Evaluating the Performance of OO Network Programming Toolkits

Timothy H. Harrison and Douglas C. Schmidt
harrison@cs.wustl.edu and schmidt@cs.wustl.edu
Department of Computer Science
Washington University
St. Louis, MO 63130
(314) 935-7538

1 Introduction

For the past severd years, the C++ Report has published
many articles on the Common Object Request Broker Ar-
chitecture (CORBA) [1], which is an open standard for dis-
tributed object computing (DOC). These articles have fo-
cused on the features and components in CORBA that au-
tomate common networking tasks such as parameter mar-
shalling, object location, and object activation. This article
concentrates on performance i ssues related to using CORBA
and other IPC mechanisms to transfer large amounts of data
over low-speed and high-speed networks.

DOC frameworks such as CORBA[1], OODCE[2], and
OLE/COM [3] are well-suited for applicationsthat exchange
richly typed data via request/response or oneway communi-
cation. However, current implementations of DOC frame-
worksarelesssuitablefor animportant class of performance-
sensitive applications that stream data over high-speed net-
works. Medical imaging, interactive teleconferencing, and
video-on-demand are common examples of this class of
streaming applications.

Streaming applications with stringent throughput and de-
lay requirementsareideal candidatesfor high-speed networks
such as ATM and FDDI. However, these applications may
not be able to tolerate the overhead associated with con-
temporary DOC frameworks. This overhead stems from a
number of sources such as non-optimized presentation layer
conversions, data copying, and memory management; inef-
ficient and inflexible recelver-side demultiplexing and dis-
patching operations; synchronous stop-and-wait flow con-
trol; and non-adaptive retransmission timer schemes.

M eeting thethroughput demands of streaming applications
has traditionally required direct access to network program-
ming interfaces such as sockets or System V TLI. These
lower-level interfaces are efficient since they omit unneces-
sary functionality (such as presentation layer conversionsfor
ASCII data). They aso allow fine-grained control of mem-
ory management, protocol buffering, demultiplexing, and
flow control.

However, conventiona low-level network programming
interfaces are also non-portable and error-prone [4]. This
complicates programming and permits subtle run-time er-
rors. For instance, communication endpoints in the socket

interface areidentified by weakly-typed integer handles (also
known as socket descriptors). Weak type-checking increases
thepotentia for run-timeerrors since compilerscannot detect
or prevent improper use of handles. Thus, operations can be
applied to handles incorrectly (such as invoking ar ead or
wr i t e onapassive-mode socket handlethat can only accept
connections).

Developers of high-performance streaming applications
have basic programming choices:

1. Lower-level interfaces — such as sockets or TLI, which
arewrittenin C and are highly efficient.

2. Middle-level interfaces — such as the ACE C++
wrappers, Rogue Wave Net.h++, or ObjectSpace
System< ToolKit>, which can improve the correctness,
ease of use, portability and reusability of communica
tion software without sacrificing much performance.

3. Higher-level interfaces — such as DOC frameworks or
RPC toolkits, which provide a rich set of abstractions
and functionality, but are often highly inefficient for
certain types of data.

We've taken representatives from each of the three ap-
proaches and conducted experiments on their performance
when transfering large streams of data using TCP/IP over
Ethernet and ATM networks. The network programming
mechanisms compared below include C sockets, ACE C++
wrappers for sockets, and two implementations of CORBA.
Thebenchmark testsare model ed after performance-sensitive
applications written by the authors for an enterprise-wide
medical imaging system that transports multi-megabyte ra-
diology images across high-speed ATM LANs and WANs
[5, 6].

2 Performance Experiments

2.1 Test Platform and Benchmarks

The performance results in this section were collected us-
ing a Bay Networks LattisCell 10114 ATM switch connected
to a cluster of uni-processor SPARCstation 20 Model 50s
(showninFigure1). The LattisCell 10114 isa 16 Port, OC3
155Mbg/port switch. The SPARCstations contain 100 MIP

BAY NETWORKS
LATTISCELL
ATM SWITCH
(16 porT, OC3
155MBPS/PORT,
9,180 mTU)

SPARCSTATION
20 MODEL 50s
(ENT ATM
ADAPTORS
AND ETHERNET)

Figure1: Network/Host Environment for Benchmarks

Super SPARC CPUs running SunOS 5.4. The SunOS 5.4
TCP/IP protocol stack isimplemented using the STREAMS
communication framework [7]. Each SPARCstation 20 has
64 Mbytesof RAM and an ENI-155s-MF ATM adaptor card,
which supports 155 Megabits per-sec (Mbps) SONET mul-
timode fiber. The Maximum Transmission Unit (MTU) on
the ENI ATM adaptor is 9,180 bytes. Each ENI card has
512 Kbytes of on-board memory. 32 Kbytes is aloted per
ATM virtud circuit connectionfor receiving and transmitting
frames (for atotal of 64 K). This allows up to 8 connections
per card.

Data for the experiments was produced and consumed by
an extended version of thewidely availablet t cp [8] proto-
col benchmarking tool. This tool measures end-to-end data
transfer throughput in Mbps from a transmitter process to
a remote receiver process. The flow of user data is uni-
directional, with the transmitter flooding the receiver with a
user-specified number of data buffers. Various sender and
receiver parameters may be selected at run-time. These pa
rameters include the number of data buffers transmitted, the
size of data buffers, and the size of the socket transmit and
receive queues.

The following versions of t t cp were implemented and
benchmarked:

e Cverson—thisisthe standard t t cp program imple-
mented in C. It uses C socket callstotransfer and receive
dataviaTCP/IP.

e ACE C++ version — this version replaces al C socket
calsintt cp with the C++ wrappers for sockets pro-
vided by the ACE network programming components
(version 3.2) [9]. The ACE wrappers encapsul ate sock-
etswith typesafe, portable, and efficient C++ interfaces.

70 T

T
64k socket queue

60

a
o
T

ACE

Orbix Sequence

N
o
T

ORBeline Sequence

Orbix String
ORBeline String

w
o

Throughput (Mbps)

N
o

10 All Ethernet results

L L
0 20 40 60 80 100 120
Message Size (Kbytes)

Figure 2: C, ACE, Orbix and ORBéline Performance over
ATM and Ethernet

e CORBA versions — two implementations of CORBA
were used: version 1.3 of Orbix from IONA Technolo-
gies and version 1.2 of ORBeline from Post Modern
Computing. These versions replace all C socket cals
int t cp with stubsand skeletons generated from a pair
of CORBA interface definition language (IDL) specifi-
cations. One IDL specification uses asequence pa
rameter for the data buffer and the other usesast ri ng
parameter.

Each version of t t cp was compiled using SunC++ 4.0.1
with the highest level of optimization (- O4). The tim-
ing mechanisms, command-line options, socket options, and
communication protocols were held constant for all imple-
mentationsof t t cp. Only the connection establishment and
datatransfer mechanisms were varied.

2.2 Reaults

Weran aseries of teststhat transferred 64 Mbytesof user data
in buffers ranging from 1 byte to 128 Kbytes using TCP/IP
over Ethernet and ATM networks. Data buffers were run in
increments of 1 byte, 1 K, 2 K, 4K, 8K, 16 K, 32 K, 64
K, and 128 K sizes. Two different sizes for socket queues
were used: 8 K (the default on SunOS 5.4) and 64 K (the
maximum size supported by SUnOS 5.4).

Figure 2 summarizes the performance results for al the
benchmarksusing 64 K socket queuesover a155 MbpsATM
link and a 10 Mbps Ethernet (the 8 K socket queueresultsare
presented in Figures 3 and 6). The C and ACE C++ wrapper
versionsof t t cp obtained the highest throughput: 62 Mbps
using 8 K data buffers. In contrast, the Orbix and ORBeline
CORBA versions of t t cp peaked at around 39 Mbps with
64 K databuffersusing IDL sequences.

140

70

60

u
o

N
o

w
o

Throughput (Mbps)

N
o

C over ATM (8k socket queue)

10 All Ethernet Results

L L
60 80
Message Size (Kbytes)

40 100 120

Figure 3: C and ACE Performance over ATM and Ethernet

Theresultsfor Ethernet show much less variation, with the
performance for all tests ranging from around 8 to 8.7 Mbps
with 64 K socket queues. None of the Ethernet benchmarks
ran faster than 8.7 Mbps, which is 87 percent of the maxi-
mum speed of a 10 Mbps Ethernet. Although the absolute
throughput of t t cp isamost 8 times faster over ATM, the
relative utilization of the network channel speed was much
lower (i.e., 62 Mbps represents only 40 percent of the 155
Mbps ATM link).

The disparity between network channel speed and end-
to-end application throughput is known as the throughput
preservation problem. This problem occurswhen only apor-
tion of the available bandwidth is actualy delivered to ap-
plications. The throughput preservation problem stems from
operating system and protocol processing overhead (such as
datamovement, context switching, and synchronization). As
shown in Section 2.2.2, the throughput preservation problem
is exacerbated by contemporary implementations of DOC
frameworks like CORBA, which copy data multiple times
during fragmentation/reassembly, marshaling, and demar-
shalling.

Sections2.2.1 and 2.2.2 examinethese performance results
in detail and Section 3 presents recommendations based on
an analysis of the benchmark results.

221 C and ACE C++ Wrapper Implementations of
TTCP

Figure 4 shows the configuration of thet t cp driver for
the C and ACE C++ wrapper tests. For both these tests, the
sender process writes 64 Mbps of data directly to the socket
layer, which forwards it across the network to the receiver
process. The receiver process reads the data from the socket
and “consumes’ it.!

1Since these tests are only measuring network performance, the receiver
just records the number of bytes received and doesn’t actually process the

140

3: read(buf)

Receiver

Figure4: TTCP Configuration for C and ACE C++ Tests

Figure3illustratesthe performance resultsfrom the C and
ACE wrapper versions of ttcp over ATM and Ethernet.
The performance of C sockets and ACE C++ wrappers are
roughly equivalent. Both pesk at 62 Mbps over ATM using
8 K databuffersand 64 K socket queues. Thisindicates that
the performance penalty for using the ACE C++ wrappersis
insignificant, compared with using C library function calls
directly.

Figure 3 illustrates the impact of data buffer size on per-
formance. When the data buffers exceeded 8 K performance
began to decline, leveling off at around 48 Mbps with 64
K data buffers. This behavior is caused primarily by the
MTU size of the ATM network, which is 9,180 bytes. When
data buffers exceed the MTU size they are fragmented and
reassembled, thereby lowering performance.

Figure 3 aso illustrates the impact of socket queue size
on throughput. Larger socket queues increase the TCP win-
dow size, which alows the transmission of multiple TCP
segments back-to-back. In the case of ATM, increasing the
socket queue from 8 K to 64 K improvest t cp performance
significantly from 23 Mbps to 62 M bps.

The Ethernet results for large and small socket queues
show less variation than the ATM results. They peak at 8.4
Mbpswith 8 K socket queues and 8.7 Mbpswith 64 K socket
queues. In both cases, the factor limiting performance isthe
dow speed of the network.

2.2.2 CORBA Implementationsof TTCP

Figure 5 shows the configuration of t t cp for the CORBA
tests. For both these tests, the sender writes 64 Mbpsto the
receiver by invoking the send method on the TTCP stub.
The stub forwards the data across the network to the ORB on

data.

Figure5: TTCP Configuration for the CORBA Tests

the server. The ORB’sObject Adapter then performs demul -
tiplexing operationstolocatethe TTCP skeleton. Finally, this
skeleton passes the data up to the TTCP implementation ob-
ject by invokingasend upcall. Asbefore, the receiver just
records the number of bytes received, rather than processing
the data.

Figure6illustratestheresults of measuring two versions of
t t cp implemented with two different versions of CORBA.
The CORBA implementations were devel oped using single-
threaded versions of Orbix 1.3 and ORBeline1.2.

Extending t t cp to use CORBA required severa modi-
fications to the original C/socket code. All C socket cdls
were replaced with stubsand skel etons generated from apair
of CORBA interface definitions. One IDL interface uses a
seqguence to transmit the data and the other IDL interface
usesastri ng, asfollows:

typedef sequence<char> ttcp_sequence;
interface TTCP_Sequence

oneway void send (in ttcp_sequence ttcp_seq);

interface TTCP_String

{
oneway void send (in string ttcp_string);

h

Thesend operationsuseoneway semanticssincethet t cp
benchmarks measure the performance of uni-directional data
transfer. This behavior is consistent with the flow of com-
munication in electronic medical imaging applications and
video distribution.

Theclient-side of t t cp was modified as follows:

/1 Use locator service to acquire bindings.
TTCP_String *t_str = TTCP_String::_bind ();
TTCP_Sequence *t_seq = TTCP_Sequence::_bind ();

40 T

351

30

Results above for 64k socket queue

N
a1
T

Results below for 8k socket queue

Throughput (Mbps)
S
T

=
ol
T

10 All Ethernet Results J
——
5 — — — Orbix Sequence i
——*ORBeline Sequence
—-— Orbix String
‘ ‘ ‘ ‘ - ORBeline S‘tring
[,
0 20 40 60 80 100 120

Message Size (Kbytes)

Figure 6: Orbix and ORBeline Performance over ATM and
Ethernet

The _bi nd method is a factory generated by the IDL com-
piler from an IDL specification (such as TTCP_Sequence
and TTCP_St ri ng). This factory obtains CORBA object
references to object implementations of TTCP_Sequence
and TTCP_St ri ng located on a server. Object references
areopague, immutable handlesthat uniquely identify objects.
All CORBA object implementations must have an object ref-
erence before they can be accessed by client applications, and
all client applications must have an object reference before
they can access the object implementationsin the server.

Once object references are obtained, data buffers of the
appropriate size can be initialized and transmitted by calling
the IDL-generated send stubs, as follows:

/1 String transfer.

char *buffer = new char[buffer_size];
/1 Initialize data in char * buffer...

while (--buffers_sent >= 0)
t_str->send (buffer);

/1 Sequence transfer.

ttcp_sequence sequence_buffer;
/1 Initialize data in TTCP_Sequence buffer...

while (--buffers_sent >= 0)
t _seqg->send (sequence_buffer);

The server-side was modified to create object implemen-
tationsfor TTCP_Sequence and TTCP_St r i ng. CORBA
IDL compilersgenerate skel etonsthat trand ate IDL interface
definitions(suchasTTCP_Sequence) into C++baseclasses
(such as TTCP_SequenceBOAI npl). Each IDL opera
tion (such asoneway voi d send) is mapped to a corre-
sponding C++ purevirtual method (suchasvi rt ual voi d
send). Programmers then define C++ derived classes that

140

override these virtua methods to implement application-
specific functionality, as follows:?

/1 Inplenentation class for |IDL interface
/1 that inherits fromautomatically-generated
/1 CORBA skel eton cl ass.

class TTCP_Sequence_i
: virtual public TTCP_SequenceBQAI npl

{
publi c:
TTCP_Sequence_i (void): nbytes_ (0) {}

/1 Upcall invoked by the CORBA skel eton.
virtual void send

(const ttcp_sequence & tcp_seq,

CORBA: : Envi ronnment & T_env)

thi s->nbytes_ += ttcp_seq. _| ength;

}
...

private:
/1 Keep track of bytes received.
u_l ong nbytes_;

The server-sideusesthe CORBA i npl _i s_r eady event
loop to demultiplex incoming requests to the appropriate ob-
ject implementation, as follows:

int main (int argc, char *argv[])

{
/'l 1 mplenents the Sequence object.
TTCP_Sequence_i ttcp_sequence;

/1 1mplenents the String object.
TTCP_String_i ttcp_string;

/1 Single-threaded event |oop that handles
/1 CORBA requests by making call backs to
/1 user-supplied object inplenentations

/1 of TTCP_Sequence_i and TTCP_String_i.
CORBA: : BOA: : i npl _is_ready ();

/* NOTREACHED */
return O;

By comparing Figure 6 with Figure 3 it is clear that
the CORBA-based t t cp implementations ran considerably
dower thanthe C and ACE wrapper versionsonthe ATM net-
work, particularly for 8 K data buffers. The highest through-
put (39 Mbps) was obtained by the Orbix sequence imple-
mentation using 64 K data buffers and 64 K socket queues.
The throughput leveled off beyond 64 K data buffers.

Unlike the C and ACE wrapper results in Figure 2, the
performance of the CORBA versions did not decrease when
thesize of thedatabuffersexceeded 8 K. Thisbehavior stems
from the higher fixed overhead of CORBA (such as demul-
tiplexing and memory management) that lowers its perfor-
mance for small buffer sizes. Asthebuffer sizeincreases, the
relative impact of thisfixed overhead is reduced. However,
asthe size of the buffersincrease so doesthe overhead of data

2Both CORBA implementations of t t ¢p used inheritance because OR-
Beline 1.2 din’t support Orbix’'s “TIE” technique, which uses object com-
position to associate application-specific CORBA class implementations to
the generated IDL skeletons. Both Orbix and ORBeline 2.0 now support the
“TIE" technique.

[Test | %Time | #Calls | msec/call | Name I
C sockets 99.6 527 92.8 | _write
(sender)

C sockets 99.3 7201 6.2 | _read
(receiver)
ACE C++ wrapper 99.4 527 87.3 | _write
(sender)
ACE C++ wrapper 99.6 7192 6.2 | _read
(receiver)
Orbix Sequence 94.6 532 89.1 | _write
(sender) 4.1 2121 1.0 | memcpy
Orbix Sequence 927 7860 6.1 | _read
(receiver) 4.8 2581 0.6 | memcpy
Orbix String 89.0 532 85.6 | _write
(sender) 4.6 2121 1.1 | memcpy
41 2700 0.7 | strlen
Orbix String 86.3 7744 5.7 | _read
(receiver) 55 6740 04 | strlen
45 2581 0.9 | memcpy
ORBeéline Seguence 91.0 551 749 | _write
(sender) 5.2 6413 0.4 | memcpy
18 1032 0.8 | __sigaction
ORBeline Sequence 89.0 7568 58 | _read
(receiver) 51 7222 0.3 | memcpy
33 1071 15 | _poll
ORBeéline String 83.8 551 83.9 | _write
(sender) 54 920 3.2 | strepy
43 5901 04 | memcpy
39 1728 12 | strlen
11 1032 0.6 | __sigaction
ORBeline String 85.4 7827 55 | _read
(receiver) 4.6 6710 0.3 | memcpy
4.2 1702 1.3 | strlen
28 1071 1.3 | _poll

Figure7: High cost Functionsfortt cp Tests

copying. Asshown below, datacopying ultimately limitsthe
throughput achievable with the CORBA implementations.
Detailed profiling and examination of the IDL stubs and
skeletonsgenerated by Orbix and ORBelinerevea ed that the
CORBA overhead stems from the following sources:

e Data Copying: The data buffers exchanged between the
sender andreceiverint t cp aretreated asastream of untyped
bytes. Thisis consistent with the type of data transmitted by
high-performance streaming applicationslike teleconferenc-
ing and medical imaging. In asense, the tests reported here
represent the “best” case for the CORBA implementations.
Since the data is untyped, the CORBA presentation layer
doesn’t need to perform complex marshalling to handle byte-
ordering differences between sender and receiver.3
Although marshalling was not required for our tests, the
CORBA implementationsstill incurred significant datacopy-
ing overhead. We used the UNIX execution profiler (pr of)
to pinpoint the sources of this overhead. The C++ compiler
was directed to instrument the source code with monitoring
instructionsand pr of was then used to measure the amount
of time spent in functionsduring program execution. Figure7

3When when transfering richly-typed data instead of the untyped-data
usedinthet t cp tests, CORBA implementations incur much higher over-
head, achieving only around 30 percent of the performance of hand-crafted
C and C++ marshalling [10].

liststhefunctionswhere themost timewas spent sending and
receiving 64 Mbytesusing 128 K databuffersand 64 K socket
queues.

Theread and wri t e system calls accounted for more
than 99% of the execution time in the C and ACE C++
wrapper implementations of t t cp. Note that although the
data was transmitted as 512 separate 128 K buffers it was
read by the receiver in much smaller chunks of around 8 K.
Thisillustrates the fragmentation and reassembly performed
by the ATM network adaptors (whose MTU is 9,180 bytes).

Ther ead andwr i t e system calls dominated the execu-
tion of the CORBA implementations, as well. Unlikethe C
and ACE wrapper versions, however, these implementations
spent 4 to 15 percent of their time performing other tasks,
such as copying and/or inspecting data (mencpy, st r cpy,
and st rl en), checking for activity on other 1/0 handles
(-pol I'), and manipulatingsignal handlers(__si gact i on).
This shows that the highest cost tasks involved data copying
and datainspection. The IDL stubs and skeletons copy data
multiple times (e.g., from the TCP data buffer into a mar-
shalling buffer, and then again into the parameter passed to
thesend upcall).

The test results also illustrate that the choice of CORBA
IDL parameter datatypes has a significant impact on perfor-
mance. Thesequence implementationsshownin Figure 6
peaked at 39 Mbps for Orbix and 38 Mbps for ORBeline. In
contrast, the st ri ng implementations peaked a 34 Mbps
for Orbix and 30 Mbpsfor ORBeline. The performance vari-
ation betweenthesequence andst r i ng resultsaredueto
differencesin their IDL-to-C++ mappings. In particular, the
IDL sequence mapping contains a length field, whereas
the st ri ng mapping does not. The generated IDL stubs
and skeletons use this length field to avoid searching each
sequence parameter for aterminating NUL character. In
contrast, the IDL st ri ng implementationsusest r| en to
determine the length of their parameters.

The performance variation between Orbix and ORBeline
is partially explained by the differences in their message
fragmentation/reassembly implementations, as well as the
design of their socket event handling. Asshownin Figure7,
ORBéline copiesdataapproximately 3 moretimesthan Orbix
onthesender and receiver for bothsequence andst ri ng.

Inaddition, ORBdineinvokesthesi gact i onandpol |
system callstwicefor each message that is sent and received,
respectively. The si gacti on cdl disables the SI GPlI PE
signal duringawr i t e system call. On most UNIX systems
the default behavior on Sl GPI PE is to exit the program.
S| GPI PE occurs when data is sent over a socket whose
peer has reset the connection. To unobtrusively prevent this
from happening, ORBeline1.2 replaces any existing handlers
with SI G.I GNdisposition beforethewr i t e and resetsit to
the original disposition following the wri t e. The Orbix
implementation does not perform these operations, which
is one reason why ORBelin€'s throughput was consistently
lower than Orbix (as shown in Figure 6).#

40ORBéline 2.0 eliminates this additional signal handler overhead.

e Demultiplexing: Each CORBA reguest message con-
tains the name of its intended remote operation, which is
represented as a string. Orbix demultiplexesincoming mes-
sages to the appropriate upcall by performing alinear search
through the list of operations in the IDL interface. In the
caseof t t cp, linear search suffices sincethere was only one
choice (send). However, this strategy doesn’t scale well
since search time grows linearly with the number of opera-
tionsinthe IDL interface. Moreover, the order of operations
will determine the demultiplexing performance. Therefore,
operations in Orbix should be ordered by decreasing fre-
guency of use.

In contrast, ORBéline use hashing to determine the appro-
priate upcall associated with an incoming request. Hashing
is likely to scale better for large IDL interfaces, but may
be less efficient for small interfaces due to the overhead of
computing the hash function. To handle these and other
cases efficiently, the demultiplexing of requests can bene-
fit from adaptive optimizations. These optimizations select
customi zed strategi es depending on the propertiesof the IDL
interface. For example, perfect hashing or some type of in-
tegral indexing scheme could be negotiated between sender
and receiver to improve performanceand to shield devel opers
from having to manually tunetheir IDL interfaces.

e Memory allocation: IDL skeletons generated automat-
icaly by a CORBA IDL compiler do not know how the
user-supplied upcall will usethe parameters passed to it from
the request message. Thus, they use conservative memory
management techniquesthat dynamically allocateand release
copies of messages before and after an upcall, respectively.
These memory management policies are important in some
circumstances (e.g., if an upcal is used in a multi-threaded
application). However, this strategy needlessly increases
processing overhead for streaming applications likett cp
that consume their dataimmediately without modifying it.

3 Evaluation and Recommendations

Section 2.2 compared the performance of C, ACE wrapper,
and CORBA versions of tt cp in terms of their ability to
transfer large quantities of data using TCP/IP over Ethernet
and ATM networks. In thissection, we evaluate these results
and present recommendations for using DOC frameworks
over high-speed networks.

e Know your requirements. It's important to evaluate
toolsbased on empirical measurements and aredlistic under-
standing of application requirements, rather than adopting a
particular communication model or implementation uncon-
ditionaly. Although we focus on performance, your choice
of communication mechanisms should consider other fac-
tors, as well. For instance, learning curve, cost of tools and
run-time licenses, the ability to rapidly prototype, and time
to market are just some of the requirements that guide the
selection of a particular communication mechanism.

If performance is your only requirement, using low-level
mechanisms may be the best choice. At the moment, the
C-level socket APl or C++ wrappers for sockets will pro-
vide higher throughput than DOC frameworks over TCF/IP.
If that's till not enough, and you don’t need reliability or
portability, bypass TCP/IP and program directly to the high-
speed data link layer (e.g., ATM or FDDI) and/or get hard-
ware support for your data streams. This approach is often
used in high-speed video-on-demand systems [11].

On the other hand, if your requirements call for flexibil-
ity, maintainability, and reusability, you should consider a
higher-level DOC framework such as CORBA or Network
OLE. Although the performance will be lower, these DOC
frameworks are val uabl e since they automate many common
network programming tasks such as object selection, loca
tion, and activation, as well as parameter marshalling and
framing.

e Know your environments. If you have a network in
place, useatt cp test to measure its maximum achievable
throughput.® If your project has already deployed a software
communication framework, test its throughput. Compare
what you have with what is possible. You will undoubtedly
find that the overhead added by the communication frame-
work (i.e, CORBA, RPC, etc.) is just one aspect of high-
performance communication. In particular, the overhead of
the OS and network adapters is often much more signif-
icant than the overhead of CORBA in well-tuned ORBs.
Ultimately, the best solution is an integrated approach that
attacks performance overhead at multiple levels of abstrac-
tion (e.g., network adapter, OS kerndl, transport protocols,
demultiplexing, presentation layer, data copying, €etc.).

If your applications don't push the limits of your net-
work’s potentia (and it's likely they won’t unless you're
on a low-speed Ethernet or Token-Ring) consider the next
step. If your requirements call for better performance, and
you don’'t have the time, resources, or inclination to develop
your own communication infrastructure, CORBA is a good
choice. Good CORBA implementationswill achieve reason-
able performance with minimal development time.

e Break the golden rule of abstraction: One of the often
cited benefits of CORBA is that it abstracts away from the
lower-layer networking details. Therefore, it's tempting to
think that we can write applicationsusing CORBA and never
worry about what's going on down below. Unfortunately,
thingsaren't quite this easy when performance-sensitive ap-
plications are run over high-speed networks. In this case,
you'll inevitably need access to lower-level mechanisms to
maximize your application performance.

For example, it’sparticularly important to increasethe size
of the socket queuesto thelargest val ues supported by the OS.

5The t t cp benchmarks and ACE source code described in this pa-
per are freely available and may be obtained via the WWW at URL
http://ww. cs.wistl.edu/ schm dt/ACE. htm . We encour-
age others to replicate our t t cp experiments using different implementa-
tions of CORBA and other network/host platforms and report the results.

Thisisillustrated by the considerable difference in through-
put for the8 K and 64 K socket queuesin Figures3and 6. In
fact, thisfigure showsthat the choice of socket queuesize has
more impact than the choice of communication modd (i.e,
C/C++ vs. CORBA). The dowest communication model
(CORBA) is faster with 64 K socket queues than the faster
communication model (C/C++) with 8 K queues.

¢ Demand that CORBA implementors provide hooks:
DOC frameworksthat allow access to|ow-level mechanisms
(such as socket queues) are destined to perform poorly when
used over high-speed networks. For this reason, Orbix pro-
vides hooks to enlarge socket queues viaset sockopt by
invoking a user-defined callback function whenever a new
socket is connected. Likewise, ORBeline 2.0's event han-
dling mechanism gives clientsand servers access to the ORB
at alower level (including accessto connection handles). Un-
fortunately, not all ORBs provide these hooks yet, so make
sure to check with your ORB vendors before committing to
aparticular product.

The need for hooks a so surfaces when trying to integrate
multiple event loops. ORB event loops must be accessible
if developers are to use CORBA for large-scale projects that
involveother tools(such as GUI event loops, which typically
usetheir own event loops[6]). Thus, ORB event loops must
either be able to surrender control to another event loop or
assume control of event loops running in the same process
space. The most stubborn event loop typically wins. For
instance, on Windows platformsthe GUI event loopistightly
coupled with the operating system, which makes it hard for
an ORB event loop to assume full control.

Orbix alowsuserstoreplacethedefault event loop through

theuseof CORBA: : Or bi x. regi st er| OCal | back and
CORBA: : Or bi x. processNext Event .
CORBA: : O bi x. regi sterl OCal | back gives users
access to the socket descriptors being used by the ORB.
CORBA: : Or bi x. processNext Event dlowsthe ORB
to process a singleincoming request. By combining the two,
developerscan easily integrate Orbix with theirownsel ect
loop. Orbix integrates with the Windows event loop inter-
nally. However, developers must explicitly integrate with
the X Windows event loop usingr egi st er | OCal | back
and pr ocessNext Event . Orbix is shipped with an Xwin
demo that shows how this can be done.

For those who want to integrate ORBdine with
Graphical User Interfaces, amost no development needs
to be done. ORBeine offers different implementa
tions of their Dispatcher event loop. These include
an XDispatcher for X Windows, a WinDispatcher for
Windows and Windows NT, and even a GaaxyDis
patcher. For more intimate control, developers can use
Di spat cher: : di spat ch in combination with ORBe-
line event handlers. Di spat cher: : di spat ch tells the
ORB to process the next incoming reguest, and ORBeline
event handlers can be used to access the socket descriptors
used by the ORB. For even more control, ORBedine also
allows you to replace wholesale the implementation of the

Dispatcher used by their ORB.

e Understand CORBA implementation issues: Asusers
and organizations migrate to high-speed networks, the per-
formance limitations of contemporary CORBA implemen-
tations will become more evident. Hopefully, this will
encourage vendors to optimize their ORBs for streaming
performance-sensitive applications running over high-speed
networks. Key areas of optimization include data copying
and data inspection, presentation layer conversions, mem-
ory management, and receiver-side demultiplexing and dis-
patching [10]. In particular, implementations must reduce
the number of times that large data buffers are copied in the
endsystems.

However, users can take stepsto increase the performance
of their ORBSs. In particular, you can use IDL constructs that
minimize client and server stub marshalling reguirements
(e.g. usesequences ratherthanst ri ngs). Althoughthis
violatessome of thefundamental abstractionsof CORBA, it's
still easier than programming at the socket level. Idealism
aside, if it works, useit.

e Mix and match: Until CORBA optimizationsare widely
implemented i n production systems, we need tofind solutions
for today. Our solution has been to integrate higher-level
DOC frameworks with high-performance obj ect-oriented en-
capsulations of lower-level network programming interfaces
(such asthe ACE C++ wrappersfor socketsdescribed in [4]).
We' vebuilt aframework that combines CORBA and theACE
C++ wrappers and used it for a production high-speed tel-
eradiology system that transfers large, multi-Mbyte medical
images over ATM [6]. In this system, CORBA is used as a
signaling mechanism toidentify endpointsof communication
in a location-independent manner. The ACE C++ wrappers
arethen used to establish point-to-point TCP connectionsand
transmit bulk data efficiently across the connections. This
strategy builds on the strengths of both CORBA and ACE.

4 Concluding Remarks

Animportant class of applicationsrequire high-performance
streaming communication. Bandwidth-intensive and delay-
sensitive streaming applicationslikemedical imaging or tele-
conferencing are not supported efficiently by contemporary
CORBA implementations due to data copying, demultiplex-
ing, and memory management overhead. As shown in Sec-
tion 2, thisoverhead is often masked on low-speed networks
like Ethernet and Token Ring. On high-speed networks like
ATM or FDDI, however, thisoverhead becomes a significant
factor limiting communication performance.

The performance results and recommendations in this pa-
per are not intended as a criticism of the CORBA model or of
particular ORB vendors. It isbeyond the scope of this paper
to discuss the benefits (such as extensibility and maintain-
ability) of CORBA, aswell asitslimitations. We would like
to thank IONA and PostModern Computing for their help in
supplying the CORBA implementations used for these tests.

Both companies are currently working to eliminate the per-
formance overhead described in this paper. We expect their
forthcoming rel eases to perform much better over high-speed
networks.

References

[1] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 ed., July 1995.

[2] J. Dilley, “OODCE: A C++ Framework for the OSF Dis-
tributed Computing Environment,” in Proceedingsof the Win-
ter Usenix Conference, USENIX Association, January 1995.

[3] Microsoft Press, Redmond, WA, Object Linking and Embed-
ding Version 2 (OLE2) Programmer’s Reference, Volumes 1
and 2, 1993.

[4] D. C. Schmidt, “IPC_SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[5] G. Blaine, M. Boyd, and S. Crider, “Project Spectrum: Scal-
able Bandwidth for the BJC Health System,” HIMSS, Health
Care Communications, pp. 71-81, 1994.

[6] I. Pyarali, T. H. Harrison, and D. C. Schmidt, “Design and
Performance of an Object-Oriented Framework for High-
Performance Electronic Medical Imaging,” in Proceedings
of the 2"¢ Conference on Object-Oriented Technologies and
Systems, (Toronto, Canada), USENIX, June 1996.

[7] D.Ritchie,“A Stream Input—Output System,” AT& T Bell Labs
Technical Journal, vol. 63, pp. 311-324, Oct. 1984.

[8] USNA, TTCP: a test of TCP and UDP Performance, Dec
1984.

[9] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[10] A. Gokhale and D. C. Schmidt, “Measuring the Performance
of Communication Middleware on High-Speed Networks,” in
Proceedingsof SGCOMM ' 96, (Stanford, CA), ACM, August
1996.

[11] J. R. Cox, W. D. Richard, K. Krieger, and B. Gottlieb, “The
Washington University Multimedia System,” in ACM Multi-
media System, pp. 120-131, Springer-Verlag, Jan. 1993.

