
Evaluating the Performance of OO Network Programming Toolkits

Timothy H. Harrison and Douglas C. Schmidt
harrison@cs.wustl.edu and schmidt@cs.wustl.edu

Department of Computer Science
Washington University
St. Louis, MO 63130

(314) 935-7538

1 Introduction

For the past several years, the C++ Report has published
many articles on the Common Object Request Broker Ar-
chitecture (CORBA) [1], which is an open standard for dis-
tributed object computing (DOC). These articles have fo-
cused on the features and components in CORBA that au-
tomate common networking tasks such as parameter mar-
shalling, object location, and object activation. This article
concentrates on performance issues related to using CORBA
and other IPC mechanisms to transfer large amounts of data
over low-speed and high-speed networks.

DOC frameworks such as CORBA[1], OODCE[2], and
OLE/COM [3] are well-suited for applications that exchange
richly typed data via request/response or oneway communi-
cation. However, current implementations of DOC frame-
works are less suitable for an important class of performance-
sensitive applications that stream data over high-speed net-
works. Medical imaging, interactive teleconferencing, and
video-on-demand are common examples of this class of
streaming applications.

Streaming applications with stringent throughput and de-
lay requirements are ideal candidates for high-speed networks
such as ATM and FDDI. However, these applications may
not be able to tolerate the overhead associated with con-
temporary DOC frameworks. This overhead stems from a
number of sources such as non-optimized presentation layer
conversions, data copying, and memory management; inef-
ficient and inflexible receiver-side demultiplexing and dis-
patching operations; synchronous stop-and-wait flow con-
trol; and non-adaptive retransmission timer schemes.

Meeting the throughput demands of streaming applications
has traditionally required direct access to network program-
ming interfaces such as sockets or System V TLI. These
lower-level interfaces are efficient since they omit unneces-
sary functionality (such as presentation layer conversions for
ASCII data). They also allow fine-grained control of mem-
ory management, protocol buffering, demultiplexing, and
flow control.

However, conventional low-level network programming
interfaces are also non-portable and error-prone [4]. This
complicates programming and permits subtle run-time er-
rors. For instance, communication endpoints in the socket

interface are identified by weakly-typed integer handles (also
known as socket descriptors). Weak type-checking increases
the potential for run-time errors since compilers cannot detect
or prevent improper use of handles. Thus, operations can be
applied to handles incorrectly (such as invoking a read or
write on a passive-mode socket handle that can only accept
connections).

Developers of high-performance streaming applications
have basic programming choices:

1. Lower-level interfaces – such as sockets or TLI, which
are written in C and are highly efficient.

2. Middle-level interfaces – such as the ACE C++
wrappers, Rogue Wave Net.h++, or ObjectSpace
System<ToolKit>, which can improve the correctness,
ease of use, portability and reusability of communica-
tion software without sacrificing much performance.

3. Higher-level interfaces – such as DOC frameworks or
RPC toolkits, which provide a rich set of abstractions
and functionality, but are often highly inefficient for
certain types of data.

We’ve taken representatives from each of the three ap-
proaches and conducted experiments on their performance
when transfering large streams of data using TCP/IP over
Ethernet and ATM networks. The network programming
mechanisms compared below include C sockets, ACE C++
wrappers for sockets, and two implementations of CORBA.
The benchmark tests are modeled after performance-sensitive
applications written by the authors for an enterprise-wide
medical imaging system that transports multi-megabyte ra-
diology images across high-speed ATM LANs and WANs
[5, 6].

2 Performance Experiments

2.1 Test Platform and Benchmarks

The performance results in this section were collected us-
ing a Bay Networks LattisCell 10114 ATM switch connected
to a cluster of uni-processor SPARCstation 20 Model 5Os
(shown in Figure 1). The LattisCell 10114 is a 16 Port, OC3
155Mbs/port switch. The SPARCstations contain 100 MIP

1

BAY NETWORKSBAY NETWORKS

LATTISCELLLATTISCELL

ATM SWITCHATM SWITCH

(16(16 PORT PORT,, OC3OC3

155155MBPSMBPS//PORTPORT,,

9,1809,180 MTU MTU))
SPARCSTATIONSPARCSTATION

2020 MODEL MODEL 5050SS

((ENI ATMENI ATM

ADAPTORSADAPTORS

AND ETHERNETAND ETHERNET))

Figure 1: Network/Host Environment for Benchmarks

Super SPARC CPUs running SunOS 5.4. The SunOS 5.4
TCP/IP protocol stack is implemented using the STREAMS
communication framework [7]. Each SPARCstation 20 has
64 Mbytes of RAM and an ENI-155s-MF ATM adaptor card,
which supports 155 Megabits per-sec (Mbps) SONET mul-
timode fiber. The Maximum Transmission Unit (MTU) on
the ENI ATM adaptor is 9,180 bytes. Each ENI card has
512 Kbytes of on-board memory. 32 Kbytes is alloted per
ATM virtual circuit connection for receiving and transmitting
frames (for a total of 64 K). This allows up to 8 connections
per card.

Data for the experiments was produced and consumed by
an extended version of the widely available ttcp [8] proto-
col benchmarking tool. This tool measures end-to-end data
transfer throughput in Mbps from a transmitter process to
a remote receiver process. The flow of user data is uni-
directional, with the transmitter flooding the receiver with a
user-specified number of data buffers. Various sender and
receiver parameters may be selected at run-time. These pa-
rameters include the number of data buffers transmitted, the
size of data buffers, and the size of the socket transmit and
receive queues.

The following versions of ttcp were implemented and
benchmarked:

� C version – this is the standard ttcp program imple-
mented in C. It uses C socket calls to transfer and receive
data via TCP/IP.

� ACE C++ version – this version replaces all C socket
calls in ttcp with the C++ wrappers for sockets pro-
vided by the ACE network programming components
(version 3.2) [9]. The ACE wrappers encapsulate sock-
ets with typesafe, portable, and efficient C++ interfaces.

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

64k socket queue

C

ACE

Orbix Sequence
ORBeline Sequence

Orbix String

ORBeline String

All Ethernet results

Figure 2: C, ACE, Orbix and ORBeline Performance over
ATM and Ethernet

� CORBA versions – two implementations of CORBA
were used: version 1.3 of Orbix from IONA Technolo-
gies and version 1.2 of ORBeline from Post Modern
Computing. These versions replace all C socket calls
in ttcp with stubs and skeletons generated from a pair
of CORBA interface definition language (IDL) specifi-
cations. One IDL specification uses a sequence pa-
rameter for the data buffer and the other uses a string
parameter.

Each version of ttcp was compiled using SunC++ 4.0.1
with the highest level of optimization (-O4). The tim-
ing mechanisms, command-line options, socket options, and
communication protocols were held constant for all imple-
mentations of ttcp. Only the connection establishment and
data transfer mechanisms were varied.

2.2 Results

We ran a series of tests that transferred 64 Mbytes of user data
in buffers ranging from 1 byte to 128 Kbytes using TCP/IP
over Ethernet and ATM networks. Data buffers were run in
increments of 1 byte, 1 K, 2 K, 4 K, 8 K, 16 K, 32 K, 64
K, and 128 K sizes. Two different sizes for socket queues
were used: 8 K (the default on SunOS 5.4) and 64 K (the
maximum size supported by SunOS 5.4).

Figure 2 summarizes the performance results for all the
benchmarks using 64 K socket queues over a 155 Mbps ATM
link and a 10 Mbps Ethernet (the 8 K socket queue results are
presented in Figures 3 and 6). The C and ACE C++ wrapper
versions of ttcp obtained the highest throughput: 62 Mbps
using 8 K data buffers. In contrast, the Orbix and ORBeline
CORBA versions of ttcp peaked at around 39 Mbps with
64 K data buffers using IDL sequences.

2

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

C over ATM (64k socket queue)

ACE over ATM (64k socket queue)

ACE over ATM (8k socket queue)

C over ATM (8k socket queue)

All Ethernet Results

Figure 3: C and ACE Performance over ATM and Ethernet

The results for Ethernet show much less variation, with the
performance for all tests ranging from around 8 to 8.7 Mbps
with 64 K socket queues. None of the Ethernet benchmarks
ran faster than 8.7 Mbps, which is 87 percent of the maxi-
mum speed of a 10 Mbps Ethernet. Although the absolute
throughput of ttcp is almost 8 times faster over ATM, the
relative utilization of the network channel speed was much
lower (i.e., 62 Mbps represents only 40 percent of the 155
Mbps ATM link).

The disparity between network channel speed and end-
to-end application throughput is known as the throughput
preservation problem. This problem occurs when only a por-
tion of the available bandwidth is actually delivered to ap-
plications. The throughput preservation problem stems from
operating system and protocol processing overhead (such as
data movement, context switching, and synchronization). As
shown in Section 2.2.2, the throughput preservation problem
is exacerbated by contemporary implementations of DOC
frameworks like CORBA, which copy data multiple times
during fragmentation/reassembly, marshalling, and demar-
shalling.

Sections 2.2.1 and 2.2.2 examine these performance results
in detail and Section 3 presents recommendations based on
an analysis of the benchmark results.

2.2.1 C and ACE C++ Wrapper Implementations of
TTCP

Figure 4 shows the configuration of the ttcp driver for
the C and ACE C++ wrapper tests. For both these tests, the
sender process writes 64 Mbps of data directly to the socket
layer, which forwards it across the network to the receiver
process. The receiver process reads the data from the socket
and “consumes” it.1

1Since these tests are only measuring network performance, the receiver
just records the number of bytes received and doesn’t actually process the

ATM

SWITCH

Sender

1: write(buf)

2: forward

Receiver

3: read(buf)

Figure 4: TTCP Configuration for C and ACE C++ Tests

Figure 3 illustrates the performance results from the C and
ACE wrapper versions of ttcp over ATM and Ethernet.
The performance of C sockets and ACE C++ wrappers are
roughly equivalent. Both peak at 62 Mbps over ATM using
8 K data buffers and 64 K socket queues. This indicates that
the performance penalty for using the ACE C++ wrappers is
insignificant, compared with using C library function calls
directly.

Figure 3 illustrates the impact of data buffer size on per-
formance. When the data buffers exceeded 8 K performance
began to decline, leveling off at around 48 Mbps with 64
K data buffers. This behavior is caused primarily by the
MTU size of the ATM network, which is 9,180 bytes. When
data buffers exceed the MTU size they are fragmented and
reassembled, thereby lowering performance.

Figure 3 also illustrates the impact of socket queue size
on throughput. Larger socket queues increase the TCP win-
dow size, which allows the transmission of multiple TCP
segments back-to-back. In the case of ATM, increasing the
socket queue from 8 K to 64 K improves ttcp performance
significantly from 23 Mbps to 62 Mbps.

The Ethernet results for large and small socket queues
show less variation than the ATM results. They peak at 8.4
Mbps with 8 K socket queues and 8.7 Mbps with 64 K socket
queues. In both cases, the factor limiting performance is the
slow speed of the network.

2.2.2 CORBA Implementations of TTCP

Figure 5 shows the configuration of ttcp for the CORBA
tests. For both these tests, the sender writes 64 Mbps to the
receiver by invoking the send method on the TTCP stub.
The stub forwards the data across the network to the ORB on

data.

3

ATM

SWITCH

TTCP

Stub

Sender 1: send(buf)

2: forward
TTCP

Skel

TTCP

Impl3: send(buf)

Figure 5: TTCP Configuration for the CORBA Tests

the server. The ORB’s Object Adapter then performs demul-
tiplexingoperations to locate theTTCP skeleton. Finally, this
skeleton passes the data up to the TTCP implementation ob-
ject by invoking a send upcall. As before, the receiver just
records the number of bytes received, rather than processing
the data.

Figure 6 illustrates the results of measuring two versions of
ttcp implemented with two different versions of CORBA.
The CORBA implementations were developed using single-
threaded versions of Orbix 1.3 and ORBeline 1.2.

Extending ttcp to use CORBA required several modi-
fications to the original C/socket code. All C socket calls
were replaced with stubs and skeletons generated from a pair
of CORBA interface definitions. One IDL interface uses a
sequence to transmit the data and the other IDL interface
uses a string, as follows:

typedef sequence<char> ttcp_sequence;

interface TTCP_Sequence
{
oneway void send (in ttcp_sequence ttcp_seq);

};

interface TTCP_String
{
oneway void send (in string ttcp_string);

};

Thesend operations useoneway semantics since thettcp
benchmarks measure the performance of uni-directional data
transfer. This behavior is consistent with the flow of com-
munication in electronic medical imaging applications and
video distribution.

The client-side of ttcp was modified as follows:

// Use locator service to acquire bindings.
TTCP_String *t_str = TTCP_String::_bind ();
TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

Message Size (Kbytes)

T
hr

ou
gh

pu
t (

M
bp

s)

Results above for 64k socket queue

Results below for 8k socket queue

Orbix Sequence
ORBeline Sequence
Orbix String
ORBeline String

All Ethernet Results

Figure 6: Orbix and ORBeline Performance over ATM and
Ethernet

The bind method is a factory generated by the IDL com-
piler from an IDL specification (such as TTCP Sequence
and TTCP String). This factory obtains CORBA object
references to object implementations of TTCP Sequence
and TTCP String located on a server. Object references
are opaque, immutable handles that uniquely identifyobjects.
All CORBA object implementations must have an object ref-
erence before they can be accessed by client applications, and
all client applications must have an object reference before
they can access the object implementations in the server.

Once object references are obtained, data buffers of the
appropriate size can be initialized and transmitted by calling
the IDL-generated send stubs, as follows:

// String transfer.

char *buffer = new char[buffer_size];
// Initialize data in char * buffer...

while (--buffers_sent >= 0)
t_str->send (buffer);

// Sequence transfer.

ttcp_sequence sequence_buffer;
// Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)
t_seq->send (sequence_buffer);

The server-side was modified to create object implemen-
tations for TTCP Sequence and TTCP String. CORBA
IDL compilers generate skeletons that translate IDL interface
definitions (such asTTCP Sequence) into C++ base classes
(such as TTCP SequenceBOAImpl). Each IDL opera-
tion (such as oneway void send) is mapped to a corre-
sponding C++ pure virtual method (such asvirtual void
send). Programmers then define C++ derived classes that

4

override these virtual methods to implement application-
specific functionality, as follows:2

// Implementation class for IDL interface
// that inherits from automatically-generated
// CORBA skeleton class.

class TTCP_Sequence_i
: virtual public TTCP_SequenceBOAImpl

{
public:
TTCP_Sequence_i (void): nbytes_ (0) {}

// Upcall invoked by the CORBA skeleton.
virtual void send
(const ttcp_sequence &ttcp_seq,
CORBA::Environment &IT_env)

{
this->nbytes_ += ttcp_seq._length;

}
// ...

private:
// Keep track of bytes received.
u_long nbytes_;

};

The server-side uses the CORBA impl is ready event
loop to demultiplex incoming requests to the appropriate ob-
ject implementation, as follows:

int main (int argc, char *argv[])
{
// Implements the Sequence object.
TTCP_Sequence_i ttcp_sequence;

// Implements the String object.
TTCP_String_i ttcp_string;

// Single-threaded event loop that handles
// CORBA requests by making callbacks to
// user-supplied object implementations
// of TTCP_Sequence_i and TTCP_String_i.
CORBA::BOA::impl_is_ready ();

/* NOTREACHED */
return 0;

}

By comparing Figure 6 with Figure 3 it is clear that
the CORBA-based ttcp implementations ran considerably
slower than the C and ACE wrapper versions on the ATM net-
work, particularly for 8 K data buffers. The highest through-
put (39 Mbps) was obtained by the Orbix sequence imple-
mentation using 64 K data buffers and 64 K socket queues.
The throughput leveled off beyond 64 K data buffers.

Unlike the C and ACE wrapper results in Figure 2, the
performance of the CORBA versions did not decrease when
the size of the data buffers exceeded 8 K. This behavior stems
from the higher fixed overhead of CORBA (such as demul-
tiplexing and memory management) that lowers its perfor-
mance for small buffer sizes. As the buffer size increases, the
relative impact of this fixed overhead is reduced. However,
as the size of the buffers increase so does the overhead of data

2Both CORBA implementations of ttcp used inheritance because OR-
Beline 1.2 din’t support Orbix’s “TIE” technique, which uses object com-
position to associate application-specific CORBA class implementations to
the generated IDL skeletons. Both Orbix and ORBeline 2.0 now support the
“TIE” technique.

Test %Time #Calls msec/call Name

C sockets 99.6 527 92.8 write
(sender)
C sockets 99.3 7201 6.2 read
(receiver)

ACE C++ wrapper 99.4 527 87.3 write
(sender)
ACE C++ wrapper 99.6 7192 6.2 read
(receiver)

Orbix Sequence 94.6 532 89.1 write
(sender) 4.1 2121 1.0 memcpy
Orbix Sequence 92.7 7860 6.1 read
(receiver) 4.8 2581 0.6 memcpy
Orbix String 89.0 532 85.6 write
(sender) 4.6 2121 1.1 memcpy

4.1 2700 0.7 strlen
Orbix String 86.3 7744 5.7 read
(receiver) 5.5 6740 0.4 strlen

4.5 2581 0.9 memcpy

ORBeline Sequence 91.0 551 74.9 write
(sender) 5.2 6413 0.4 memcpy

1.8 1032 0.8 sigaction
ORBeline Sequence 89.0 7568 5.8 read
(receiver) 5.1 7222 0.3 memcpy

3.3 1071 1.5 poll
ORBeline String 83.8 551 83.9 write
(sender) 5.4 920 3.2 strcpy

4.3 5901 0.4 memcpy
3.9 1728 1.2 strlen
1.1 1032 0.6 sigaction

ORBeline String 85.4 7827 5.5 read
(receiver) 4.6 6710 0.3 memcpy

4.2 1702 1.3 strlen
2.8 1071 1.3 poll

Figure 7: High cost Functions for ttcp Tests

copying. As shown below, data copying ultimately limits the
throughput achievable with the CORBA implementations.

Detailed profiling and examination of the IDL stubs and
skeletons generated by Orbix and ORBeline revealed that the
CORBA overhead stems from the following sources:

� Data Copying: The data buffers exchanged between the
sender and receiver inttcp are treated as a stream of untyped
bytes. This is consistent with the type of data transmitted by
high-performance streaming applications like teleconferenc-
ing and medical imaging. In a sense, the tests reported here
represent the “best” case for the CORBA implementations.
Since the data is untyped, the CORBA presentation layer
doesn’t need to perform complex marshalling to handle byte-
ordering differences between sender and receiver.3

Although marshalling was not required for our tests, the
CORBA implementations still incurred significant data copy-
ing overhead. We used the UNIX execution profiler (prof)
to pinpoint the sources of this overhead. The C++ compiler
was directed to instrument the source code with monitoring
instructions and prof was then used to measure the amount
of time spent in functions during program execution. Figure 7

3When when transfering richly-typed data instead of the untyped-data
used in the ttcp tests, CORBA implementations incur much higher over-
head, achieving only around 30 percent of the performance of hand-crafted
C and C++ marshalling [10].

5

lists the functions where the most time was spent sending and
receiving 64 Mbytes using 128 K data buffers and 64 K socket
queues.

The read and write system calls accounted for more
than 99% of the execution time in the C and ACE C++
wrapper implementations of ttcp. Note that although the
data was transmitted as 512 separate 128 K buffers it was
read by the receiver in much smaller chunks of around 8 K.
This illustrates the fragmentation and reassembly performed
by the ATM network adaptors (whose MTU is 9,180 bytes).

The read and write system calls dominated the execu-
tion of the CORBA implementations, as well. Unlike the C
and ACE wrapper versions, however, these implementations
spent 4 to 15 percent of their time performing other tasks,
such as copying and/or inspecting data (memcpy, strcpy,
and strlen), checking for activity on other I/O handles
(poll), and manipulatingsignal handlers (sigaction).
This shows that the highest cost tasks involved data copying
and data inspection. The IDL stubs and skeletons copy data
multiple times (e.g., from the TCP data buffer into a mar-
shalling buffer, and then again into the parameter passed to
the send upcall).

The test results also illustrate that the choice of CORBA
IDL parameter datatypes has a significant impact on perfor-
mance. The sequence implementations shown in Figure 6
peaked at 39 Mbps for Orbix and 38 Mbps for ORBeline. In
contrast, the string implementations peaked at 34 Mbps
for Orbix and 30 Mbps for ORBeline. The performance vari-
ation between thesequence andstring results are due to
differences in their IDL-to-C++ mappings. In particular, the
IDL sequence mapping contains a length field, whereas
the string mapping does not. The generated IDL stubs
and skeletons use this length field to avoid searching each
sequence parameter for a terminating NUL character. In
contrast, the IDL string implementations use strlen to
determine the length of their parameters.

The performance variation between Orbix and ORBeline
is partially explained by the differences in their message
fragmentation/reassembly implementations, as well as the
design of their socket event handling. As shown in Figure 7,
ORBeline copies data approximately 3 more times than Orbix
on the sender and receiver for bothsequence andstring.

In addition,ORBeline invokes thesigaction andpoll
system calls twice for each message that is sent and received,
respectively. The sigaction call disables the SIGPIPE
signal during a write system call. On most UNIX systems
the default behavior on SIGPIPE is to exit the program.
SIGPIPE occurs when data is sent over a socket whose
peer has reset the connection. To unobtrusively prevent this
from happening, ORBeline 1.2 replaces any existing handlers
with SIG IGN disposition before the write and resets it to
the original disposition following the write. The Orbix
implementation does not perform these operations, which
is one reason why ORBeline’s throughput was consistently
lower than Orbix (as shown in Figure 6).4

4ORBeline 2.0 eliminates this additional signal handler overhead.

� Demultiplexing: Each CORBA request message con-
tains the name of its intended remote operation, which is
represented as a string. Orbix demultiplexes incoming mes-
sages to the appropriate upcall by performing a linear search
through the list of operations in the IDL interface. In the
case of ttcp, linear search suffices since there was only one
choice (send). However, this strategy doesn’t scale well
since search time grows linearly with the number of opera-
tions in the IDL interface. Moreover, the order of operations
will determine the demultiplexing performance. Therefore,
operations in Orbix should be ordered by decreasing fre-
quency of use.

In contrast, ORBeline use hashing to determine the appro-
priate upcall associated with an incoming request. Hashing
is likely to scale better for large IDL interfaces, but may
be less efficient for small interfaces due to the overhead of
computing the hash function. To handle these and other
cases efficiently, the demultiplexing of requests can bene-
fit from adaptive optimizations. These optimizations select
customized strategies depending on the properties of the IDL
interface. For example, perfect hashing or some type of in-
tegral indexing scheme could be negotiated between sender
and receiver to improve performance and to shield developers
from having to manually tune their IDL interfaces.

� Memory allocation: IDL skeletons generated automat-
ically by a CORBA IDL compiler do not know how the
user-supplied upcall will use the parameters passed to it from
the request message. Thus, they use conservative memory
management techniques that dynamically allocate and release
copies of messages before and after an upcall, respectively.
These memory management policies are important in some
circumstances (e.g., if an upcall is used in a multi-threaded
application). However, this strategy needlessly increases
processing overhead for streaming applications like ttcp
that consume their data immediately without modifying it.

3 Evaluation and Recommendations

Section 2.2 compared the performance of C, ACE wrapper,
and CORBA versions of ttcp in terms of their ability to
transfer large quantities of data using TCP/IP over Ethernet
and ATM networks. In this section, we evaluate these results
and present recommendations for using DOC frameworks
over high-speed networks.

� Know your requirements: It’s important to evaluate
tools based on empirical measurements and a realistic under-
standing of application requirements, rather than adopting a
particular communication model or implementation uncon-
ditionally. Although we focus on performance, your choice
of communication mechanisms should consider other fac-
tors, as well. For instance, learning curve, cost of tools and
run-time licenses, the ability to rapidly prototype, and time
to market are just some of the requirements that guide the
selection of a particular communication mechanism.

6

If performance is your only requirement, using low-level
mechanisms may be the best choice. At the moment, the
C-level socket API or C++ wrappers for sockets will pro-
vide higher throughput than DOC frameworks over TCP/IP.
If that’s still not enough, and you don’t need reliability or
portability, bypass TCP/IP and program directly to the high-
speed data link layer (e.g., ATM or FDDI) and/or get hard-
ware support for your data streams. This approach is often
used in high-speed video-on-demand systems [11].

On the other hand, if your requirements call for flexibil-
ity, maintainability, and reusability, you should consider a
higher-level DOC framework such as CORBA or Network
OLE. Although the performance will be lower, these DOC
frameworks are valuable since they automate many common
network programming tasks such as object selection, loca-
tion, and activation, as well as parameter marshalling and
framing.

� Know your environments: If you have a network in
place, use a ttcp test to measure its maximum achievable
throughput.5 If your project has already deployed a software
communication framework, test its throughput. Compare
what you have with what is possible. You will undoubtedly
find that the overhead added by the communication frame-
work (i.e., CORBA, RPC, etc.) is just one aspect of high-
performance communication. In particular, the overhead of
the OS and network adapters is often much more signif-
icant than the overhead of CORBA in well-tuned ORBs.
Ultimately, the best solution is an integrated approach that
attacks performance overhead at multiple levels of abstrac-
tion (e.g., network adapter, OS kernel, transport protocols,
demultiplexing, presentation layer, data copying, etc.).

If your applications don’t push the limits of your net-
work’s potential (and it’s likely they won’t unless you’re
on a low-speed Ethernet or Token-Ring) consider the next
step. If your requirements call for better performance, and
you don’t have the time, resources, or inclination to develop
your own communication infrastructure, CORBA is a good
choice. Good CORBA implementations will achieve reason-
able performance with minimal development time.

� Break the golden rule of abstraction: One of the often
cited benefits of CORBA is that it abstracts away from the
lower-layer networking details. Therefore, it’s tempting to
think that we can write applications using CORBA and never
worry about what’s going on down below. Unfortunately,
things aren’t quite this easy when performance-sensitive ap-
plications are run over high-speed networks. In this case,
you’ll inevitably need access to lower-level mechanisms to
maximize your application performance.

For example, it’s particularly important to increase the size
of the socket queues to the largest values supported by the OS.

5The ttcp benchmarks and ACE source code described in this pa-
per are freely available and may be obtained via the WWW at URL
http://www.cs.wustl.edu/ schmidt/ACE.html. We encour-
age others to replicate our ttcp experiments using different implementa-
tions of CORBA and other network/host platforms and report the results.

This is illustrated by the considerable difference in through-
put for the 8 K and 64 K socket queues in Figures 3 and 6. In
fact, this figure shows that the choice of socket queue size has
more impact than the choice of communication model (i.e.,
C/C++ vs. CORBA). The slowest communication model
(CORBA) is faster with 64 K socket queues than the faster
communication model (C/C++) with 8 K queues.

� Demand that CORBA implementors provide hooks:
DOC frameworks that allow access to low-level mechanisms
(such as socket queues) are destined to perform poorly when
used over high-speed networks. For this reason, Orbix pro-
vides hooks to enlarge socket queues via setsockopt by
invoking a user-defined callback function whenever a new
socket is connected. Likewise, ORBeline 2.0’s event han-
dling mechanism gives clients and servers access to the ORB
at a lower level (includingaccess to connection handles). Un-
fortunately, not all ORBs provide these hooks yet, so make
sure to check with your ORB vendors before committing to
a particular product.

The need for hooks also surfaces when trying to integrate
multiple event loops. ORB event loops must be accessible
if developers are to use CORBA for large-scale projects that
involve other tools (such as GUI event loops, which typically
use their own event loops [6]). Thus, ORB event loops must
either be able to surrender control to another event loop or
assume control of event loops running in the same process
space. The most stubborn event loop typically wins. For
instance, on Windows platforms the GUI event loop is tightly
coupled with the operating system, which makes it hard for
an ORB event loop to assume full control.

Orbix allows users to replace the default event loop through
the use ofCORBA::Orbix.registerIOCallbackand
CORBA::Orbix.processNextEvent.
CORBA::Orbix.registerIOCallback gives users
access to the socket descriptors being used by the ORB.
CORBA::Orbix.processNextEvent allows the ORB
to process a single incoming request. By combining the two,
developers can easily integrate Orbix with their ownselect
loop. Orbix integrates with the Windows event loop inter-
nally. However, developers must explicitly integrate with
the X Windows event loop using registerIOCallback
and processNextEvent. Orbix is shipped with an Xwin
demo that shows how this can be done.

For those who want to integrate ORBeline with
Graphical User Interfaces, almost no development needs
to be done. ORBeline offers different implementa-
tions of their Dispatcher event loop. These include
an XDispatcher for X Windows, a WinDispatcher for
Windows and Windows NT, and even a GalaxyDis-
patcher. For more intimate control, developers can use
Dispatcher::dispatch in combination with ORBe-
line event handlers. Dispatcher::dispatch tells the
ORB to process the next incoming request, and ORBeline
event handlers can be used to access the socket descriptors
used by the ORB. For even more control, ORBeline also
allows you to replace wholesale the implementation of the

7

Dispatcher used by their ORB.

� Understand CORBA implementation issues: As users
and organizations migrate to high-speed networks, the per-
formance limitations of contemporary CORBA implemen-
tations will become more evident. Hopefully, this will
encourage vendors to optimize their ORBs for streaming
performance-sensitive applications running over high-speed
networks. Key areas of optimization include data copying
and data inspection, presentation layer conversions, mem-
ory management, and receiver-side demultiplexing and dis-
patching [10]. In particular, implementations must reduce
the number of times that large data buffers are copied in the
endsystems.

However, users can take steps to increase the performance
of their ORBs. In particular, you can use IDL constructs that
minimize client and server stub marshalling requirements
(e.g. usesequences rather thanstrings). Although this
violates some of the fundamental abstractions of CORBA, it’s
still easier than programming at the socket level. Idealism
aside, if it works, use it.

� Mix and match: Until CORBA optimizations are widely
implemented in productionsystems, we need to find solutions
for today. Our solution has been to integrate higher-level
DOC frameworks with high-performance object-oriented en-
capsulations of lower-level network programming interfaces
(such as the ACE C++ wrappers for sockets described in [4]).
We’ve built a framework that combines CORBA and the ACE
C++ wrappers and used it for a production high-speed tel-
eradiology system that transfers large, multi-Mbyte medical
images over ATM [6]. In this system, CORBA is used as a
signalingmechanism to identify endpointsof communication
in a location-independent manner. The ACE C++ wrappers
are then used to establish point-to-pointTCP connections and
transmit bulk data efficiently across the connections. This
strategy builds on the strengths of both CORBA and ACE.

4 Concluding Remarks

An important class of applications require high-performance
streaming communication. Bandwidth-intensive and delay-
sensitive streaming applications like medical imaging or tele-
conferencing are not supported efficiently by contemporary
CORBA implementations due to data copying, demultiplex-
ing, and memory management overhead. As shown in Sec-
tion 2, this overhead is often masked on low-speed networks
like Ethernet and Token Ring. On high-speed networks like
ATM or FDDI, however, this overhead becomes a significant
factor limiting communication performance.

The performance results and recommendations in this pa-
per are not intended as a criticism of the CORBA model or of
particular ORB vendors. It is beyond the scope of this paper
to discuss the benefits (such as extensibility and maintain-
ability) of CORBA, as well as its limitations. We would like
to thank IONA and PostModern Computing for their help in
supplying the CORBA implementations used for these tests.

Both companies are currently working to eliminate the per-
formance overhead described in this paper. We expect their
forthcoming releases to perform much better over high-speed
networks.

References
[1] Object Management Group,The Common Object Request Bro-

ker: Architecture and Specification, 2.0 ed., July 1995.

[2] J. Dilley, “OODCE: A C++ Framework for the OSF Dis-
tributed Computing Environment,” in Proceedingsof the Win-
ter Usenix Conference, USENIX Association, January 1995.

[3] Microsoft Press, Redmond, WA, Object Linking and Embed-
ding Version 2 (OLE2) Programmer’s Reference, Volumes 1
and 2, 1993.

[4] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[5] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71–81, 1994.

[6] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 2nd Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[7] D. Ritchie, “A Stream Input–OutputSystem,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[8] USNA, TTCP: a test of TCP and UDP Performance, Dec
1984.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[10] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedingsof SIGCOMM ’96, (Stanford, CA), ACM, August
1996.

[11] J. R. Cox, W. D. Richard, K. Krieger, and B. Gottlieb, “The
Washington University Multimedia System,” in ACM Multi-
media System, pp. 120–131, Springer-Verlag, Jan. 1993.

8

