
Object Interconnections

Using the Portable Object Adapter for Transient
and Persistent CORBA Objects (Column 12)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 60 Aberdeen Ave., Cambridge, MA 02138

This column will appear in the April, 1998 issue of the
SIGS C++ Report magazine.

1 Introduction

In this column, we continue our presentation of the new
OMG Portable Object Adapter(POA) [1]. The POA was
adopted by the OMG in mid-1997 as a replacement for
the Basic Object Adapter(BOA), which was the original
CORBA object adapter. As we described in our last col-
umn, the BOA was a major source of portability problems for
CORBA applications due to its imprecise specification. Seri-
ous users of CORBA can attest to the frustrations of porting
applications across multiple ORBs.

Rather than trying to repair the BOA, which would have
required all CORBA applications written to the original
specification to change, the OMG opted to create a whole
new object adapter. ThisPortable Object Adapter(POA)
specification is much more precise in its use of terminol-
ogy than the old BOA specification. Thus, our last column
was devoted almost entirely to explaining not only object
adapters in general, but the POA terminology as well.

Our next several columns will examine detailed examples
of how the POA can be used by real-world CORBA C++ ap-
plications. The POA specification is rather daunting, so we
can’t cover all the features and use-cases in a single column.
Therefore, we’ll start by explaining the usage of several POA
policies described in our previous column [2]. Our primary
focus in this column will be on the POA features that sup-
port transientand persistentCORBA objects. Subsequent
columns will explore other POA features and discuss the cir-
cumstances under which various features are best used.

2 Developing a Simple Server with the
POA

Our last column briefly described a very simple POA-based
C++ server program. The following is a slightly revised ver-
sion of this program. Each important step is highlighted in
comments and described below.

int main (int argc, char **argv)

{
// 1. Initialize the ORB.
CORBA::ORB_var orb =

CORBA::ORB_init (argc, argv);

// 2. Obtain an object reference for
// the Root POA.
CORBA::Object_var obj =

orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa =

PortableServer::POA::_narrow (obj);

// 3. Create a servant. This C++ object
// ultimately handles client requests.
Null_Servant_Impl servant;

// 4. Create a CORBA object and implicitly
// register the servant with the RootPOA.
Null_var null_impl = servant._this ();

// 5. Export the new object reference, i.e.,
// make the <null_impl> object available to
// potential clients (not shown).

// 6. Activate the POA, i.e., allow it to
// listen for requests.
PortableServer::POAManager_var poa_mgr =

poa->the_POAManager ();
poa_mgr->activate ();

// 7. Run the ORB’s event loop.
orb->run ();

// 8. The ORB is shutdown.
}

Let’s examine this program again and study each of its
steps in more detail:

1. Initialize the ORB: First, we must call the standard
ORBinit method. This is a static member function that
plays the role of an “ORB factory.” Portable CORBA appli-
cations must make this call to initialize the ORB in a process.

An optional third argument toORBinit allows a multi-
ORB application to initialize a specific ORB. Eliding this ar-
gument results in the “default” ORB being initialized. This
behavior is perfect for our application since only special ap-
plications that link multiple ORBs together in a single pro-
cess need to supply the third argument. The return value of
a successful call toORBinit is an object reference for the
initialized ORB.

2. Obtain an object reference for the Root POA: Once
the ORB is initialized, the ORB object reference is used to

1

obtain a reference to theRoot POAin this ORB process. As
we explained in our last column, a single server process may
contain a hierarchy of nested POA instances, as shown in
Figure 1. However, all servers contain at least one distin-

SERVANTSSERVANTS

SERVANTSSERVANTS

Root POARoot POA

ACTIVEACTIVE OBJECTOBJECT MAPMAP

SERVANTSSERVANTS

OOBJECTBJECT IDID

OOBJECTBJECT IDID

OOBJECTBJECT IDID

PERSISTENTPERSISTENT

POAPOA

OOBJECTBJECT IDID

OOBJECTBJECT IDID

SERVANTSSERVANTS

SERVANTS

Figure 1: Hierarchical Nesting of POAs

guished POA called the Root POA.
An object reference for the Root POA is obtained

by invoking resolve initial references on the
ORB. This operation provides a miniature Naming ser-
vice that bootstraps a CORBA application with es-
sential object references. Object references obtained
from resolve initial references can be refer-
ences to per-ORB Singleton [3] services, such as the
Root POA or Interface Repository. Applications can
also obtain references to services from which other ob-
ject references can be obtained, such as the Naming
Service or the Trader Service [4]. Since the return
value of resolve initial references is typed as
CORBA::Object , the result must be narrowed to the de-
sired type, which in this case isPortableServer::POA .

Note that the object references for both the ORB and the
Root POA have slightly different semantics than those of
normal CORBA objects. This difference stems from the fact
that the ORB and all POAs can only have their methods in-
voked from within the process,i.e., their methods cannot be
invoked remotely. The OMG Portability Enhancement Spec-
ification describes objects with this property as being “local-
ity constrained.” In general, the locality constraint property
is shared by all CORBApseudo-objects, which are objects
that comprise the local ORB implementation.

3. Create a servant: A servantis created by defining an
instance of our C++ implementation class, which is called
Null Servant Impl (not shown). Our previous column
explained in detail that a servant is a programming language
object capable ofincarnating, i.e., providing the implemen-

tation for, a CORBA object. Upon creation, the servant is
just another C++ object. Until it has been registered with a
POA, the servant lives only in the (local) C++ world, has no
association with any CORBA object, and therefore cannot be
accessed by a remote client.

4. Create a CORBA object: A CORBA object iscre-
atedby invoking the this function of the newly-created
servant, which we’ve callednull impl for simplicity.
Due to the policies supported by Root POA, especially its
IMPLICIT ACTIVATION policy, invoking the servant’s
this function outside the context of a CORBA request in-

vocation results in the creation of atransientCORBA object.
Section 3.1 describes transient CORBA objects in detail and
contrasts them withpersistentCORBA objects.

In addition to creating a transient CORBA object, the
this operation also implicitly registers the servant with the

active object mapin the servant’s default POA, which is the
RootPOA in this example. Ultimately, the POA uses the
active object map to demultiplex incoming CORBA requests
to the appropriate servant [5], so that the servant’s designated
C++ method can be dispatched automatically.

The type of the object reference returned bythis is de-
termined by the most-derived IDL interface supported by the
servant. Since this example is not intended to focus on the
IDL aspects of our CORBA object, our IDL interface is ex-
tremely simple,i.e.:

interface Null { void op (); };

The return value of this is allocated dynamically.
Therefore, it must be released by the caller. To sim-
plify memory management, we assign the return value to
a Null var . The OMG IDL compiler generates this C++
smart pointer forNull object references. In general, the use
of smart pointers,i.e., instances ofvar types, ensures that
resources allocated locally for an object reference are auto-
matically reclaimed once thevar goes out of scope.

5. Export the new object reference: Once the CORBA
object has been created, we export it to interested clients.
Typically, this involves the use of a location service, such as
the Naming service or Trader service. Again, since our focus
is on the POA we’ve omitted this step here. Future columns
will examine CORBA location services in more depth.

6. Activate the POA: After the CORBA object is created,
we can allow our POA to process incoming requests. The re-
quest processing states of a POA are controlled by its associ-
atedPOAManager object, which can be accessed using the
POA::the POAManageroperation as shown in the exam-
ple.

All POAManagers are created in aholdingstate. In this
state, all requests sent to the POA are held in a queue. To
allow requests to be dispatched, thePOAManager associ-
ated with the Root POA must be switched from theholding
state to theactivestate. This transition is accomplished by
invoking thePOAManager::activate operation.

2

7. Run the ORB’s event loop: Ultimately, the ORB itself
must be told to start handling incoming requests. This may
seem redundant since we’ve already activated request han-
dling for the Root POA, but it’s actually quite handy. For
instance, the application may want to share the only thread
in a single-threaded server between the POA and some other
event loop, such as a GUI event handling loop.

Putting a blockingrun operation on the POA would mean
it could take over the main thread completely. Not only
would this prevent the GUI handlers from receiving their
events, but any other POAs in the process would be pre-
vented from receiving and dispatching CORBA requests.
In fact, in a server program composed of independently-
developed component libraries, the programmain may not
have access to all the POAs that are created in the process.
Therefore, it could not share the main thread with all of them.
For these reasons, theORB::run call serves as a centralized
starting point to allow all active POAs to start receiving re-
quests.

8. The ORB is shutdown: Eventually, the server process
either exits cleanly or exits abortively. A clean exit may oc-
cur because an operation upcall or another thread in the pro-
gram invokesORB::shutdown on anorb pointer, which
causes itsORB::run to return. An abortive exit can occur
due to an overall system shutdown or by a system adminis-
trator killing the process.

This completes our detailed analysis of our small, yet
functional, POA-based server program. As you can see, the
POA allows simple servers to be written simply, mainly due
to the sensible defaults for the policies of the Root POA.
However, as we’ll see in the following section and in sub-
sequent columns, the entire range of POA policies provides
considerable flexibility and support for CORBA server ap-
plications.

3 CORBA Object Lifetime

The focus of the remainder of this article is how the POA
supports different policies for managing the lifetime of
CORBA objects.

3.1 Transient vs. Persistent Objects

Once the server process described in Section 2 exits, the
CORBA object created by the program no longer exists. This
is because it was created as atransientobject. Transient ob-
jects have a lifetime bounded by the lifetime of the process
in which they are created.

The key to understanding transient objects is to recog-
nize that if our original server program was restarted, it
would create a new transient CORBA object with a com-
pletely different object reference. Therefore, any clients still
holding references to the previous CORBA object would re-
ceive aCORBA::OBJECTNOTEXIST exception if they

used those old object references to attempt request invoca-
tions. Note that compliant ORBs must not allow clients to
use old object references to successfully reach the new tran-
sient CORBA object. This property must hold even if the
server program were restarted on the same host using the
same communications port to receive requests.

Transient CORBA objects can be useful for certain things
like callback objects, such as the event notification service
described in [6]. In this case, once the process goes away, re-
ceiving a callback or event notification is probably no longer
a necessity.

However, many CORBA applications must be able to exit
and then later start back up. For these applications, it is es-
sential that clients still be able to invoke requests on their
original, persistentCORBA objects. A persistent CORBA
object is one that outlives the process in which it’s created.
As we explained in our last column, the use of the over-
loaded term “persistent” in this context does not imply that
the CORBA objects are stored in databases when inactive.
Rather, it refers to the fact that the lifetimes of such CORBA
objects “persist” across server process activation and deacti-
vation cycles.

If a client invokes a request on a currently-inactive persis-
tent object, the ORB must ensure that a process to hold the
object is created transparently and that the request reaches
the object. Any ORB that doesn’t do this is simply not a
CORBA-compliant ORB, though it may still be useful for
many common use-cases.

An example of an application that may require persistent
objects is the rootNamingContext object in a Naming
server for a workgroup. Typically, thisNamingContext
serves as a bootstrapping point through which client appli-
cations discover other object references. These object refer-
ences can subsequently be used to access other departmental
resources.

Using a transient object for the rootNamingContext
would result in clients having to continually update their root
NamingContext references. However, this may not be
possible because administrator privileges might be required
for update. Thus, the rootNamingContext object is an
ideal candidate for being a persistent CORBA object.

3.2 Programming a Persistent CORBA Ob-
ject with the POA

The following two changes must be made to make the server
in Section 2 contain a persistent object rather than a transient
object:

1. The object reference must not be created using the
Root POA: The lifespan policy of the Root POA is TRAN-
SIENT, not PERSISTENT. Therefore, another POA with the
PERSISTENT lifespan policy must be created and used.

2. The CORBA object must not be implicitly activated:
Our invocation of this on our servant causes the POA to
generate theObjectId of our object for us. We need to

3

control theObjectId explicitly so that we can ensure that
the same id is used for each activation of the server process.

The example below includes the code required to effect
these changes:

int main (int argc, char **argv)
{

// Initialize the ORB.
CORBA::ORB_var orb =

CORBA::ORB_init (argc, argv);

// Obtain an object reference for
// the Root POA.
CORBA::Object_var obj =

orb->resolve_initial_references ("RootPOA");
PortableServer::POA_var poa =

POA::_narrow (obj);

// (1) Create the desired POA policies.
CORBA::PolicyList policies;
policies.length (2);
policies[0] =

poa->create_lifespan_policy
(PortableServer::PERSISTENT);

policies[1] =
poa->create_id_assignment_policy

(PortableServer::USER_ID);

// (2) Create a POA for persistent objects.
PortableServer::POAManager_var poa_mgr =

poa->the_POAManager ();
poa = poa->create_POA ("persistent",

poa_mgr,
policies);

// (3) Create an ObjectId.
PortableServer::ObjectId_var oid =

string_to_ObjectId ("my_object");

// Create a servant to service
// client requests.
Null_Servant_Impl servant;

// (4) Register the servant with
// the POA explicitly.
poa->activate_object_with_id (oid, &servant);

// Allow the POA to listen for requests.
poa_mgr->activate ();

// Run the ORB’s event loop.
orb->run ();

// ...
}

The four primary modifications to the code needed to sup-
port a persistent CORBA object, rather than a transient one,
are marked by numbered comments, which are described be-
low.

1. Create the desired POA policies: In the code marked
with comment (1) a list of POAPolicy objects is created.
The two policies required are:

� Persistent Lifespan: Make the POA support persis-
tent objects rather than the default transient objects. This
policy is selected by calling the POA policy factory opera-
tion create lifespan policy with thePERSISTENT
enumeral.

� User-supplied ObjectId: Rather than allowing the
POA to supply an object identifier to identify the object

within that POA, we choose to supply our ownObjectId .
This policy is also selected by calling the POA policy fac-
tory operationcreate id assignment policy with
theUSERID enumeral.

2. Create a POA for persistent objects: The second
change required to support persistent objects is to create a
new POA with the policies created in the previous step. All
POAs except the Root POA are created as children of other
POAs, and they are logically nested under their parent POAs,
as shown in Figure 1.

Our new POA is created by invokingcreate POAon
the Root POA. This method is passed a name for the new
POA (i.e., ”persistent”), aPOAManager (i.e., the one from
the Root POA), and aPolicyList . Once the new POA
is created, this program no longer needs its reference to the
Root POA, so we overwrite it with the reference to the new
POA. Theresolve initial references method on
the ORB can always be used to access the Root POA again
if necessary.

3. Create an ObjectId: After the comment marked
(3) is our third code change: which causes the creation
of a PortableServer::ObjectId 1 for our persistent
CORBA object. TheObjectId uniquely identifies the ob-
ject within the scope of the POA with which it’s registered.
It is not a globally unique identifier; it’s only intended to dis-
ambiguate objects within the scope of one POA. As has al-
ways been the case in CORBA, objects are ultimately identi-
fied by their object references, and the POA does not change
that.

An ObjectId is defined as an unboundedsequence
of octet . However, it’s usually easiest just to use a string
for the object identifier and convert it to anObjectId . The
OMG C++ mapping for the POA contains special conver-
sion functions,e.g., string to ObjectId , for just this
purpose.

As usual forsequence return values, thesequence is
returned by pointer and the caller is responsible for deallo-
cating it. Therefore, we assign ourObjectId pointer to an
ObjectId var to ensure automatic cleanup.

4. Register the servant with the POA explicitly: Finally,
the fourth change is to explicitly activate the CORBA object.
This is done by callingactivate object with id on
the POA and passing it ourObjectId and a pointer to our
servant. Internally, the POA stores theObjectId and the
servant pointer in its active object map, which is used for
subsequent request demultiplexing and dispatch.

3.3 Creating a Persistent Object Reference

The revised program is missing one important step:
the creation of the object reference for the persis-
tent CORBA object. It is important to note that the
activate object with id operation doesnot create

1There is a different ObjectId type in the CORBA module–be careful not
to confuse them.

4

an object reference; it only registers the servant into the POA
and reactivates the CORBA object. Thus, in its original form,
our program only provides a place in which the already-
existing CORBA object can be reactivated. This leads to the
question of exactly how this persistent CORBA object was
created in the first place.

To create the object reference, let’s change the code near
our call to activate object with id near comment
(4) as follows:

PortableServer::ObjectId_var oid =
string_to_ObjectId ("my_object");

// Check command-line arguments to see if
// we’re creating the object or reactivating it.
if (argc == 2 && strcmp (argv[1], "create") == 0)

{
// Create an object reference.
CORBA::Object_var obj =
poa->create_reference_with_id (oid,

"IDL:Null:1.0");

// Stringify it and write it to stdout.
CORBA::String_var s =

orb->object_to_string (obj);
cout << s.in () << endl;

}
else

{
// Create a servant to service
// client requests.
Null_Servant_Impl servant;

// Same reactivation code as before.
poa->activate_object_with_id (oid, &servant);

// Allow the POA to listen for requests.
poa_mgr->activate ();

// Run the ORB’s event loop.
orb->run ();

}

This modification allows our server program to play the
role of a factory program or a server depending on how
it’s invoked. If we invoke it with the command-line ar-
gument “create” it creates our CORBA object using the
POA::create reference with id operation. This
operation takes two parameters: (1) theobject IDfor the new
CORBA object and (2) arepository IDstring that identifies
the most-derived interface supported by the object.

Our repository IDstring , "IDL:Null:1.0" , uses
the standard OMG repository ID format to indicate that our
CORBA object supports theNull interface, version 1.02, as
its most-derived interface. The code then stringifies the new
object reference, writes it to the standard output (perhaps to
allow us feed it to another tool that enters it into the Naming
service or a Trader service), and exits. Otherwise, it assumes
the CORBA object was already created in the past, reacti-
vates it using themy object object id, and starts listening
for requests.

With this approach, a separate administrative factory pro-
gram to set up the object in the first place is not needed.
This approach reduces the maintenance overhead of having

2Note that the version number component of repository IDs is currently
unused.

to have ourObjectId specified in multiple source files,
which would allow them to get out of sync. More im-
portantly, having a single combined factory/server program
eliminates the administrative burden of having to keep track
of which factory program should be used with which server.
We’ll discuss these and other server administration issues in
future columns.

4 Concluding Remarks

This column described in detail two simple, yet func-
tional, POA-based server programs. In the process, we’ve
highlighted the differences between transient and persistent
CORBA objects. Our example programs showed how POAs
can be created with different policies to support transient and
persistent CORBA object types. They also show the differ-
ent forms of servant registration and activation required to
support both kinds of CORBA objects.

Our next column will introduce how servant classes can
be declared and implemented. This important aspect of our
server wasn’t presented here. We will also continue our pre-
sentation of POA policies by investigating the use ofservant
managersto dynamically load servants as requests arrive for
them.

As always, if you have any questions about the material
we covered in this column or in any previous ones, please
email us atobject_connect@cs.wustl.edu .

References
[1] Object Management Group,Specification of the Portable Ob-

ject Adapter (POA), OMG Document orbos/97-05-15 ed., June
1997.

[2] D. C. Schmidt and S. Vinoski, “Object Interconnections: Ob-
ject Adapters: Concepts and Terminology,”C++ Report,
vol. 11, November/December 1997.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[4] Object Management Group,CORBAServices: Common Ob-
ject Services Specification, Revised Edition, 97-12-02 ed., Nov.
1997.

[5] A. Gokhale and D. C. Schmidt, “Evaluating the Performance
of Demultiplexing Strategies for Real-time CORBA,” inPro-
ceedings of GLOBECOM ’97, (Phoenix, AZ), IEEE, Novem-
ber 1997.

[6] D. Schmidt and S. Vinoski, “Distributed Callbacks and Decou-
pled Communication in CORBA,”C++ Report, vol. 8, October
1996.

5

