
1

Overview of the CORBA Component Model

Wang, Schmidt, O’Ryan

Section VI Other Author(s) Nanbor Wang, Douglas C. Schmidt, and Carlos
O’Ryan

Chapter 38 E-mail Address nanbor@cs.wustl.edu, schmidt@uci.edu,
coryan@cs.wustl.edu

Pages Phone Number (314) 935-6355
Date Complete Dates Reviewed GH (5/24/00 12:35 PM), GH (5/25/00 11:10

AM), GH (6/23/00 4:20 PM), GH (8/23/00 2:06
PM), GH (8/30/00 11:24 AM), GH (9/5/00 4:13
PM)

Introduction

In today’s globally competitive software market, it is becoming increasingly important to develop, deploy,

and maintain complex, distributed software systems. Many companies have developed proprietary software

to enable the distribution of applications over a network, but this solution can be prohibitively expensive

and time-consuming over the lifecycle of complex software systems. Since 1989, the Object Management

Group (OMG) has been standardizing an open middleware specification to support distributed

applications. The traditional OMG Common Object Request Broker Architecture (CORBA) (OMG, 2000)

shown inFigure 1 enables software applications to invoke operations on distributed objects without

concern for object location, programming language, OS platform, communication protocols,

interconnections, or hardware (Henning and Vinoski, 1999).



2

Client
Object

(Servant)

IDL
Stubs

IDL
Skeletons

ORB Core

ORB
Interfaces

Object Adapter

in args

out args + return value

Operation ()

Figure 1: Traditional CORBA Object Model

To provide higher-level reusable components, the OMG also specifies a set of CORBA Object Services

that define standard interfaces to access common distribution services, such as naming, trading, and event

notification. By using CORBA and its Object Services, system developers can integrate and assemble large,

complex distributed applications and systems using features and services from different providers.

Unfortunately, the traditional CORBA object model, as defined by CORBA 2.4 (OMG, 2000), has the

following limitations:

1. No standard way to deploy object implementations. The earlier CORBA specification did not

define a standard for deployment of object implementations in server processes. Deployment

involves distributing object implementations, installing those implementations in their execution

context, and activating the implementation in an Object Request Broker (ORB). Thus, system

designers developedad hocstrategies to instantiate all objects in a system. Moreover, since

objects may depend on one another, the deployment and instantiation of objects in a large-scale

distributed system is complicated and non-portable.

2. Limited standard support for common CORBA server programming patterns. The CORBA family

of specifications provides a rich set of features to implement servers. For example, the CORBA

2.2 specification introduced thePortable Object Adapter(POA), which is the ORB mechanism

that forwards client requests to concrete object implementations. The POA specification provides



3

standard application programming interfaces (APIs) to register object implementations with the

ORB, to deactivate those objects, and to activate object implementations on-demand. The POA is

flexible and provides numerous policies to configure its behavior. In many application domains,

however, only a limited subset of these features is ever used repeatedly; yet server developers face

a steep learning curve to understand how to configure POA policiesselectivelyto obtain their

desired behavior.

3. Limited extension of object functionality.In the traditional CORBA object model, objects can be

extended only via inheritance. To support new interfaces, therefore, application developers must:

(1) use CORBA’s Interface Definition Language (IDL) to define a new interface that inherits from

all the required interfaces; (2) implement the new interface; and (3) deploy the new

implementation across all their servers. Multiple inheritance in CORBA IDL is fragile, because

overloading is not supported in CORBA; therefore, multiple inheritance has limited applicability.

Moreover, applications may need to expose the same IDL interface multiple times to allow

developers to either provide multiple implementations or multiple instances of the service through

a single access point. Unfortunately, multiple inheritance cannot expose the same interface more

than once, nor can it alone determine which interface should be exported to clients. (Henning and

Vinoski, 1999).

4. Availability of CORBA Object Services is not defined in advance. The CORBA specification does

not mandate which Object Services are available at run-time. Thus, object developers usedad hoc

strategies to configure and activate these services when deploying a system.

5. No standard object life cycle management. Although the CORBA Object Service defines a Life

cycle Service, its use is not mandated. Therefore, clients often manage the life cycle of an object

explicitly in ad hocways. Moreover, the developers of CORBA objects controlled through the life

cycle service must define auxiliary interfaces to control the object life cycle. Defining these

interfaces is tedious and should be automated when possible, but earlier CORBA specifications

lacked the capabilities required to implement such automation.



4

In summary, the inadequacies outlined above of the CORBA specification, prior to and including version

2.4, often yield tightly coupled,ad-hocimplementations of objects that are hard to design, reuse, deploy,

maintain, and extend.

Overview of the CORBA Component Model (CCM)

To address the limitations with the earlier CORBA object model, the OMG adopted the CORBA

Component Model (CCM) (OMG, 1999b) to extend and subsume the CORBA Object Model. The CCM is

planned for inclusion in the CORBA 3.0 specification, which should be released by the OMG during 2001.

The CCM extends the CORBA object model by defining features and services that enable application

developers to implement, manage, configure, and deploy components that integrate commonly used

CORBA services, such as transaction, security, persistent state, and event notification services, in a

standard environment. In addition, the CCM standard allows greater software reuse for servers and

provides greater flexibility for dynamic configuration of CORBA applications. With the increasing

acceptance of CORBA in a wide range of application domains (Schmidt, 1995; Levine, 1998; O’Ryan,

1999; OMG, 2000), CCM is well positioned for use in scalable, mission-critical client/server applications.

Component Overview

CCM components are the basic building blocks in a CCM system. A major contribution of CCM derives

from standardizing the component development cycle using CORBA as its middleware infrastructure.

Component developers using CCM define the IDL interfaces that component implementations will support.

Next, they implement components using tools supplied by CCM providers. The resulting component

implementations can then be packaged into an assembly file, such as a shared library, a JAR file, or a DLL,

and linked dynamically. Finally, a deployment mechanism supplied by a CCM provider is used to deploy

the component in acomponent serverthat hosts component implementations by loading their assembly

files. Thus, components execute in component servers and are available to process client requests.Figure

2 shows an example CCM component implementing a stock exchange and its corresponding IDL

definition.



5

Component
Stock_Exchange

Component
Stock_Exchange reference

(Supported interface)

Provided
interface
(facet)

facet
implementation

Stock_Quote

Sell_Offers

Buy_Offers

Event Sink
Implementations

Event
Sinks

SEC

Price_Change

Attributes

Event
Source

Receptacle

interface Sell, Buy;

// Define an equivalent, supported interfaces
component Stock_Exchange supports Sell, Buy {

provides Stock_Quote; // Facet

consumes Buy_Offers; // Event Sinks
consumes Sell_Offers;

publishes Price_Change; // Event Source
uses SEC; // Receptacle

... // Other definitions
};

Figure 2: An example CCM Component With IDL Specification

A CORBA object reference is an abstract handle referring to an instance of a CORBA object. An object

reference hides the location where the actual object resides and contains protocol information defined by

the CORBA specification, as well as an opaque, vender-specificobject keyused to identify a servant that

implements the object. To developer end-users, the format of a reference to aStock_Exchange

component is identical to the format of a reference to aStock_Exchange interface. Thus, existing

component-unaware software can invoke operations via an object reference to a component’sequivalent

interface, which is the interface that identifies the component instance uniquely. As with a regular CORBA

object, a component’s equivalent interface can inherit from other interfaces, called the component’s

supported interfaces. In our example, the supported interfaces perform transactions to buy and sell stock.

As mentioned earlier, it is inflexible to extend CORBA objects solely using inheritance. Thus, CCM

components provide four types of mechanisms calledportsto interact with other CORBA programming

artifacts, such as clients or collaborating components. These port mechanisms specify different views and

required interfaces that a component exposes to clients (Marvie, 2000). Along with component attributes,

these port mechanisms define the following capabilities of a component:

1. Facets: Facets, also known asprovided interfaces, are interfaces that a component provides,

yet which are not necessarily related to its supported interfaces via inheritance. Facets allow

component to expose different views to its clients by providing different interfaces that can be

invoked synchronously via CORBA’s two-way operations or asynchronously via CORBA’s

asynchronous method invocations (AMI) that are part of the forthcoming CORBA 3

specification. For instance, theStock_Quote interface in Figure 2 provides a stock price



6

querying capability to the component. CCM facets apply the Extension Interface pattern

(Schmidt, 2000) and are similar to componentinterfacesin Microsoft's Component Object

Model (COM) (Box, 1997).

2. Receptacles: Before a component can delegate operations to other components, it must obtain

the object reference to an instance of the other components it uses. In CCM, these references

are “object connections” and the port names of these connections are called receptacles.

Receptacles provide a standard way to specify interfaces required for the component to

function correctly. In Figure 2, theStock_Exchange component uses theSEC(Securities

and Exchange Commission) interface to function correctly. Using these receptacles,

components mayconnectto other objects, including those of other components, and invoke

operations upon those objects synchronously or asynchronously (via AMI).

3. Event sources/sinks: Components can also interact by monitoring asynchronous events.

These loosely coupled interactions, based on the Observer pattern (Gamma, 1994), are

commonly used in distributed applications (Pyarali, 2000). A component declares its interest

to publish or subscribe to events by specifyingevent sourcesandevent sinksin its definition.

For example, theStock_Exchange component can be an event sink that processes

Buy_Offers andSell_Offers events and it can be an event source that publishes

Price_Change events.

4. Attributes : To enable component configuration, CCM extends the notion ofattributes

defined in the traditional CORBA object model. Attributes can be used by configuration tools

to preset configuration values of a component. Unlike previous versions of CORBA, CCM

allows operations that access and modify attribute values to raise exceptions. The component

developer can use this feature to raise an exception if an attempt is made to change a

configuration attribute after the system configuration has completed. As with previous

versions of the CORBA specification, component developers must decide whether an attribute

implementation is part of the transient or persistent state of the component.

These new port mechanisms significantly enhance component reusability when compared to the traditional

CORBA object model. For instance, an existing component can be replaced by a new component that



7

extends the original component definition by adding new interfaceswithout affecting existing clientsof the

component. Moreover, new clients can check whether a component provides a certain interface by using

the CCMNavigation interface, which enumerates all facets provided by a component. In addition,

since CCM allows thebindingof several unrelated interfaces with a component implementation entity,

clients need not have explicit knowledge of a component’s implementation details to access the alternative

interfaces that it offers.

To standardize the component life cycle management interface, CCM introduces thehome IDL keyword

that specifies the life cycle management strategy of each component. Eachhome interface is specific to the

component it is defined for and manages exactly one type of component. A client can access thehome

interface to control the life cycle of each component instance it uses. For example, thehome interface can

create and remove components instances.

To use a component, a client first acquires thehome interface of the component.Naturally, there must be a

standard bootstrapping mechanism to locate thehome interface of a specific component. To simplify this

bootstrapping process, references to available componenthomes can be stored in a centralized database

accessed through aHomeFinder interface similar to the CORBA Interoperable Naming Service (OMG,

1998). A client first uses the standard CORBA APIresolve_initial_references to acquire the

object reference to aHomeFinder interface.HomeFinder enables clients to acquire a reference to the

desiredhome interface of the component. After a client acquires a reference to thehome interface of the

desired component, the client can invoke the appropriate factory operation (Gamma, 1994) to create or find

the target component reference.

Development and Run-time Support Mechanisms for CCM

CCM addresses a significant weakness in CORBA specifications prior to version 3.0 by defining common

techniques to implement CORBA servers. We now describe how CCM behaves from acomponent

developer’sperspective, allowing the developer to generate many types of server applications

automatically.



8

CCM extends the CORBA IDL to supportcomponents. Component developers use IDL definitions to

specify the operations a component supports, just as object interfaces are defined in the traditional CORBA

object model. A CCM component can compose together unrelated interfaces and support interface

navigation, as described in theComponent Overviewsection.

Components can be deployed in component servers that have no advance knowledge of how to configure

and instantiate these deployed components. Therefore, components need generic interfaces to assist

component servers that install and manage them. CCM components can interact with external entities, such

as services provided by an ORB, other components, or clients viaports, which can be enumerated using the

introspection mechanism. Ports enable standard configuration mechanisms to modify component

configurations.Figure 3 shows how the CCM port mechanism can be used to compose the components

of our stock exchange example.

Component
Stockbrokerquotes

buy

sell

F
a

ce
ts

Events
Offers Current prices

R
e

ce
p

ta
cl

e
s

A
tt

rib
u

te

Component
Stock_Exchangebroker

SEC

F
a

ce
ts

Events
Price Changes Offers

A
tt

rib
u

te

market

commit_transaction

uses

uses

Notification Service

Event Channel
Price Changes

Event Channel
Offer Prices

Process
Instructions Status

consumespublishes

consume
s publishes

clear_transaction

Figure 3: CCM Components Interact with One Another Through Port Mechanisms

The CCM port mechanisms provide interfaces to configure a component, enabling developers to set up

object connections, subscribe or publish events, and establish component attributes. For a developer to

assemble components into a software component infrastructure or integrate a component into an



9

application, however, there must be a mechanism to express a concrete configuration for a component; in

particular they need to designate what component(s) must be connected and how the events published and

received by a component relate to each other. Therefore, CCM defines a standard component configuration

interface, calledComponents::StandardConfigurator , to help component servers configure

components. Component developers can extend this configuration interface to specify how to improve the

flexibility of their component implementations.

A component’shome interface can optionally accept a component configuration object reference that

performs the component configuration on a component instance. All CCM components support

introspection interfaces, which these configurators use to discover the capabilities of components. The

configurator then constructs the component instance by making the necessary interconnections with other

components or ORB services.

CCM defines several interfaces to support the structure and functionality of components. Many of these

interfaces can be generated automatically via tools supplied by CCM Providers. Moreover, life cycle

management and the state management implementations can be factored out and reused. The CORBA

Component Implementation Framework(CIF) is designed to shield component developers from these

tedious tasks by automating common component implementation activities.

Many business applications use components to model “real world” entities, such as employees, bank

accounts, and stockbrokers (refer to Carey and Carlson, Chapter XX,``). These entities may persist over

time and are often represented as database entries. Components with persistent state are mapped to a

persistent data store that can be used to reconstitute component state whenever the component instance is

activated. For example, when a bank account component is instantiated, the CCM component model

implementation is able to reconstitute the previous status of the account from a database. The CIF defines a

set of APIs that manage the persistent state of components and construct the implementation of a software

component .



10

CCM defines a declarative language, theComponent Implementation Definition Language(CIDL), to

describe implementations and persistent state of components and component homes. As shown inFigure

4, the CIF uses the CIDL descriptions to generate programming skeletons that automate core component

behaviors, such as navigation, identity inquiries, activation, and state management.

CIDL
FILES

CIDL
Compiler

Interface
Repository

IDL
FILES

Component-
aware

IDL Compiler

Server
Skeletons

Client
Stubs

Component
Implementation

Skeletons

Component
Implementation

Source Code

C++
Compiler

C++
Compiler

Client
Source
Code

���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������
���������������������������������

����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������
����������������������������������

Component
Descriptions

Client
Program

Component
Program
(DLL)

Source Code

������������������������������
������������������������������
������������������������������

Generated Code

Executable Code

Figure 4: Implementing Components using the Component Implementation Definition Language

(CIDL)

Implementations generated by a CIDL compiler are calledexecutors. Executors contain the aforementioned

auto-generated implementations and provide hook methods (Gamma, 1994) that allow component

developers to add custom component-specific behavior. Executors can be packaged in so-calledassembly

files and installed in acomponent serverthat supports a particular target platform, such as Windows NT or

Linux, and programming language, such as C++ or Java. In addition, the CIDL is responsible for

generatingcomponent descriptorsthat define component capabilities, such as descriptions of component’s

interfaces, threading policy, or transaction policy, along with the type of services required by the

component being described.



11

Component implementations depend upon the standard CORBA Portable Object Adapter (POA) to

dispatch incoming client requests to their corresponding servants. However, unlike previous versions of

CORBA, the application developer is no longer responsible for creating the POA hierarchy, the CCM

component model implementation uses the component description to create and configure the POA

hierarchy automatically and to locate the common services defined by CCM. Moreover, components may

require notification viacallbackswhen certain events occur. To support the functionality outlined above in

a reusable manner, component servers instantiatecontainers, which perform these tasks on behalf of

components they manage. The CCMcontainer programming modeldefines a set of interface APIs that

simplify the task of developing and/or configuring CORBA applications. A container encapsulates a

component implementation and provides a run-time environment for the component it manages that can:

1. Activate or deactivate component implementations to preserve limited system resources, such as

main memory.

2. Forward client requests to the four commonly used CORBA Object Services (COS): Transaction,

Security, Persistent State, and Notification services, thereby freeing clients from having to locate

these services.

3. Provide adaptation layers (Gamma, 1994) for callbacks used by the container and ORB to inform

the component about interesting events, such as messages from the Transaction or the Notification

Service.

4. Manage POA policies to determine how to create component references.

Figure 5 shows the CCM container programming model in more detail.



12

Container

ORB

CORBA
Component

Component
Home

POA

Transaction

Security Notification

Persistent State

E
xt

er
n

a
l

In
te

rf
a

ce
s

Callback
Interfaces

Internal
Interfaces

Container

CORBA
Component

Component
Home

POA

E
xt

er
n

a
l

In
te

rf
a

ce
s

Callback
Interfaces

Internal
Interfaces

Figure 5: The CORBA Component Model's Container Programming Model

Clients directly access external component interfaces, such as theequivalent interface, facets, and thehome

interface. In contrast, components access the ORB functionality via their container APIs, which include the

internal interfacesthat the component can invoke to access the services provided by the container, as well

as thecallback interfacesthat the container can invoke on the component. Each container manages one

component implementation defined by the CIF. A container creates its own POA for all the interfaces it

manages.

CCM containers also manage the lifetime of component servants. A CCM provider defines a

ServantLocator that is responsible for supporting these policies. When aServantLocator is

installed, a POA delegates the responsibility of activating and deactivating` servants to it. Four types of

servant lifetime policies control the timing of activating and deactivating components:method, session,

component, andcontainer. Methodandsessionpolicies causeServantLocator s to activate and

passivate components on every method invocation or session, whereascomponentandcontainerpolicies

delegate the servant lifetime policies to components and containers, respectively.



13

In large-scale distributed systems, component implementations may be deployed across multiple servers,

often using different implementation languages, operating systems, and programming language compilers.

In addition, component implementations may depend on other software component implementations. Thus,

the packaging and deploying of components can become complicated. To simplify the effort of developing

components, CCM defines standard techniques that developers can apply to simplify component packaging

and deployment. CCM describes components, and their dependencies usingOpen Software Description

(OSD), which is an XMLDocument Type Definition(DTD) defined by the WWW Consortium.

Components are packaged in assembly files and package descriptors are XML documents conforming to

the Open Software Description DTD that describe the contents of an assembly file and their dependencies.

A component may depend on other components and may require these components to be collocated in a

common address space.

Related Technologies

CCM is modeled closely on the Enterprise Java Beans (EJB) specification (Thomas, 1998). Unlike EJB,

however, CCM uses the CORBA object model as its underlying object interoperability architecture and

thus is not bound to a particular programming language. Since the two technologies are similar, CCM also

defines the standard mappings between the two standards. Therefore, a CCM component can appear as an

EJB “bean” to EJB clients, and an EJB bean can appear as a CCM component by using appropriate

bridging techniques. EJB also support CORBA IIOP as its communication framework. We believe the

CCM and EJB are mutually complementary.

CCM and CORBA are also related to the Microsoft COM family of middleware technologies. Unlike

CORBA, however, Microsoft’s COM was designed to support a collocated component programming model

initially and later DCOM added the ability to distribute COM objects. The most recent version of

Microsoft’s technology, COM+, includes commonly used business services, such as the Microsoft

Transaction Service (MTS). The CORBA specification defines a bridging mechanism between CORBA

objects and DCOM components. However, unlike CORBA and EJB, COM+ is limited mostly to Microsoft

platforms.



14

Conclusion

The CORBA object model is increasingly gaining acceptance as the industry standard, cross-platform,

cross-language distributed object computing model. The recent addition of the CORBA Component Model

(CCM) integrates a successful component programming model from EJB, while maintaining the

interoperability and language-neutrality of CORBA. The CCM programming model is thus suitable for

leveraging proven technologies and existing services to develop the next-generation of highly scalable

distributed applications. However, the CCM specification is large and complex. Therefore, ORB providers

have only started implementing the specification recently. As with first-generation CORBA

implementations several years ago, it is still hard to evaluate the quality and performance of CCM

implementations. Moreover, the interoperability of components and containers from different providers is

not well understood yet.

By the end of next year, we expect that CCM providers will implement the complete specification, as well

as support value-added enhancements to their implementations, just as operating system and ORB

providers have done historically. In particular, containers provided by the CCM component model

implementation provide quality of service (QoS) capabilities for CCM components, and can be extended to

provide more services to components to relieve components from implementing these functionalities in an

ad-hocway (Wang, 2000b). These container QoS extensions provide services that can monitor and control

certain aspects of components behaviors that cross-cut different programming layers or require close

interaction among components, containers, and operating systems. As CORBA and the CCM evolve, we

expect some of these enhancements will be incorporated into the CCM specification.

References

• Object Management Group,The Common Object Request Broker: Architecture and Specification,

version 2.4, 2000.

• Object Management Group,Interoperable Naming Service Specification, 1998.

• M. Henning and S. Vinoski,Advance CORBA Programming with C++, Addison-Wesley

Longman, Reading, MA, 1999.



15

• D. C. Schmidt et. al.,Experience Developing an Object-Oriented Framework for High-

Performance Electronic Medical Imaging using CORBA and C++, Proceedings of the ``Software

Technology Applied to Imaging and Multimedia Applications mini-conference'' at the Symposium

on Electronic Imaging in the International Symposia Photonics West, San Jose, CA, 1995.

• D. Levine et. al.,Dynamic Scheduling Strategies for Avionics Mission Computing, Proceedings of

the 17th IEEE/AIAA Digital Avionics Systems Conference (DASC), Seattle, WA, 1998.

• C. O’Ryan and D. C. Schmidt,Applying a Real-time CORBA Event Service to Large-scale

Distributed Interactive Simulation, 5th International Workshop on Object-oriented Real-Time

Dependable Systems, Monterey, CA, 1999.

• I. Pyarali, C. O’Ryan, and D. C. Schmidt,A Pattern Language for Efficient, Predictable, Scalable,

and Flexible Dispatching Mechanisms for Distributed Object Computing Middleware,Proceeding

of the IEEE/IFIP “International Symposium on Object-Oriented Real-time Distributed

Computing”, Newport Beach, California, March 15-17, 2000.

• D. Box, Essential COM, Addison-Wesley, Reading, MA, 1997.

• E. Gamma et. al.,Design Patterns: Elements of Reusable Object-Oriented Software, Addison-

Wesley, MA, 1994.

• N. Wang et. al.,Applying Reflective Middleware Techniques to Optimize a QoS-enabled CORBA

Component Model Implementation, 24th Computer Software and Applications Conference, Taipei,

Taiwan, 2000a.

• N. Wang et. al.,Towards a Reflective Middleware Framework for QoS-enabled CORBA

Component Model Applications, Reflective Middleware Workshop, ACM/IFIP, Pallisades, NY,

2000b.

• Object Management Group, Inc.,CORBA Component Model Joint Revised Submission, 1999b.

• D. Schmidt et. al.,Pattern-Oriented Software Architecture: Patterns for Concurrency and

Distributed Objects, Vol. 2.Wiley & Sons, NY, 2000.

• Thomas, A. et. al.,Enterprise JavaBeans Technology, 1998.

URL: http://java.sun.com/products/ejb/white_paper.html



16

• Object Management Group, Inc.,CORBA Success Stories,2000.

URL: http://www.corba.org/success.htm

• R. Marvie, P. Merle, Jean-Marc Geib,Towards a Dynamic CORBA Component Platform, The 2nd.

Symposium of Distributed Objects & Applications, Antwerp, Belgium, September 2000.


