An Object-Oriented Framework for
Developing Network Server Daemons

Douglas C. Schmidt' and Paul Stephenson*
schmidt@ics.uci.edu and ebupsn@ebu.ericsson.se
T Department of Information and Computer Science, University of California, Irvine, CA 92717
tEricsson Business Communications, Inc., Cypress, CA 90630

An earlier version of thispaper appeared at the C++ World
Conference in Dallas, Texas, October 1993.

Abstract

Developing distributed applications that utilize multi-
processing and network services is a promising technique
for increasing system performance, scalability, and cost ef-
fectiveness. However, designing and i mplementing efficient,
robust, and extensible multi-threaded client/server applica-
tions is a complex and challenging task. The Servi ce
Confi gur at or (SVC- CON) framework described in this
paper provides an object-oriented infrastructure that simpli-
fies the development of dynamically configured, concurrent,
multi-service network daemons. The framework integrates
mechanisms for (1) local and remote interprocess communi-
cation, (2) 1/0-based and timer-based event multiplexing, (3)
explicit dynamic linking, and (4) multi-threading and multi-
processing to aid the creation of network servers that may
be updated and extended without modifying, recompiling,
relinking, or restarting executing daemons.

1 Introduction

This paper describes the architectural design and func-
tionality of an object-oriented (OO) framework caled the
Servi ce Confi gurator (SVC CON). Thisframework
provides a collection of reusable C++ components that sim-
plify the construction of network server daemons by en-
hancing the modularity, extensihility, reusability, and porta-
bility of their interprocess communication (IPC), 1/0O-based
and timer-based event multiplexing, service dispatching, and
concurrency mechanisms. The OO techniques and tools de-
scribed in this paper are currently being applied on a family
of client/server applications as part of the Ericsson Externa
Operating Systems (EOS) project. This project employs the
SVC- CONframework to enhance the configurationflexibility
and software component reuse of applications that monitor
and manage MD110[1] private-branch exchanges (PBXs) &f-
ficiently and portably across multiple hardware and software
platforms.

In addition to describing the genera structure and behav-

ior of the SVC- CON framework, this paper aso explores
the process by which the framework’ s reusable C++ compo-
nents“emerged” from careful anaysisof the common objects
and abstractionsthat exist in the domain of network servers.
Since most textbooks and network programming reference
guides present function-oriented models for designing net-
work applications, it is not surprising that developers of-
ten decompose their server daemons according to functions
rather than classes and objects. Therefore, the OO network
server design perspective presented in this paper may appear
somewhat “counter-intuitive” at first. However, our experi-
ence withthe strategies and tactics underlying the SVC- CON
framework offer compelling evidence that thelong-term pay-
offs of applying object-oriented techniques to network pro-
gramming significantly improves application modul arity, ex-
tensibility, and component reuse.

This paper is organized in the following manner: Sec-
tion 2 briefly summarizes the requirements and genera ar-
chitecture of the EOS PBX project; Section 3 describes the
SVC- CONframework’s primary festures and reviewsrelated
work; Section 4 outlinesthe C++ design and implementation
of the SVC- CON framework; Section 5 examines the struc-
ture of several EOS applications built using the SVC- CON
framework; and Section 6 presents concluding remarks.

2 Overview of the Ericsson EOS PBX
Project

Ericsson is developing a family of applications that monitor
and manage MD110 PBXs. These applications enhance the
functionality of aPBX (or cluster of PBXs) by providingend-
users with directory management, call center management,
and extension manager services. For example, the Directory
Management application allows a PBX operator to profile
incoming calls diverted from subscriber extensions, handle
subscriber messages, and perform other general subscriber
database queries (such as accessing visitor information and
recording facility conference room location and avail ability).
Likewise, theCall Center Management applicationallowsthe
staff of acall center (such as an airlinereservation center) to
assess the performance and quadlity of the call center by pro-
viding real-time graphical displays of system resources such

: Device
Adapter

T DIRECTORY
CALL CENTER MANAGEMENT
CLIENT MANAGEMENT SERVICES

SERVICES

: Event
Analyzer

MODULE
OBJECT

A DATABASE

=

DAEMON
PROCESS

* EXTENSION

MANAGEMENT
\/ SERVICES)

Figure1: The EOS Client/Server Architecture

as agents and call queues. Findly, the Extension Manage-
ment application alows a PBX administrator to view, add,
modify, or delete PBX extensionsinteractively.

The architecture, design, and implementation of the Er-
icsson EOS applications are influenced by severa general
requirements that necessitate support for (1) multiple appli-
cation services, (2) platform independence, (3) configura-
tion flexibility, and (4) efficient performance. For example,
multiple EOS application services must be available simul-
taneously to multiple remote users, potentially interacting
with one or more PBXs. A client/server architecture (illus-
trated in Figure 1) was selected to support this distributed
functionality in ascalable and relatively transparent manner.
Each PBX is directly attached to a server host via a seria
communication link, and one or more server daemons on the
host supply services required by the client applications. The
current EOS applications provide MD110 PBX communica-
tion services, database services, batch processing services,
extension administration services, and asynchronous signa
routing services (described in Section refusage).

Platform independence is another key requirement of the
EOS project. Applications are targeted for various config-
urations of host and network platforms, including Windows
NT, UNIX, Windows 3.1, and OS/2 running over TCP/IPand
Novel IPX/SPX networks. The project relies heavily upon
object-oriented design techniquesand C++ language features
to reducethe overall development effort and to improve soft-
ware component reuse across platformsand among thefamily
of related applications. In particular, the encapsulation and
flexibility offered by C++ classes, abstract base classes, and
parameterized types are used extensively tolocalize platform
dependencies.

Two additiona system requirementsinvolve configuration
flexibility and service performance. Since not all customers
require every EOS feature, applications may be deployed
with various combinations of services. It would be pos

sible (although highly undesirable) to manually construct
and deliver one or more client/server applications that are
(1) customized for the services required by a customer and
(2) optimized for the level of concurrency available on the
host platform [2]. However, such a “statically configured”
system would require the application service combination,
client/server division of labor, and host platform to be com-
pletely fixed during product deployment. Our experience
with earlier-generation EOS applications suggests that even
if thisinformation is available at the time of deployment, it
will certainly change in the future, often upon short notice.
Therefore, to maximizeinstallationflexibility and to take ad-
vantage of available multi-processing capabilities, the EOS
family of applications utilize SVC- CON framework features
that defer decisionsregarding both (1) the set of available ser-
vicesand (2) the partitioning of these services onto processes
and/or threads until as late as possible — e.g., initial server
startup-time or even during run-time. As described below,
the SVC- CONframework providessevera foundation classes
that support the deferred binding of services onto processes
and/or threads. Other object-oriented components used by
the EOS applications are described elsewhere [3, 4, 5].

3 The Service Configurator Frame-

wor k

The SVC- CON provides an object-oriented framework that
simplifies the development, configuration, and reconfigura-
tion of concurrent, multi-service network daemons. A dae-
mon is a statically or dynamically configured process that
executes in the “background” (i.e., disassociated from any
controlling terminal) on a host computer. The fundamen-
tal unit of configuration in the SVC- CON framework is the
service. Network daemons provide communication-rel ated
services that resolve distributed name lookups, access net-

work file systems, manage routing tables, and perform other
remote services such as printing, login, and file transfer. In
the EOS system, network daemonsorchestratethe server-side
directory management, call center management, and exten-
sion administration services.

Depending on configuration policies specified during sys-
tem ingtallation, the EOS applications run as one or more
multi-service network daemons that simultaneously support
multi pleremote servicesviaone or more OS processes and/or
threads. Explicit dynamic linking may be used to dynami-
caly (re)configure (i.e., insert and remove) these services
from a network daemon at run-time. Deferring the binding
of services to processes and threads until run-time increases
theflexibility, extensibility, and performance of network dae-
mons. Moreover, in certain cases, daemons that execute
within the SVC- CON framework may reconfigure their ser-
vices without being terminated and restarted. In addition, the
concurrency level of a network daemon may be fine-tuned
during installation or run-timeto match client applicationde-
mands and available OS multi-processing capabilities more
efficiently.

The SVC- CON framework integrates C++ language fea
tures (such as inheritance, dynamic binding, and parame-
terized types) and advanced OS mechanisms (such as the
threads and explicit dynamic linking facilities available in
SVR4 UNIX [6] and Windows NT [7]) to facilitate the de-
vel opment of network clientsand serversthat may beupdated
and extended without modifying, recompiling, relinking, or
restarting the running daemons. In addition, it provides a
suite of reusable componentsthat extend the functiondity of
conventional port monitoring and service dispatching tools
such as the UNIX System V Release 4 (SVR4) | i st en
facility [8] and BSD i net d superserver [9].

The framework’s components also reduce the effort re-
quired to develop network daemons. For instance, the
SVC- CON framework’s components simplify development
by consolidating common server activities (such as I/O-
based and timer-based event multiplexing, service dispatch-
ing, subroutine tracing and status logging, daemonization,
service directory functionality, and various process, thread,
and linking strategies) into reusable C++ foundation classes.
These classes include the |PC_SAP object-oriented transport
interface [3] and the React or 1/O-based and timer-based
event multiplexing class library [4, 5] (both of which en-
hance application robustness by accessing OS loca and re-
mote | PC mechanisms viatype-secure interfaces, rather than
the weakly-typed “descriptor-based” underlying system call
interfaces).

3.1 Conventional Port Monitoringand Service
Dispatching Frameworks

This section describes several conventional frameworks for
developing, configuring, and reconfiguring network dae-
mons. Section 3.2 comparesthefeatures of theseframeworks
with those of the SVC- CON framework.

3.1.1 Single-Service Daemons

In early versions of UNIX, standard network services such
asremote filetransfer (f t p) and remotelogin (t el net and
r1 ogi n) ran as single-service daemons that were initiated
at OS boot-time[10]. The services offered by these daemons
were configured statically at compile-time and/or static link-
time. Asillustrated in Figure 2 (1), a separate program was
typically writtento implement each service. Each serviceran
in a separate process, though a master daemon might spawn
one or more slave processes to perform certain long-duration
services externally in a separate address space on behalf of
itsclients.

Asthe number of system daemons grew steadily, however,
this" statically configured, single-serviceper-process’ design
approach revealed severa significant limitations. First, OS
process management overhead increased since each single-
service daemon consumed a process table slot, even though
it was often idle. Second, each daemon redundantly reim-
plemented the same daemonization and transport endpoint
initialization code. Third, the flexibility and extensibility of
statically configured daemons was limited since adding or
deleting services required modifying, recompiling, and re-
linking existing code. Moreover, running daemons had to be
terminated and restarted explicitly after making any changes.
Finally, administering and monitoring the security and per-
formance aspects of each daemon was handled in an ad hoc
manner [8].

3.1.2 Multi-Service Port Monitor and Service Dis
patcher Frameworks

Multi-service port monitor and service dispatcher frame-
works were devised to aleviate the limitationswith single-
service daemons described above. Two widely available
frameworksare the Internet superserver i net d (which orig-
inated with BSD UNIX [9]) and the | i st en port monitor
facility (distributed as part of the Service Access Fecility
withSVR4UNIX [8]). I netdandl i st en integrate many
single-service daemonsinto one administrativeframework in
order to (1) reduce unnecessary process overhead by spawn-
ing daemons “on-demand,” (2) simplify daemon develop-
ment by automatically performing daemonization and trans-
port endpoint initialization, (3) allow external servicesto be
changed without modifying source code or terminating an
executing daemon process, and (4) consolidate the adminis-
tration of network servicesviaastandard set of configuration
filesand command-line utilities.

Figure2 (2) illustratesthe general structure of daemon dis-
patcher toolssuch asi netd and | i st en. Both tools use
I nternet-domain port numbers to demultiplex client requests
and dispatch them to either (1) statically named internal ser-
vices or (2) staticaly and/or dynamicaly named externa
services (daemon-related terminology is defined more thor-
oughly inacompanion paper avail ableinthe 1993 C++World
conference proceedings [11]). For example, thei net d su-
perserver operates in the following manner:

INTERNAL INTERNAL
SERVICE SERVICE

v exrerst (T[T

T

MASTER

B
T T
R

SERVIC| EXTERN.

EXTERNAL

EXTERNAL SERVICE " ISIIEIII{I\?If EXTERN

SERVICE AT SERVIC| EXTERNAL
SERVICE

(1) SINGLE-SERVICE DAEMONS (2) MULTI-SERVICE DAEMON

Figure 2: Single-Servicevs. Multi-Service Daemons

(1) INETD (2) LISTEN (3) SERVICE CONFIGURATOR

INTERNAL
SERVICES

services | T T T T T T ‘

pallQ

REPOSITORY

SERVICE
CONFIG Reactor

EXTERNAL
SERVICES

= EXTERNAL
EXTERNAL SERVICES
SERVICES

STATICALLY DYNAMICALLY THREAD ——
LINKED SERVICE LINKED SERVICE PROCESS IS-PARENT-OF
COMM. PORTS

Figure 3: Alternative Port Monitoring and Daemon/Service Dispatching Frameworks

1. When invoked at OS boot-time, i net d reads service
configuration information stored in the i net d. conf
file

2. For each service in the configuration file, i net d per-
forms the “socket/ bi nd/ |i st en” socket initial-
ization sequenceto register thewelI-known port number
of the service with the OS.

3. I net d thenentersasel ect loop that waitsfor oneor
more client connection requests or datagrams to arrive
at the port of any registered services. Datagrams arriv-
ing for statically named internal services (suchasecho
and dayt i me) are performed internally by the master
i net d process. Connection requests arriving for ex-
ternal services (suchasftp or rl ogi n) are handled
by accept 'ing the connection, f or k’ing a new pro-
cess, and exec’ing the appropriateexecutabl e program
to perform the service on behaf of the client.

Although i netd’s internal services (such as echo
and dayti ne) are fixed a datic link-time, the mas-
ter i net d daemon permits dynamic reconfiguration of its
external services (such as ftp or tel net). For in-
stance, when sent the SI GHUP signal, the i net d deae
mon rereads its i netd. conf file and performs the
socket / bi nd/ | i st ensequencefor al serviceslistedin
that file. However, sincei net d does not support dynamic
reconfiguration of internal services, any newly listed services
must still be processed by spawning slave daemonsviaf or k
and exec. Therefore, althoughi net d and | i st en? over-
come many limitations with single-service daemons, they
still possess severa shortcomings that are addressed by the
SVC- CONframework described bel ow.

Another network service management facility that recently
become available isthe Service Control Manager (SCM dis-
tributedwith WindowsNT [7]. Unlikei net dandl i st en,
SCMisnot aport monitori.e., it doesnot provide built-insup-
port for listening to a set of 1/0 ports and dispatching server
processes “on-demand” when client requests arrive. |nstead,
it providesan RPC-based interfacethat allowsthemaster SCM
process to automatically initiate and control (i.e., pause, re-
sume, terminate, etc.) administrator-installed services (such
asftpandt el net) that typically run as separate threads
within either a single-service or amulti-service daemon pro-
cess. Each ingtalled service is individualy responsible for
configuring the service and monitoring any communication
endpoints (which may be more genera than 1/0O ports, e.g.,
named pipes). Note that the SVC- CON framework may be
utilized within the SCM environment to provide additiona
support for dynamic daemon configuration, port monitoring,
and service dispatching.

1The SVR4 | i st en port monitoring facility is similar to i net d,
though it only supports connection-oriented protocols accessed via TLI
and STREAMS, and does not provide internal services. However, unlike
i netd, |isten supports “standing-daemons’ by passing initialized file
descriptors via STREAM pipesfromthel i st en processto a previously-
registered standing-daemon.

3.2 Primary Features of the Service Configu-
rator

This subsection outlines the primary features offered by the
SVC- CONframework and comparesthesefeatureswith those
provided by i netd and | i st en. Figure 3 illustrates the
major architectural festures of the three frameworks. In gen-
eral, the features of the SVC- CON framework are designed
to (1) increase configuration flexibility and daemon extensi-
bility, (2) improve performance, and (3) reduce devel opment
effort for concurrent, multi-service network daesmons.

3.2.1 Increase Flexibility and Extensibility

The SVC- CON framework enhances configuration flexibility
and network daemon extensibility by decoupling and defer-
ring the point at which services are bound to OS processes
and/or threads. In particular, servicesmay be configured into
the SVC- CON framework either (1) statically (at compile-
time or link-time) or (2) dynamically (when a daemon first
begins executing or even whileit isrunning). Moreover, the
choice between these two aternatives may be deferred. For
example, services may be partitioned and/or migrated be-
tween clients and servers during or after installation, thereby
enabling aflexible division of labor on the placement of ser-
vices within a distributed application.

The SVC- CONframework provides an object-oriented in-
terfaceto OSexplicit dynamiclinkingfeatures. Asdescribed
in Section 4.1, this interface facilitates the dynamic con-
figuration and reconfiguration of network daemon services,
often without requiring the modification, recompilation, or
relinking of existing code. Dynamic linkingalso providesan
opportunity to reconfigure services without terminating and
restartingadaemon. | net dandl i st en, ontheother hand,
provide a more limited form of dynamic configuration that
does not support reconfiguration of internal services at run-
time. Instead, adding new interna services requires modify-
ing, recompiling, relinking, and restartingi net d (I i sten
does not support internal services).

3.2.2 Improve Performance

By deferring the binding of servicesto processes and threads,
applications may postpone certain decisions until run-time,
when additional information is available to guide the selec-
tion of more efficient daemon configurations. For instance,
customizing or reconfiguring daemonsduring or after startup-
time helps to account for factors such as (1) the class of
service required by applications (e.g., reliable vs. unrdli-
able and real-time vs. non-real-time), (2) the type of traffic
generated by applications (e.g., bursty vs. continuous and
short-duration vs. long-duration), (3) the class of protocol
that implements the application services (e.g., connection-
oriented vs. connectionlessvs. request-response), (4) certain
static and dynamic characteristics of the hardware and oper-
ating system architecture (e.g., message passing vs. shared
memory, process and thread management overhead, number

of CPUs, and current end-system load), and (5) the under-
lying network environment (e.g., high-speed vs. low-speed
and large frame size vs. small frame size) [12].

The SVC- CON framework automates many of the steps
required to (re)configure network daemons and helps de-
velopers navigate through the diverse set of factors that
affect the configuration of network daemons. For ex-
ample, a “concurrent/multi-service” daemon configuration
may be efficient for an OS that effectively utilizes multi-
ple CPUs. In this case, each application service may be
mapped onto a separate process or thread. On the other hand,
an “iterative/single-service” configuration may be more suit-
able for certain combinations of OS platform and applica-
tion service characteristics. For instance, on a uni-processor
platform, daemon efficiency may be improved by executing
short-duration, request/response servicesin asingle-threaded
process, due to the reduction in scheduling and context
switching overhead [13].

The SVC- CON framework aso employs OS mecha
nisms such as dynamic linking, multi-threading, and multi-
processing to improve performance. Explicit dynamic link-
ing and threads support the (re)configuration of concurrent
internal services without spawning a new OS process. This
helps improve the performance of multi-service daemons
that perform short-duration, request-response services. Con-
versaly,i net dandl i st en spawnanew processto achieve
similar dynamic service invocation functionaity. However,
thisinvocation techniquemay betoo costly for short-duration
services, due to the overhead of f or k and exec.

Dynamic linking also helps reduce overal host memory
utilization, which may improve aggregate end-system per-
formance [14]. For example, dynamically linked services
are not fully loaded, resolved, or relocated into the address
space of an executing daemon until they are first referenced,
which often reduces adaemon’s consumption of primary and
secondary storage resources. Moreover, to further reduce
run-time memory utilization, a dynamicaly linked service
may be shared between multiple network daemons running
simultaneously [6]. Inaddition, services may bedynamically
unlinked from daemons when they are no longer required,
thereby releasing resources for subseguent use by other ap-
plications and daemon services.

3.2.3 Reduce Development Effort via Reusable Compo-
nents

The SVC- CON framework provides a collection of reusable
components that implement the following common founda-
tion services used by network daemons and distributed ap-
plications:

e Event Multiplexingand Service Dispatching: Network
server daemons often multiplex different types of 1/0 events
sent or received simultaneoudly from one or more clients on
multiple communication ports. The SVC- CON framework
provides port multiplexing and service dispatching function-
ality viaaC++ classlibrary called theReact or [4, 5]. The

React or provides a set of extensible, reusable, and type-
secure C++ classes that portably encapsulate and enhance
the sel ect and pol | 1/O multiplexing facilities. The
React or integrates the multiplexing of synchronous and
asynchronous 1/0-based events together with timer-based
events. When events occur, the React or automaticaly
dispatches “call-back” member functions of previously reg-
istered objectsto perform application-specified services. The
React or enables devel opersto concentrate on higher-level
daemon design and functionality issues, rather than reimple-
menting the samelower-level event detection and dispatching
code for each new network daemon.

e Automatic Service Configuration: To help automate
many daemon configuration steps, the SVC- CON providesa
standard model for installing application services into net-
work daemons. This configuration model leverages off no-
tations and tools that (1) identify the service(s) to activate,
(2) statically or dynamicdly instantiate, link, and initiaize
C++ object(s) that implement theservice(s), (3) notify theun-
derlying OS transport provider to bind communication ports
and network addresses for the object(s), (4) register the ob-
ject(s) with an instance of the React or, and (5) arrange
to run the service via one or more processes and/or threads.
The SVC- CON framework’s configuration model is flexible
enough to support dynamic and static configuration, as well
as hybrid approaches that provide both configuration meth-
ods simultaneously. Section 4.3.1 examines the SVC- CON
framework’s service configuration model in detail.

e Process and Thread Generation Strategies: Severd
SVC- CON framework facilities implement on-demand, ea-
ger, and lazy process and thread generation strategies. In
general, these strategies help to further decouple the ser-
vices offered by network daemons from the OS processes
and threads that execute the services. In particular, they
enable daemons to adaptively tune their concurrency levels
to match client demands and available OS parallelism. For
example, on-demand generation spawns a hew process or
thread in response to the arriva of client requests. Eager
generation pre-spawns one or more OS processes or threads
at daemon creation time to reduce service startup overhead
and improveresponsetime. Conversely, lazy allocation does
not immediately spawn a process when a client request is
received. Instead, a timer is set and the request is handled
“iteratively” by the dagmon. Only if the timer expires is
a hew process spawned to continue processing the service
concurrently [13].

e Distributed Logging: Network daemons are often dif-
ficult to develop and debug since diagnostic output appears
in different windows and/or on remote host systems. To
simplify network daemon debugging, the SVC- CON frame-
work supports a distributed logging facility (described and
implemented in [4, 5]). This logging facility coalesces di-
agnostic output (potentialy sent from multiple daemons on
multiplehosts) at adesignated locationin alocal and/or wide
areanetwork. Thedistributedloggingfacility utilizesseveral

levelsof “many-to-one” multiplexing. For example, applica
tionssend logging recordsviananed pi pes or nessage
gueues to aclient logging daemon running on their loca
host machine. Each client daemon timestamps and forwards
thelogging recordsviaTCP/IPconnectionstoaremote server
logging daemon running on a designated server host. This
concurrent server daemon processes the logging records and
displaysthem on one or more output devices (such asprinters,
persistent storage devices, and/or monitoring consol es).

¢ Function-Call Tracing: To further aid debugging, the
SVC- CONframework provides afunction-cal Tr ace class
that interoperates with the distributed logging facility. The
Tr ace class enables developers to monitor the calling se-
guenceof any or all stand-a onesubroutinesor member func-
tions at run-time. A simple regular-expression-based filter
tool automatically instruments application source code with
Tr ace object definitions. At run-time, output from the con-
structor and destructor of Tr ace objects visualy indicates
the function calling sequence. This output is indented ap-
propriately to illustrate the current call-chain nesting level
as functions are entered and exited. The creation and termi-
nation semantics of C++ simplify function-call tracing since
Tr ace object destructors are automatically invoked regard-
less of the point that the function returns. In addition, the
SVC- CONframework enables tracing to be toggled on or off
viasignals or other asynchronous notification events gener-
ated by auser.

e Daemonization: The daemonization utility providesnet-
work servers with robust capabilities to execute and survive
as daemon processes executing “in the background.” These
daemonized processes do not automatically receive events
generated from aterminal nor do they receive hangup indice-
tionsif/when their parent process exits. Asdescribed in[10],
daemonization under UNIX typicaly involves (1) dynam-
ically spawning a new process, (2) closing all unnecessary
filedescriptors, (3) changing the current working directory to
the root directory, (4) resetting the file access creation mask,
(5) disassociating from the controlling process group and the
controlling terminal, and (6) ignoring termina 1/O-related
signals.

In general, component reuse in the SVC- CON framework
is enhanced by (1) accessing framework services via exten-
sible object-oriented interfaces written in C++ and (2) sep-
arating higher-level application processing policiesthat per-
form client requests from lower-level daemon mechanisms
(such as event demultiplexing and dispatching, logging and
tracing, daemonization, and various process and thread gen-
eration strategies). In contrast, bothi netd and | i st en
alow only course-grain “black-box” reuse of their general
servicedispatching facilities, without encouraging morefine-
grain reuse of their internal components. For example, the
standard BSD i net d implementationiswrittenin C and is
characterized by global variables, lack of information hiding,
and afunctional decomposition that complicates direct reuse
of itsinterna components.

4 The Server _Daemon Design and Im-
plementation

This section outlines the object-oriented design and im-
plementation of the SVC- CON framework’s primary com-
ponents and describes the sequence of steps performed to
develop and configure a daemon’s services statically and/or
dynamically. In addition to examining the interfaces and
genera functionality of the framework’s components, the
strategic decisions that yiel ded the decompositionillustrated
in Figure 4 are also discussed.?

The SVC- CON framework was developed using several
object-oriented design techniques and C++ language fea
tures. Domain analysis on the typica attributes and oper-
ations performed by network daemons yiel ded the following
class componentsin the SVC- CON framework:

e The Servi ce_Cbj ect inheritance hierarchy (Fig-
ure4 (1)) —thishierarchy ensuresthat devel opersspecify
theinformation necessary to automate dynamic linking,
initialization, port multiplexing, and dispatching of an
application service at run-time,

e The Servi ce_Reposi tory class (Figure 4 (2)) —
this class provides an object manager that coordinates
individual and/or collective access to active servicesin
adaemon.

e The Servi ce_Confi g class (Figure 4 (3)) — this
“framework integration class’ orchestrates the configu-
ration and reconfiguration of statically/dynamically con-
figured, iterative/concurrent, single/multi-service net-
work daemons.

Though difficult to quantify precisely, it appears rather un-
likely that a functional design approach would have yielded
aset of reusable componentsthat offer such a high degree of
modularity and extensibility to distributed applications.

4.1 The Service Object Class

The Servi ce_Cbj ect class (illustrated in Figure 4 (1))
forms one part of a multi-level hierarchy of types related
by inheritance. This hierarchy decouples the application-
specific portions of a network service from the underlying
mechanisms provided by the framework that link, register,
and dispatch the service at run-time. This separation of con-
cerns minimizes the effort required to add and/or remove
of services to and/or from a network daemon. Each class
in this hierarchy performs a set of well-delineated tasks for
application devel opers, as described bel ow:

e The Event_Handler Abstract Base Class: The root of
theinheritancehierarchy isdefined by theEvent _Handl er

2These componentsand their relationships are illustrated via Booch no-
tation [15]. Dashed clouds indicate classes and directed edges indicate
inheritancerel ationshipsbetween these classes. Solid cloudsindicate oneor
more class objects and undirected edges indicate composition relationships
between these objects (cf. Figure 6).

4 —— PN R
{ Client P e T R RN ~os
{ Listener | [Service', <Slf)mk \ (Serwce \ -) Serv;ce ! ¢ SERVICE-
\ /Manager \ / Spawn) o Confi / SPECIFIC_)
SERVICE-) I()pen() - /,‘97/ - === fRepostory\ (\ SERVICE- \l ; WW {/ SPECIFIC.
SPECIFIC ! reagf{ /’ < open() (SPECIFIC_1 [gpen() o~
~____/ Yinsert() | S~ . process dwectnves())
ST //Lgiy/W(/ find() 0\\ ;) > load szrwce() e()(/ =
N remove / suspend_servic / Rt
P LN \ Eager ' ; Spawn N h ; resume_service() | ~"Service I
/Service) | Spawn . unload_service() | > Object >,
! Obi ect \‘ run_event Ioop()\ S~ T
! ject | \ daemomze() n
\ suspend ¥\
\ re;.?meé)/
N - P
0 Sz 1
'IOb'rect ; e SerV|ce /
_____) N
y/Event Y \Tiyig— . \Repostory
~ Handler\ fi%g,’ 'Repostory\) / REACTOR\ N
7 handle_input() / lterator
‘ , fandie . exie;%.éno j \\Vf/ Sopen) ¢ // [\ ?é’gﬂ)er handler()) -~
| s Sy Jres) ool 11 Event |
Ih%fé et 0, \, getnext() / \ cancel_timer() 9 ni Handl_ef >
lget fd) - <8dVa“°90' \ handle_events() | S
\ e S e T
1 Service_Object 2) Standard Subclasses 3) The Service Repositor 4) The Service Confi
) I ¢ > | >
Inheritance Hierarchy of Service Object Class Class
\§ J
INHERITS HASA FRIEND ABSTRACT
|neemrs Sasa) @ 7 ARSTRAS

Figure4: The Server_Daemon Class Components and their Rel ationships

abstract base class. This base class supplies an event dis-
patching interface that consists of virtual member functions
for (1) synchronous input, output, and exception events
and (2) timer-based events. In the SVC- CON framework,
application-specific subclasses indirectly inherit and refine
this functionality through the Ser vi ce_Obj ect derived
class. This derivation process results in composite ob-
jects that are subsequently registered with an instance of
the React or [5]. The React or then extracts the under-
lying I/O descriptor from the Event _Handl er portion of
a composite object and passes it dong with other descrip-
torsto sel ect or pol I /O demultiplexing system cdlls.
When events associated with a registered object occur at
run-time, the React or automatically dispatches the appro-
priate member function(s) of the object, which then perform
application-specific services.

e The Service Object Abstract Derived Class. The
Servi ce_Cbj ect class exports an abstract interface con-
sisting of three pure virtual functions [16] that impose a
“contract” between the genera -purpose foundation classes
provided by the SVC- CON and application-specific services
utilizing these classes. The use of pure virtua functions
ensures that an application service supplies the SVC- CON
framework with the appropriate information necessary to
link, initialize, identify, and unlink a service a run-time.
During devel opment, appli cation-specific subclasses must
implement thei ni t functionto perform initialization oper-
ations when an instance of a composite Ser vi ce_Obj ect
first comes into existance. Likewise, during service initial-
ization, i ni t serves as the “entry-point” to an application
service, (i.e, it is passed a pair of “ar gc/ar gv”-style pa-
rametersthat are similar to those passed tothe mai n function
of a stand-alone executable program). The f i ni member

functioniscalled automatically to perform any necessary ter-
mination operationswhen aSer vi ce_Cbj ect isunlinked
and removed from adaemon at run-time. Thei nf o member
function returns a humanly-readable string that documents
the functionality and addressing information of a service.

e Application-Specific Concrete Derived Subclasses:
The Servi ce_bj ect and Event _Handl er are both
“abstract” classes since they contain pure virtua functions.
Therefore, devel opers must derive concrete subclasses (such
astheSi gnal _Rout er subclassdescribedin Section5) that
define the functionsinherited from the abstract base classes
and implement the application-specific service functionality.
Application-specific classes are a so responsible for supply-
ing the necessary “encode-state” and “decode-state”’ conver-
sion functions necessary to enable service migration [17].

4.2 The Service Repository Class

The SVC- CON framework supports the configuration of
both single-service and multi-service network daemons.
To simplify administration, it is often necessary to in-
dividually and/or collectively control and coordinate the
Servi ce_Cbj ect s that comprise a daemon’s services.
The Servi ce_Reposi tory is an object manager that
coordinates local and remote queries and updates involv-
ing the services offered by a SVC- CON-based application.
A search structure within the object manager binds ser-
vice names (represented as ASCII strings) with instances
of composite Ser vi ce_Obj ect s (represented as C++ ob-
ject code). A service name uniquely identifies an instance
of aSer vi ce_Ohj ect stored in the repository. As shown
in Figure 4 (2), each entry in the Ser vi ce_Reposi tory

|| Symbol | Description

dynamic

Dynamically link and enable a service

static

Enable a statically linked service

remove

Completely remove a service

suspend

Suspend service without removing it

resume

Resume a previously suspended service

stream

Configurea Stream into a daemon

Table 1: Service Config Directives

contains a pointer to the Ser vi ce_Cbj ect portion of an
application-specific C++ derived class.

Figure 4 (2) also depicts the member functions that load,
enable, disable, reenable, or remove Ser vi ce_Cbj ect s
from a daemon statically and/or dynamically. For dynami-
caly linked Ser vi ce_Obj ect s, therepository aso stores
a handle to the underlying shared object. This handle is
used to unlink and unload a Ser vi ce_Obj ect from a
running daemon when its services are no longer required.
In addition, an iterator class is provided to visit every
Servi ce_(bj ect in the repository without compromis-
ing data encapsulation. For example, a complete listing of
all currently enabled daemon services may be obtained by
caling the i nf o virtua function on each enabled entry in
the Ser vi ce_Reposi t ory. Thisiterator feature is used
by the standard Ser vi ce_Di r ect ory service described
in Section 4.3.2 below.

4.3 The Service Config Class

Asillustrated in Figure 4 (3), the Ser vi ce_Conf i g class
is the central abstraction in the SVC- CON framework. This
class integrates the other foundation services (such as the
Servi ce_Reposi tory and the React or) to facilitate
the static and/or dynamic configuration of concurrent, multi-
service network daemons. The following subsections out-
line the configuration and run-time activities performed by
Ser vi ce_Confi g classfunctions.

4.3.1 Server Daemon Configuration Activities

This subsection briefly describes the standard daemon con-
figuration process supported by the SVC- CON framework.
Alternative mechanisms for statically or dynamically insert-
ing and/or removing services from a daemon are also exam-
ined. In addition, the steps used to implement the various
mechanisms are also outlined.

e Thesvc.conf Filee Thesvc. conf fileistheheart of the
SVC- CON configuration and reconfiguration process. Each
instance of the Ser vi ce_Conf i g class may be associated
with a distinct svc. conf configuration file that charac-
terizes essentia attributes of the services offered by a dae-
mon. This file smplifies both service administration and
daemon development. Service administration is simplified
by consolidating service installation parameters into a sin-
gle location. Likewise, daemon development is simplified

by decoupling the configuration and reconfiguration mecha-
nisms provided by the framework from the policies specified
in the svc. conf file The svc. conf file is consulted
when a new instance of a daemon isfirst started. Thisfileis
also when arunning daemon receives either a pre-designated
externa signa or IPC request from a remote management
facility.

Figure 5 uses extended-Backus/Naur Format (EBNF) to
describe the primary syntactical elements of service config
entriesusedinasvc. conf file. Each linein thefile begins
withaservice config directive that indicatesthe configuration
activity to perform (Table 1 summarizes the valid service
config directives). For example, the dynamic directive is
followed by a service identifier:

dynanmi c /svcs/Logger.so: _alloc() Logger -p 7001

/ svcs/ Logger . so: _al | oc() isaserviceidentifier that
indicates the pathname of a shared object file to dynamically
link (/ sves/ | ogger), as well as the name of the associ-
ated Ser vi ce_Obj ect (or in this case, a function called
-al | oc that dynamically alocates a Ser vi ce_Qbj ect).
The remaining contents on the line (Logger -p 7001)
represent a service-specific set of configuration parame-
ters. These parameters are passed to the i ni t function
of the service as ar gv-style command-line arguments. The
ar gv[0] argument (Logger) specifies the service name
that will identify the corresponding Ser vi ce_bj ect
withinthe Ser vi ce_Reposi tory.

Figure 6 illustrates a complete svc. conf file used to
configure EOS project services (described further in Sec-
tion5). Thisfigure also indicateshow services may be selec-
tively configured either statically (e.g., Svc_Di rectory,
MWL_Svc,and G Cl _Svc) or dynamicaly (eg., PBX_Svc,
XAD_Svc, and O i ent _Muxer) in the same daemon, de-
pending on the format of the configurationfile.

¢ Static Configuration: Inastatically configured daemon,
al Servi ce_Obj ect sare completely specified at daemon
installation-time. This limits a daemon to a specific, non-
reconfigurable set of services, which may be necessary for
secure daemons that contain only “trusted” services. Imple-
menting a daemon composed solely of statically configured
services requires developers to derive a subclass from the
Ser vi ce_Conf i g base class. This subclass then becomes
responsiblefor pre-initializingtheSer vi ce_Reposi tory
to contain only trusted services. The derived class may

<service-config-entry>

<service-config-directive> ::
<service-identifier> :
<service_initializer>

<service-config-directive>
[<service-identifier>]

SERVI CE_NAME

[<optional -paraneters> |
= DYNAM C | STATIC | REMOVE | DI SABLE | ENABLE
= SHARED OBJECT ':’ [<service |n|t|aI|zer>]
= OBJECT_NAME | FUNCTION_NAMVE " (' ')’

Figure5: EBNF Format for a Service Config Entry

svc.conf
static Svc_Manager "-p 911"
dynamic Client_Logger
Service_Object * /svcs/Cli_Logger.so : dloc() "-p 2112"
?tream CCM_App dynamic STREAM * /svc/CCM_App.so : aloc()

dynamic Device_Adapter Module * /svcs/DA.so : aloc() "-p 2001"
dynamic Event_Analyzer Module * /svcsEA.so : alloc()
dynamic Client_Router Module * /svcs/CR.so : aloc() "-p 2010"

}

Service
Repository

Reactor

X/

Figure 6: Object Componentsin the Server_Daemon Framework

also redefine one or more of the virtua functions inher-
ited from the base class so that only the pre-initiaized
Servi ce_Reposi tory is searched to locate a service
(the default behavior is to search the symbol table of the
dynamically linked shared object to locate the appropriate
Servi ce_Obj ect). These modifications ensure that any
dynamic service configuration directivesin thesvc. conf
filewill be properly ignored. As a further precaution to pre-
vent theuse of non-trusted services, derived classes should be
configuredtouseonly Ser vi ce_Obj ect s thatarefully re-
solved at static link-time(i.e., noimplicit dynamicaly linked
services should be alowed). Clearly, static configuration
trades off flexibility for increased security.

e DynamicConfiguration: A dynamically configured dae-
mon permits the insertion, modification, or remova of
Ser vi ce_Obj ect s during the initia daemon invocation

10

sequence. Thisbehavior is specified by placing the dynamic
service configuration directive before the serviceidentifier in
thesvc. conf file. Dynamic configuration requiresthe un-
derlying operating system to support explicit dynamiclinking
(SVR4 and OSF/1 UNIX and Windows NT all support this
feature). In general, dynamic linking simplifies the config-
uration of network daemons by avoiding the modification,
recompilation, relinking, or restarting of running dagmon
code. Moreover, if every daemon service is dynamically
configured, thesvc. conf file containsal the information
necessary to populate the Ser vi ce_Reposi tory. This
makesit possibleto extend adaemon’sservices “inthefield”
without reguiring an administrator to have access to theorig-
inal source code.

Dynamic configuration also helps reduce overal end-
system memory utilization by creating instantiations of
Servi ce_(bj ect derived classes as dynamically linked

shared objects. These Servi ce_Obj ect s will not be
loaded into a daemon unless the svc. conf file indicates
they are actualy required. Naturaly, developers must care-
fully consider the subtle trade-offs between flexibility and
time/space efficiency when choosing between dynamic and
static linking ([6] enumerates many of the trade-offs).

e DynamicReconfiguration: Dynamic reconfigurational-
lows the modification of services offered by a network dag-
mon without actually terminating an executing instance of
the daemon [18]. Reconfiguration may be triggered by
externa events that are generated both localy and/or re-
motely. For example, when an executing SVC- CONreceives
a pre-designated signal (e.g., SIGHUP) that was generated
on the local host machine, the configuration steps are per-
formed again for any services added to or removed from the
svc. conf file. Likewise theSer vi ce Di rect ory ser-
vice described below in Section 4.3.2 may aso be used to
initi atereconfiguration across anetwork viaaremote dagmon
service management facility.

The development and administrative steps used to add a
servicetoaSVC- CONarestraight-forward. First, adevel oper
writes a new service that inherits from the interface offered
by theSer vi ce_Obj ect / Event _Handl er class hierar-
chy. Ingenera, services may be arbitrarily complex, though
many standard network services (such asft p andt el net)
do not requirethe retention of persistent stateinformation be-
tween consecutive service invocations (these “ stateless’ ser-
vices are often simpler to configure and reconfigurereliably).
Next, an object of thederived classisinstantiated, linked into
the daemon, and inserted into the Ser vi ce_Reposi t ory
(this sequence of steps may be performed by the SVC- CON
either statically at compile-time or dynamically at run-time).
The svc. conf fileisthen updated manually or via an ad-
ministrativetool to contain an additional entry that identifies
thelocation of the new serviceand specifiesitscommand-line
configuration parameters, which indicate the arguments to
passthei ni t function of the specified Ser vi ce_hj ect
and whether to use static or dynamic linking. At this point,
the devel oper either starts, restarts, or sends a pre-designated
signal to a SVC- CON to initiate configuration or reconfigu-
ration.

The configuration steps performed internally by a net-
work daemon are initiated when the application cals the
open function of the SVC- CON class. This function parses
command-line arguments to enable daemon options, opens
a channd to the distributed logging service, invokes the
daemonization code, dynamically creates an instance of the
React or, and cdlsthepr ocess_di rect i ves function
to process the daemon’s configuration file.

The process_directives function processes the
svc. conf file line-by-line. It first converts each line
into an ar gv-style vector of arguments. Then it carries
out the specified service configuration directive. For exam-
ple, if the dynamic directive appears, the | oad_ser vi ce
function is caled to (1) dynamicaly link the appropri-
ate Servi ce_bj ect into the address space of the dae-

11

mon and (2) insert the address of the object into the
Servi ce_Reposi tory. Likewise, if the remove direc-
tive is specified, the unl oad_ser vi ce function is called
to gracefully close down and delete the service from the
Servi ce_Reposi tory. If the service was dynamically
linked, the shared object fileis unloaded from the executable
daemon.

The enabl e_ser vi ce function is invoked if the con-
figuration directive is static or enable. This function
gueries the Ser vi ce_Reposi t ory to determine the ap-
propriateinstance of the statically or dynamically configured
Servi ce_Obj ect that is currently bound to the associ-
ated service name. After the instance is located, itsi ni t
function is called and the remaining ar gv arguments are
passed asaparameter. Ifi ni t returnstheREGISTER_SVC
value, theEvent _Handl er portionof the newly initidized
Servi ce_(bj ect isregistered with the React or auto-
meatically.

If the disable directive appears at the beginning of aline,
the di sabl e_servi ce function is invoked. This func-
tion temporarily restricts access to the named service without
actually unlinking and fully removing it from the daesmon.
Temporarily disabling services is useful during maintenance
periods when certain services may be inaccessible, but their
existing non-persistent state i nformati on must beretained un-
til the service is reactived. A subsequence reconfiguration
may be performed to re-enabl e the service without perform-
ing the entire sequence of initialization steps again.

4.3.2 Server Daemon Run-TimeActivities

When configuration activities are complete, an application
callstheSer vi ce_Confi g’srun_event | oop function.
This function enters an endless loop that continuously calls
the React or 's handl e_event s service dispatch func-
tion, which blocks awaiting the occurrence of events such
as |/O from clients or timer expiration. As these events
occur, the React or automatically dispatches previously-
registered application-specific handler(s) to perform the des-
ignated services.

Run-time activities may be influenced by a set of
Ser vi ce_bj ect subclasses (illustrated in Figure 7) that
perform the following standard daemon foundation services:

¢ Eager and Lazy Processand Thread Generation: Two
standard subclasses of Servi ce_Cbj ect implement the
“eager” and “lazy” process and thread generation techniques
discussed in Section 3.2.3 above. The Eager _Gen sub-
class pre-spawns one or more processes or threadsto form a
pool that minimizes service startup overhead when requests
arrive. The Lazy_Gen subclass, on the other hand, only
spawns anew processif an executing request does not finish
within a certain time interval. Application services that use
these techniques may inherit from either the Eager _Gen or
Lazy_CGen subclasses.

e Lightweight Dynamic Service Spawning: Two sub-
classes of Ser vi ce_Cbj ect implement service spawning

—~

// N
{ Service ‘

~_

VAN

g \
(Extern
\

| o

e

Figure 7: Standard Service_Object Subclasses

techniquesthat aretypically “lighter-weight” than the process
invocationmethod used by i net d and ! i st en. For exam-
ple, rather than use f or k and exec to create new processes
that perform service requests externdly, the Li nk_Spawn
subclass dynamically links and executes a hew service in-
ternally. Moreover, services derived from Li nk_Spawn are
loaded and unloaded on demand. This contrasts with the
default dynamic configuration behavior obtained by speci-
fying the dynamic service config directive, which pre-loads
services during daemon initidization. The Li nk_Spawn
subclass is implemented by (1) dynamicaly linking an ob-
ject file, (2) obtaining the entry-point of the appropriate
Servi ce_Obj ect in this file, and (3) invoking the ser-
vice to perform the client request. Upon completion, the
serviceinstalled by Li nk_Spawn is automatically removed
by closing down the Ser vi ce_Obj ect and unlinking the
object file from the daemon’s address space.®

TheThr ead_Spawn subclass providesanother technique
for handling service requestsinterndly. It creates a separate
thread on-demand and each thread carries out the service
to completion. However, unlike the Eager _Gen subclass,
these threads are not pre-spawned and cached. The use of
threads is typicaly less time consuming than using f or k
and exec [20]. On the other hand, the f or k/ exec ap-
proach may be preferable in situations where the owner of
the child process must differ from the parent for security
reasons, which is typically the case with remote login and
file access services. Moreover, spawning separate threads
may be less robust than spawning separate processes since
all threads share resources in aprocess and global datastruc-
turesmay be corrupted if errorsoccur. Ingeneral, developers
must consider their application requirements carefully when
selecting an appropriate service execution agent.

e Service Directory: The Servi ce.Di rectory sub-
class provides local and/or remote clients with access to
daemon administration commands that report and manage

3This technique was inspired by the command-line interpreter mecha-
nisms used to invoke programsin Multics[19].

12

the services currently offered by a network daemon. These
commands “externalize’ certain internal service attributes
in an active network daemon. During daemon config-
uration, a Servi ce_Di rectory object may be regis
tered at a well-known communication port accessible by
clients using the following entry inthe svc. conf file (the
Servi ce_Directory serviceis staticaly linked into the
SVC- CONframework):

static Service_Directory -d -p 9000

When clients request a summary of a daemon’s active ser-
vices, theSer vi ce_Reposi t ory iterator isautomatically
invoked by theSer vi ce_Di r ect ory. Thisiterator trans-
fersacompletelisting of the devel oper-supplied information
for each enabled service back to theclient. Thislisting indi-
cates boththeaddressformat and thetransport protocol to use
to contact a given service, and provides a brief explanation
of each service. The Servi ce_Di rect ory may aso be
used to trigger reconfiguration requests from remote sites.

o Internet Superserver Emulation: The externa service
dispatching semantics of i net d are provided viaa subclass
of Servi ce_Ohj ect called Ext er n_Spawn. Thisclass
spawns processes on-demand to handle client requests as
external services. By default, Ext er n_Spawn utilizes the
standard i net d. conf file and serves as a replacement for
i netd.

5 Using the Server _Daemon for EOS
Applications

This section describes how the SVC- CON framework
forms the basis for implementing the primary services that
comprisetheEricsson EOS application family. Theboxesen-
closing certain collections of servicesin Figure8indicatethe
default binding of services to processes (the thread bindings
are described further below). The SVC- CON framework’s
configuration techniques, tools, and resources simplify the
task of modifying these default bindingsin response to per-
formance enhancements and additional application require-
ments. The following paragraphs describe the EOS services
and indicate the communication protocol, service, and con-
currency dimensions associated with each service:

e GICI Manager Services: The GICI (General Informa:
tion Computer Interface) Manager provides services that ex-
change low-level, red-time status information with a PBX.
The GICI protocol operates over an RS-232 seria link, ex-
changing signals (represented as short sequences of ASCII
characters) between an external computer and the Informa-
tion Computer Unit (1CU) port on the PBX. The GICI Man-
ager provides services that transmit signalsto the PBX upon
request of aclient and asynchronously receive signals gener-
ated by the PBX. To increase throughout and reduce latency,
this service is implemented internally via a single separate
thread withinthe Directory Management application process.

DIRECTORY
CALL CENTER MANAGEMENT

SERVICES

MANAGEMENT
SERVICES

Event
Anal\ zer

: Device : Multicast,
Adapter Router

2

MODULE
OBJECT

DATABASE

DAEMON
PROCESS

EXTENSION

MANAGEMENT
_/ SERVICES)

Figure8: Services Offered by EOS Applications

¢ MML Manager Servicess The MML (Man-Machine
Language) Manager provides services that perform low-
level, static configuration operations on the PBX. The MML
protocol involves the synchronous, request-response trans-
mission of an MML command from an external computer to
the 1/0 Processor Unit (IPU) of aPBX viaan RS-232 serial
link. An MML command isastring of ASCII characters con-
tai ning acommand identification code and associated param-
eters. Theresponse from the PBX is returned to the externa
computer via the same RS-232 link. The MML Manager is
implemented in the Extension Management applicationasan
internal service via a separate thread that serializes multiple
clients accessing a PBX.

¢ Signal Router Services. The Signal Router services pro-
videcapabilitiesfor demultiplexing GI Cl signalspassed from
the GICI Manager monitoring a PBX to the proper client(s)
that have registered to receive the generated signals. This
serviceisimplemented internally viaa single separate thread
within the Call Center Management application (the thread
uses amulticast protocol [21] to forward signalsto interested
clients).

e PBX Manager Services. The PBX Manager provides
services for high-level PBX management operations such as
cal profiling, diversion management, and message manage-
ment. This service isimplemented internally within the Di-
rectory Management application andiscontrolled by aClient
Muxer.

o Client Muxer: A Client Muxer enables one or more ser-
vices to communicate concurrently with multiple clients via
connection-oriented or request-response protocols (such as
TCP or RPC, respectively). A separate thread is maintained
for each client connection. Depending on configuration pa-
rameters, threads may be allocated from pool spawned by
Eager _Gen or on-demand viaThr ead_Spawn.

13

e Extension Administration (XAD) Services: TheExten-
sion Administration services provide high-level PBX opera-
tions such as adding, deleting, and modifying extensions. In
addition, services are provided to download PBX extension
configurationinformation, which ismirroredin adatabaseon
the server to improve response time and off-load redundant
processing from the PBX. This service isimplemented as an
internal service that interactswith clients viaa Client Muxer
communicating over a connection-oriented protocol .

e Batch Manager Services: The Batch Manager provides
scheduling servicesfor queueing and executing extension ad-
ministration requests at a pre-determined time. Services are
provided to insert new batch requests, delete batch requests
(that have not yet been executed), or query the completion
status of batch requeststhat have been executed. Thisservice
isimplemented as an external service running in a separate
process invoked periodically via a service dispatcher driven
by an externa system clock (such asthe UNIX cr on facil-
ity).

The layering of the servicesin Figure 8 illustratesthe uses
relations between the various services in each application.*
In addition to reusing the foundation classes provided by the
SVC- CON the EOS applications also reuse severa of the
services described above. For example, the GICI Manager
service is shared by the Call Center Management and Direc-
tory Management applications. Likewise, the Client Muxer
serviceisreused by the Directory Management and Extension
Management applications. In general, services may be im-
plemented as shared objectsto reduce primary and secondary

4Currently, the layered application servicesinteroperate viaad hoc com-
muni cation techniques (such as message queues, shared memory, and param-
eter passing). Future versionsof the SVC- CONwill incorporate a user-level
communication framework known asuStreams[22] to handlehierarchically-
organized services [23] more elegantly and efficiently (e.g., by reducing
context switching and data copying overhead [24]).

storage consumption.

Note that the SVC- CON framework tries to make as few
assumptions as possible regarding the structure of the client
(and even the server). Basicaly, the primary contribution
of the SVC- CONisto provide a set of object-oriented inter-
faces and standard mechanismsfor automeatically configuring
aset of (practically arbitrary) services into a server applica-
tion (actually, the same approach could aso be used for the
client, though that is somewhat less common). The term
“precticaly arbitrary” indicates that the current version as-
sumes services will be communicating viaan 1/O descriptor
that is capable of being sel ect 'd or pol | 'd. Therefore,
it isfeasibleto integrate the svc functionality “underneath”
an RPC communication model, though it might require some
guasi -portabl eassumptionsto extract the underlying descrip-
tor from agiven RPC toolkit.

We are currently eval uating the performance of the config-
uration depicted in Figure 8 to determine whether to incor-
porate other SVC- CON features such as Li nk_Spawn and
Lazy_Gen. We are aso investigating service reconfigura:
tion policiesto formulate guideinesthat ensure the dynamic
modification of a daemon does not corrupt or seriously dis-
rupt existing services. A more ambitious extension involves
using the SVC- CON mechanisms to experiment with service
migration policiesthat relocate certain services dynamically
to reduce overall system workload.

6 Concluding Remarks

The SVC- CON is an integration framework that supports
static and dynamic configuration of internal and external net-
work services the execute within one or more OS processes
and threads. Thelong-termgoalsof thisproject are (1) topro-
duce an extensible environment that coordinates reusable ab-
stractions and components to support families of distributed
applications and (2) to devise techniques and tools for de-
veloping distributed systems that are efficient, cost-effective,
modular, scalable, extensible, and easily configured and in-
stalled. To help achieve these godss, the genera principles
underlying the SVC- CON framework involve (1) separating
policies from mechanisms via object-oriented class abstrac-
tions, inheritance, dynamic binding, and parameterized types
in order to enhance the reuse of common network daemon
components, (2) decoupling the binding of OS processes
and threads from the application services to improve flex-
ibility and performance, and (3) utilizing dynamic linking
and threads to improve extensibility and permit fine-grained
time/space tradeoffs.

The existing prototype implementation described in this
paper fulfills many of the project’s goals. We are currently
using the SVC- CON framework to configure, install, and ad-
minister a suite of concurrent network services for the Erics-
son EOS client/server PBX management applications. Thus
far, the primary benefits of the framework center around en-
abling devel opers to (1) enhance network daemon function-
ality and religbility and (2) fine-tune performance without

14

extensive redevel opment and reinstallation effort. For exam-
ple, debugging afaulty servicetypicaly involvesreinstalling
afunctionally equival ent service containing additional instru-
mentation that hel psisol ate the source of erroneous behavior.
The utility of certain features remain to be seen. For exam-
ple, the Li nk_Spawn service may be less applicable for
network servers running on multi-threaded platforms, com-
pared with the Thr ead_Spawn service. In addition, we are
experimenting with certain reconfiguration and service mi-
gration mechanisms offered by the SVC- CON to determine
circumstances where they may be applied reliably. We are
also devel oping asuite of toolsthat reduce the effort required
to administer daemon configuration files (which are currently
managed manually).

An implementation of a public domain subset of the
SVC- CON framework described in this article is avall-
able via anonymous ftp from i cs. uci.edu in the
gnu/ C++.w appers. tar. Z file. This file aso con-
tains the source code, documentation, and examples for the
| PC_SAP and React or utilitiesdescribed in[3, 4, 5].

References
[1] Ericsson BusinessCommunications, Tyreso, Sweden, MD110
Operations and Maintenance, 1992.

D. C. Schmidt, D. F. Box, and T. Suda, “ADAPTIVE: A Dy-
namically Assembled Protocol Transformation, Integration,
and eValuation Environment,” Journal of Concurrency: Prac-
tice and Experience, vol. 5, pp. 269-286, June 1993.

D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

D. C. Schmidt, “The Reactor: An Object-Oriented Interface
for Event-Driven UNIX 1/O Multiplexing (Part 1 of 2),” C++
Report, vol. 5, February 1993.

D. C. Schmidt, “ The Object-Oriented Design and Implemen-
tation of the Reactor: A C++ Wrapper for UNIX 1/O Multi-
plexing (Part 2 of 2),” C++ Report, vol. 5, September 1993.

R. Gingell, M. Lee, X. Dang, and M. Weeks, “ Shared Libraries
in SUnOS,” in Proceedingsof the Summer 1987 USENI X Tech-
nical Conference, (Phoenix, Arizona), 1987.

H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

S. Rago, UNIX System V Network Programming. Reading,
MA: Addison-Wesley, 1993.

S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The
Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

D. C. Schmidt, “ Object-Oriented Techniques for Developing
Extensible Network Servers,” in Proceedings of the Second
C++ World Conference, (Dallas, Texas), SIGS, Oct. 1993.

D. C. Schmidt, B. Stiller, T. Suda, A. Tantawy, and M. Zit-
terbart, “LanguageSupport for Flexible, Application-Tailored
Protocol Configuration,” in Proceedings of the 18" Confer-
enceon Local Computer Networ ks, (Minneapolis, Minnesota),
pp. 369-378, Sept. 1993.

D. E. Comer and D. L. Stevens, Internetworking with TCP/IP
Vol [11: Client — Server Programming and Applications. En-
glewood Cliffs, NJ: Prentice Hall, 1992.

(2]

(3]

[4]

(5]

(6]

(7]
(8]
(9]

[10]

[11]

[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

W. W. Ho and R. Olsson, “An Approach to Genuine Dy-
namic Linking,” Software: Practice and Experience, vol. 21,
pp. 375-390, Apr. 1991.

G. Booch, Object Oriented Analysis and Design with Ap-
plications (2" Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

Bjarne Stroustrup and Margret Ellis, The Annotated C++ Ref-
erence Manual. Addison-Wesley, 1990.

M. Herlihy and B. H. Liskov, “A Value Transmission Method
for Abstract Data Types,” ACM Transactionson Programming
Languagesand Systems, vol. 4, pp. 527-551, October 1982.

C. R. Hofmeister and J. M. Purtilo, “ Dynamic Reconfiguration
of Distributed Programs,” in Proceedingsof the 11°* Interna-
tional Conference on Distributed Computing Systems, |EEE,
1991.

E. Organick, The Multics System — An Examination of Its
Structure. M.I.T. Press, 1972.

J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalin-
giah, M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams,
“Beyond Multiprocessing... Multithreading the SunOS Ker-
nel,” in Proceedingsof the Summer USENIX Conference, (San
Antonio, Texas), June 1992.

S. E. Deering and D. R. Cheriton, “Multicast routing in data-
gram internetworks and extended LANSs,” ACM Transactions
on Computer Systems, vol. 8, no. 2, pp. 85-110, May 1990.

D. Ritchig, “ A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

D. Batory and S. W. O’ Malley, “The Design and Implementa-
tion of Hierarchical Software Systems Using Reusable Com-
ponents,” ACM Transactions on Software Engineering and
Methodology, vol. 1, Oct. 1992.

N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecturefor Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64—76, January
1991.

15

