywhy they are important. In the remaindefiic tashion, it is hard to identify and refactor common func-
of this section, we explain why these elements are needegid5jity. Choosing the right modulde boundaries is hard with-
CCM by explaining the key software development challenggs; anpropriate abstractions for describing functionality. Lack
they address, which include: of functional abstractions leads to unnecessary duplication
1. Identifying and reusing commonality in software systenasross different modules and prevents effective reuse.
2. Reducing coupling between components and underly@@M Solution — Component. Define a component ab-
middleware straction that serves as both the building block for the structure
3. Specifying componentinterconnections of software systems and as the candidate for demarcation of



modularity and functionality. A componentis an encapsulatbdving information from the perspective of not only a single
part of a software system that implements a specific serviceomponent, but of all components residing within that con-
set of services. A component has one or more interfaces thater.

provide access to its services. Applying the solution in CIAO.

A CCM component is a meta-type that includes collec-
tion of entities, ranging from implementation(s) of applicatiog
functionality in a particular programming language, a set of
properties associated with each such implementation. A C@dntext. A complex system consisting of individual compo-
component is both an extension and a specialization of tients that must interoperate with each other at run-time.
CORBA object meta-type that is defined by the original OMG
CORBA specification. The capabilities of a CCM componeptopiem. A component can provide functionality at differ-
are defined using extensions to the OMG Interface Definitigh¢ granularities. In software developed using object models, a
Language (IDL). one-to-one association typically exists between an object and
Applying the solution in CIAO. the roles played by the objeice., a user of an object gets all

the functionality and the artifacts of that functionality or noth-
3.2 Reducing Coupling Between Components 8. & o0 B o mponent fles can reslt i an
and Underlying Middleware unwieldy proliferation of interfaces that must be managed by
Context. Development of component software that relies atsers explicitly.
services provided by the middleware. CCM Solution — Ports. Define a port abstraction that can
expose multiple views of a componentto clients, based on con-

Problem. In earlier generation middleware that was basé%f(_t and functionality. CCM ports define a set of connection
solely on object models, programmers had to explicitly hanﬂ@/'ms between cpmponents to expose various roles suppprted
the complexity of connecting to and configuring the polici a component mterface. The ,CCM specifies the following
of underlying middleware. For example, before the advetMPeS of ports, Whlch.are a set of interfaces 'Fhat are both exter-
of CCM, CORBA developers had to explicitly bind to, an&al (to the user) and internal (to the underlying middleware):

configure the policies of, middleware entities, such as evens Facets which are distinct named interfaces provided by
channels, transaction services, and security services. Thesethe component. Facets enable a component to export a
manual programming activities resulted in the production of set of functional roles to its clients.
considerable, repetitive “glue-code” (which in some cases was Receptaclesare interfaces used to specify relationships
larger than that required for the usage of the functionality). between components. This interface allows a component
Likewise, these activities were error-prone since they required to accept references to other components, and invoke op-
application developers to have expertise with many low-level erations upon these references. Thus they enable a com-
details of the underlying middleware. ponent to use the functionality provided by other compo-
CCM Solution — Containers. Define a container abstrac- nents.
tion that provides the context in which components run. A e Event sources and sinkswhich define a standard in-
container acts as a bridge between the low-level middleware terface for the Publisher/Subscriber architectural pat-
and a component by configuring the underlying middlware tern [27]. Event sources/sinks are named connection
based on the policies defined in the component. A container points that send/receive specified types of events to/from
also provides the execution environment for componengs, one or more interested consumers/suppliers. These types
it defines interception points where various run-time policies of ports also hide the details of establishing and con-
(such as security and transaction) can be imposed and vali- figuring event channels [4] needed to support The Pub-
dated. Although the capabilities provided via the containers lisher/Subscriber architecture.
are used by the components, they shield component develop- Attributes, which are named values exposed via acces-
ers from detailed knowledge of the underlying middleware. sor and mutator operations. Attributes can be used to
An important consequence of decoupling components from expose the properties of a component that are exposed
containers is that the containers and the underlying middle- to tools, such as application deployment wizards that in-
ware can transparently perform optimizations, such as compo- teract with the component to extract these properties and
nent pooling, caching, and on-demand linking and load bal- guide decisions made during installation of these com-
ancing of components. Likewise, the lifecycle of a component ponents, based on the values of these properties. At-
can be managed by its container, which has the advantage of tributes typically maintain state about the component and

3 Specifying Component Interconnections



can be modified by these external agents to trigger an tadious and error-prone since it exposes the component devel-
tion based on the value of the attributes. opers to low-level details of the underlying middleware.

Applying the solution in CIAO. CCM Solution — Assembly. Define an assembly abstrac-
tion to characterize meta-data. This meta-data describes a list
3.4 Using Adaptive Strategies for Creating of compongnts present. in the assembly. Egch cc'Jm.ponent’s
Components meta-data in turn describes the features available in it, or the
features that it requires,e., a dependency. After an assem-
Context. Distributed software systems that consist of corly is defined the actual task of modifying the parameters
ponents with different lifetimes. need not involve manual writing of glue code. Instead, meta-
programming techniques [12] can be applied to configure the

Problem. Locating and/or creating components are (poteq:pmponent in a context dependent fashion s?nce the properties

tially) expensive operations. Different component types mightcOmponents and the code needed to configure these proper-

need creation strategies that differ from the other compont@s into the components are separated.

types depending on the lifetime of instances of each type. FofFCM assemblies are based on XML DTDs, which pro-

example, a component instance created as part of a datadiiean implementation-independent mechanism for describ-

transaction might have a different lifetime than one which 89 component properties. With the help of these XML tem-

controlling the trajectory of a missile. plates, it is possible to generate default configurations for
Strategies used in the creation of both will involve a corsCM components, which preserve the required QoS proper-

pletely different set of tradeoffs. Requiring client applicatiori&s and establish the necessary configuration and interconnec-

to know how to locate and/or create components is tedidif) among the components, as part of each assembly.

and introduces unnecessary depepdgncies betyvg_en C"ent%%'ﬂﬂ/ing the solution in CIAO.

the components they use. It also limits the flexibility of com-

ponent creation strategies by tightly coupling component cre-

ation with component use. _ 3.6 Resolving Dependencies Automatically

CCM Solution — Component homes. Define a compo-

nent home abstraction that is responsible for creating ap@ntext. Run-time deployment of distributed systems built

subsequently locating certain types of components in a s@iing components as the basic software building blocks.

ware system. Components reside in component homes, which

embody the Factory [28] design pattern. Component homes

shield clients from the details of creation strategies of comgooblem. Any non-trivial software system consists of a col-

nents and subsequent queries to locate a component instd@géon of components that have various dependencies, such as

This capability increases the flexibility of a system since afgliance on a particular group of components, order of compo-

changes in how a component is created does not affect clig/@gt initialization, or domain-specific requiremengsg re-

of the component. quired sensor rate in the avionics domain []). Resolving these

Applying the solution in CIAO. dependencies manually does not scale as the number of com-

ponents in a system grows. Likewise, ignoring or underspec-

ifying these dependencies can result in an unstable system if

the system run-time assumes that components are independent

Context. A distributed system where the same componeamd chooses to instantiate these in any order. For example, it

needs to be configured differently, depending the contextisnmperative that the wheels of an aircraft open up before the

which it is used. aircraft tries to land.

3.5 Configuring Components

CCM Solution — Deployment application. Define a de-

d ooti . . b hemi loyment application that is responsible for managing the de-
rameters and options increase, it can become overwhemingly jencies among a collection of interdependent components.
pomplex to configure applications consisting of a number g using meta-data which capture these dependency along
individual componentg. The prob!em stems not only frogf, mation about the interconnections expressed via CCM
the number of alternative combinations, but also from the db’%rts a deployment application can ensure that the compo-

parate mtqfacc_as for mod.n‘ymg thgse parameters. Object Mady: interconnections are established correctly and in the right
els have historically required application developers to manyj:

. : o o ~order.
ally write considerable application-specific “glue code” to in-
terconnect and configure components. This coding procesapplying the solution in CIAO.

Problem. As the number of component configuration p
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Context. Software systems that have been partitioned ind01 Reduction of Coupling Between Compo-
many individual components. nents and Underlying Middleware

As discussed in Section 3, CCM decouples components from

Problem. - Although partitioning a system into a collection ofyeir containers. This separation of concerns supports the fol-
individual components avoids the many problems dlscusseqio\w,ing two different programming models:

Section 3.1, it can be a maintenance problem. For example, the . . S .
person-hours needed to maintain complex systems increasés!mperat've programming, Wh'?h involves ghgractenz-
considerably when the number of invidual components in a Ing thg state of a program entity and spequmg aset of
system increases. This problem is aggravated by the fact that operatlpns.that modify the state. In CCM, |mperat|ye pro-
it is hard to determine the relationship between a component gramming is commonly used for components, which are

and its running context from just the presence of a component the_ basic entities in CC_M that implement the core appli-
in a live system. cation functionality. Clients are exposed to and interact

with interfaces offered by the components. These compo-
CCM Solution — Component servers. Define a Compo- nents are programmed imperativelg., the component
nent Server abstraction that is responsible for aggregating the developer must specify in detail the exact steps needed to
“physical” (i.e., implementation of component instances) en-  provide the functionality offered by the component.

tities into “logical” (i.e., functional) entities of a system. A e Declarative programming, which involves specifying
component server is a singleton [28] that plays the role of a the result as either a function of the input or as a rela-
factory to create containers. A component server is the equiv- tion between the input and the input. There is no notion
alent of a server process in the object models. Figure 3 shows of state or direction of evolution of computation i.e it is
the steps involved in deploying component software through bi-directional. In CCM, declarative programming can be

Component Servers in a top-down fashion. used for the containers and the application servers. For
example, the clients specify the set of actions needed

from the Container, but it is the job of the container to

eploymen T > compute and return the result.
E I p

Assel - bly CCM specifies the interaction of the above entities with

Asserly the other auxillary tools that perform activities like packag-
ing of components, visualization of components, deployment

of components, and the validation of components.
‘; 4.2 Context-insensitive Specification of Com-

ponent Properties
4.3 Validation of Component Configurations
4.4 Component Packaging and Deployment

5 Related Work

Figure 3: Component Deployment

Typically, a component server is assigned one high-leyel .
functionality within a complex system. During deployment,s Concludlng Remarks

smgle component SETVer per assembly is created on each *Pﬁ{o addresses key challenges that arise when applying com-
which reads the description of the meta-data from the assefll 1 odels to DRE systems by separating the various as-

bly and is responsible for initiating the creation of the syst . S
. : cts of DRE software systems and enabling application de-
hierarchy as well as teardown of the system hierarchy. Mul- :
elopers, system engineers, and end-users to select compo-

tiple containers can exist within a component server and e

. : . . nents that can then be composed to build complete systems.
component server is responsible for managing the lifecyle 0 .
. IR Lessons learned. Java-based component models require us-
containers created within it.

ing Java throughout the system, which might be infeasible ei-
Applying the solution in CIAO. ther because major portions of the existing system is written



in another language or the real-time guarantees provided[13y A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Proto-

Java based solutions are do not meet the requirements of DRE ¢0! Engine for Minimal Footprint Multimedia Systemslpurnal on Se-
NET-b d soluti ff, h bl lected Areas in Communications special issue on Service Enabling Plat-

systems. . T a?’e SO utlons.are' sutrer t e_ same prp €MS{orms for Networked Multimedia Systerasl. 17, Sept. 1999.

bec;ause of their Wmdowg:-ggntnc view of.dlstrlbuted objecﬁzﬂ T. Bray, J. Paoli, and C. M. Sperberg-McQueen (Eds), “Extensible

which precludes the possibility of developing a cross-platform’ markup Language (XML) 1.0 (2nd Edition)”.” W3C Recommendation,

solution, and requires software bridges between disparate sys-2000.

tems, leading to increasing the complexity of building cortis] M. D. Mcllroy, “Mass Produced Software Components,Piroceedings
posable DRE systems. of the NATO Software Engineering Conferen©et. 1968.

. . -[16] D. L. Parnas, “On the Criteria To Be Used in Decomposing Systems into
Future'work. The long goal of the Worlf described in thig Modules,”Communications of the ACMol. 15, Dec. 1972.
paper is to enable reflective ORB behavior and expose thﬁae
e

. D. L. Parnas, “Designing Software for Ease of Extension and Contrac-
ORB features so that they can be monitored and control tion,” IEEE Transactions on Software Engineeridgar. 1979.

eﬁeCtively by higher'leve|t00|3 and management applicatior[mlsa] D. L. Parnas, P. Clements, and D. Weiss, “Enhancing Reusability with

Information Hiding,”ITT Proceeding of the Workshop on Reusability in
Programming 1983.
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