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Abstract

The ADAPTIVE Service eXecutive (ASX) is a highly modular
and extensible object-oriented framework that simplifies the
development and configuration of distributed applications
on shared memory multi-processor platforms. This paper
describes the structure and functionality of theASX frame-
work’s object-oriented architecture. In addition, the paper
presents the results of performance experiments conducted
using ASX-based implementations of connection-oriented
and connectionless protocols from the TCP/IP protocol fam-
ily. These experiments measure the performance impact of
alternative methods for parallelizing communication proto-
col stacks. Throughout the paper, examples are presented to
indicate how the use of object-oriented techniques facilitate
application extensibility, component reuse, and performance
enhancement.

1 Introduction

Distributed computing is a promising technology for im-
proving collaboration through connectivity and interwork-
ing; performance through parallel processing; reliability and
availability through replication; scalability and portability
through modularity; extensibility through dynamic configu-
ration and reconfiguration; and cost effectiveness through re-
source sharing and open systems. Despite these benefits, dis-
tributed applications (such as on-line transaction processing
systems, global mobile communication systems, distributed
object managers, video-on-demandservers, and communica-
tion subsystem protocol stacks) are often significantly more
complex to develop and configure than non-distributed ap-
plications.

A significant portion of this complexity arises from limita-
tions with conventional tools and techniques used to develop
distributed application software. Conventional application
development environments (such as UNIX, Windows NT,
and OS/2) lack type-safe, portable, re-entrant, and extensible

system call interfaces and component libraries. For instance,
endpoints of communication in the widely used socket net-
work programming interface are identified via weakly-typed
I/O descriptors that increase the potential for subtle run-time
errors [1]. Another major source of complexity arises from
the widespread use of development techniques based upon
algorithmic decomposition [2], which limit the extensibility,
reusability, and portability of distributed applications.

Object-oriented techniques offer a variety of principles,
methods, and tools that help to alleviate much of the com-
plexity associated with developing distributed applications.
To illustrate how these techniques are being successfully ap-
plied in several research and commercial settings, this pa-
per describes the structure and functionality of the ADAP-
TIVE Service eXecutive (ASX). ASX is an object-oriented
framework containing automated tools and reusable compo-
nents that collaborate to simplify the development, config-
uration, and reconfiguration of distributed applications on
shared memory multi-processor platforms.

Components in theASXframework are designed to decou-
ple (1) application-independent components provided by the
framework that handle interprocess communication, event
demultiplexing, explicit dynamic linking, concurrency, and
service configuration from (2) application-specific compo-
nents inherited or instantiated from the framework that per-
form the services in a particular distributed application. The
primary unit of configuration in theASX framework is the
service. A service is a portion of a distributed applica-
tion that offers a single processing capability to communi-
cating entities. Services may be simple (such as returning
the current time-of-day) or highly complex (such as a real-
time distributed PBX event traffic monitor [3]). By employ-
ing object-oriented techniques to decouple the application-
specific service functionality from the reusable application-
independent framework mechanisms,ASXfacilitates the de-
velopment of applications that are significantly more exten-
sible and portable than those based on conventional algorith-
mic decomposition techniques. For example, it is possible to
dynamic reconfigure one or more services in anASX-based
application without requiring the modification, recompila-
tion, relinking, or restarting of a running system [4].

In addition to describing the object-oriented architecture
of theASXframework, this paper examines results obtained
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by using the framework to conduct experiments on proto-
col stack performance in multi-processor-based communica-
tion subsystems. In the experiments, theASXcomponents
help control for several relevant confounding factors (such
as protocol functionality, concurrency control schemes, and
application traffic characteristics) in order to precisely mea-
sure the performance impact of different methods for par-
allelizing communication protocol stacks. For example, in
the experiments described in Section 3, connectionless and
connection-oriented protocol stacks were developed by spe-
cializing existing components in theASX framework via
techniques involving inheritance and parameterized types.
These techniques hold the protocol functionality constant
while allowing the parallel processing structure of the pro-
tocol stacks to be altered systematically in a controlled man-
ner.

This paper is organized as follows: Section 2 outlines
the primary features of theASX framework and describes
its object-oriented architecture, Section 3 examines empiri-
cal results from experiments conducted using the framework
to parallelize communication protocol stacks; and Section 4
presents concluding remarks.

2 The ADAPTIVE Service eXecutive
Framework

2.1 Overview

The ADAPTIVE Server eXecutive (ASX) is an object-
oriented framework that is specifically targeted for the do-
main of distributed applications. The framework simpli-
fies the construction of distributed applications by improv-
ing the modularity, extensibility, reusability, and portabil-
ity of both the application-specific network services and
the application-independent OS interprocess communication
(IPC), demultiplexing, explicit dynamic linking, and concur-
rency mechanisms that these services utilize.

A framework is an integrated collection of components
that collaborate to produce a reusable architecture for a fam-
ily of related applications [5]. Object-oriented frameworks
are becoming increasingly popular as a means to simplify
and automate the development and configuration process as-
sociated with complex application domains such as graphi-
cal user interfaces [6], databases [7], operating system ker-
nels [8], and communication subsystems [9]. The compo-
nents in a framework typically includeclasses(such as mes-
sage managers, timer-based event managers, demultiplexers
[10], and assorted protocol functions and mechanisms [11]),
class hierarchies(such as an inheritance lattice of mecha-
nisms for local and remote interprocess communication [1]),
class categories(such as event demultiplexers [12]), and
objects(such as a service dispatch table). By emphasiz-
ing the integration and collaboration of application-specific
and application-independent components, frameworks en-
able larger-scale reuse of software compared with simply
reusing individual classes or stand-alone functions.
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Figure 1: Class Categories in theASXFramework

The ASX framework incorporates concepts from several
other modular communication frameworks including System
V STREAMS [13], thex-kernel [14], and the Conduit [9]
(a survey of these and other communication frameworks ap-
pears in [15]). These frameworks all contain features that
support the flexible configuration of communication subsys-
tems by inter-connecting building-block protocol and service
components. In general, these frameworks encourage the de-
velopment of standard reusable communication-related com-
ponents by decoupling application-specific processing func-
tionality from the surrounding framework infrastructure. As
described below, theASXframework also contains additional
features that help to further decouple application-specific
service functionality from (1) the type of locking mecha-
nisms used to synchronize access to shared objects, (2) the
use of message-based vs. task-based parallel processing
techniques, and (3) the use of kernel-level vs. user-level ex-
ecution agents.

2.2 The Object-Oriented Architecture of ASX

The architecture of theASX framework was developed in-
crementally by generalizing from extensive design and im-
plementation experience with a range of distributed applica-
tions including on-line transaction processing systems [16],
telecommunication switch performance monitoring systems
[4], and multi-processor-based communication subsystems
[17]. After building several prototypes and iterating through
a number of alternative designs, the class categories illus-
trated in Figure 1 were identified and implemented. A class
category is a collection of components that collaborate to
provide a set of related services [2] such as communication
subsystem services used to implement protocol stacks. A
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complete distributed application may be formed by combin-
ing components in each of the following class categories via
C++ language features such as inheritance, aggregation, and
template instantiation:

� The Stream class category – These components are
responsible for coordinating theconfigurationand run-
time executionof a Stream, which is an object contain-
ing a set of hierarchically-related services (such as the
layers in a communication protocol stack) defined by an
application

� TheReactor class category – These components are
responsible fordemultiplexingtemporal events gen-
erated by a timer-driven callout queue, I/O events
received on communication ports, and signal-based
events anddispatchingthe appropriate pre-registered
handler(s) to process these events

� The Service Configurator class category –
These components are responsible fordynamically link-
ing or dynamically unlinkingservices into or out of the
address space of an application at run-time

� The Concurrency class category – These compo-
nents are responsible forspawning, executing, synchro-
nizing, andgracefully terminatingservices at run-time
via one or more threads of control within one or more
processes

� The IPC SAP class category – These components en-
capsulate standard OS local and remote IPC mecha-
nisms (such as sockets and TLI) within a type-safe and
portable object-oriented interface

Lines connecting the class categories in Figure 1 indicate
dependency relationships. For example, components that
implement the application-specific services in a particular
distributed application depend on theStream components,
which in turn depend on theService Configurator
components. Since components in theConcurrency
class category are used throughout the application-specific
and application-independent portions of theASXframework
they are marked with theglobal adornment. Note that the
“namespaces” feature accepted recently by the ANSI C++
committee provides explicit C++ language support for these
types of class category relationships.

This section examines the main components in each class
category. Relationships between components in theASX
framework are illustrated throughout the paper via Booch
notation [2]. Solid rectangles indicate class categories,
which combine a number of related classes into a common
name space. Solid clouds indicate objects; nesting indicates
composition relationships between objects; and undirected
edges indicate some type of link exists between two objects.
Dashed clouds indicate classes; directed edges indicate in-
heritance relationships between classes; and an undirected
edge with a small circle at one end indicates either a compo-
sition or uses relation between two classes.
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Figure 2: Components in theStream Class Category

2.3 The Stream Class Category

Components in theStream class category are responsible
for coordinating one or more Streams. A Stream is an ob-
ject used to configure and execute application-specific ser-
vices into theASX framework. As illustrated in Figure 2, a
Stream uses both inheritance and object composition to link
together a series of service-specificModules . Modules
are objects that developers use to decompose the architecture
of a distributed application into a series of inter-connected,
functionally distinct layers. Each layer implements a cluster
of related service-specific functions (such as an end-to-end
transport service, a presentation layer formatting service, or
a real-time PBX signal routing service).

A layer that performs multiplexing and demultiplexing
of message objects between one or more related Streams
may be developed using aMultiplexor object. A
Multiplexor is a C++ template container class that pro-
vides mechanisms to route messages between one or more
Modules in a collection of related Streams.Module and
Multiplexor objects may be configured into a Stream by
developers at installation-time or by applications at run-time.

EveryModule contains a pair ofTask objects that par-
tition a layer into its constituent read-side and write-side
service-specific processing functionality. ATask provides
an abstract domain class that may be specialized to target a
particular application-specific domain (such as the domain
of communication protocol stacks [18] or the domain of net-
work management applications [19]). Likewise, aModule
provides a flexible composition mechanism that allows in-
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stances of the application-specificTask domain classes to
be configured dynamically into a Stream. These mechanisms
increase the extensibility and applicability of theASXframe-
work by not limiting it to a particular domain.

A complete Stream is represented as an inter-connected
series of independentModule and/orMultiplexor ob-
jects that communicate by exchanging messages with ad-
jacent objects. Modules and Multiplexors may be
joined together in essentially arbitrary configurations in or-
der to satisfy application requirements and enhance com-
ponent reuse. Service-specific functions in adjacent inter-
connectedModules collaborate by exchanging typed mes-
sages via a well-defined message passing interface.

TheASXframework employs a number of object-oriented
design techniques (such as design patterns [20] and hierar-
chical decomposition) and C++ language features (such as
inheritance, dynamic binding, and parameterized types [21]).
These techniques and language features enable developers to
incorporate service-specific functionality into a Stream with-
out modifying the application-independent framework com-
ponents. For example, incorporating a new layer of service
functionality into a Stream involves the following steps:

1. Inheriting from theTask interface and selectively over-
riding several methods (described below) in theTask
subclass to implement service-specific functionality

2. Allocating a newModule that contains two instances
(one for the read-side and one for the write-side) of the
service-specificTask subclass

3. Inserting theModule into a Stream object

To avoid reinventing familiar terminology, many C++
class names in theStream class category correspond to
similar componentry available in the System V STREAMS
framework. However, the techniques used to support ex-
tensibility and concurrency in the two frameworks are sig-
nificantly different. For example, adding service-specific
functionality to theASX Stream classes is performed by
inheriting from several interfaces and implementations de-
fined by existingASXframework components. Using inher-
itance to add service-specific functionality provides greater
type-safety than the pointer-to-function idiom used in Sys-
tem V STREAMS. As described in Section 2.6.1 below, the
ASX Stream classes also completely redesign and reim-
plement the co-routine-based, “weightless”1 service process-
ing mechanisms used in System V STREAMS. TheseASX
changes enable more effective use of multiple PEs on shared
memory multi-processing platforms by reducing the like-
lyhood of deadlock and simplifying flow control between
Tasks in a Stream.

The remainder of this section discusses the primary
components of theASX Stream class category (i.e.,
Stream class, theModule class, theTask class, and the
Multiplexor class) in detail.

1A weightless process executes on a run-time stack that is also used by
other processes. This greatly complicates programming and increases the
potential for deadlock. For example, a weightless process may not suspend
execution to wait for resources to become available or events to occur [22].

2.3.1 The Stream Class

The Stream class defines the application interface to
a Stream. AStream object provides a bi-directional
get /put -style interface that allows applications to ac-
cess a stack of one or more hierarchically-related service
Modules . Applications send and receive data and control
messages through the inter-connectedModules that com-
prise a particular Stream object. TheStream class also
implements apush /pop -style interface that allows appli-
cations to configure a Stream at run-time by inserting and
removing objects of theModule class described below.

2.3.2 The Module Class

TheModule class defines a distinct layer of service-specific
functionality. A Stream is formed by inter-connecting a se-
ries of Module objects. Module objects in a Stream are
loosely coupled, and collaborate with adjacentModule ob-
jects by passing typed messages. EachModule object con-
tains a pair of pointers to objects that are service-specific
subclasses of theTask class described shortly below.

As shown in Figure 2, two defaultModule objects
(Stream Head and Stream Tail ) are installed auto-
matically when a Stream is opened. These twoModule s
interpret pre-definedASX framework control messages and
data messages that circulate through a Stream at run-time.
TheStream Head class provides a message buffering in-
terface between an application and a Stream. TheStream
Tail class typically transforms incoming messages from
a network or from a pseudo-device into a canonical inter-
nal message format that may be processed by higher-level
components in a Stream. Likewise, for outgoing messages it
transforms messages from their internal format into network
messages.

2.3.3 The Task Abstract Class

TheTask abstract class2 defines an interface that is inher-
ited and implemented by derived classes to provide service-
specific functionality for read-side and write-side process-
ing. OneTask subclass handles read-side processing for
messages sent upstream to itsModule layer and the other
handles write-side processing messages send downstream to
its Module layer.

TheTask class is an abstract class since its interface de-
fines four pure virtual methods (open , close , put , and
svc ) that are described below. DefiningTask as an ab-
stract class enhances reuse by decoupling the application-
independent components provided by theStream class cat-
egory from the service-specific subclasses that inherit from
and use these components. Likewise, the use of pure virtual
methods allows the C++ compiler to ensure that a subclass of

2An abstract class in C++ provides an interface that contains at least one
pure virtual method[23]. A pure virtual method provides only an interface
declaration, usually without any accompanying definition. Subclasses of an
abstract class must provide definitions for all its pure virtual methods before
any objects of the class may be instantiated.
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Task honors its obligation to provide the following service-
specific functionality:

� Initialization and Termination Methods: Subclasses
derived from Task must implementopen and close
methods that perform service-specificTask initialization
and termination activities. These activities typically allocate
and free resources such as connection control blocks, I/O de-
scriptors, and synchronization locks. Theopen andclose
methods of aModule ’s write-side and read-sideTask sub-
classes are invoked automatically by theASX framework
when theModule is inserted or removed from a Stream,
respectively.

� Service-Specific Processing Methods:Subclasses of
Task must also define theput and svc methods, which
perform service-specific processing functionality on mes-
sages that arrive at aModule layer in a Stream. When mes-
sages arrive at the head or the tail of a Stream, they are es-
corted through a series of inter-connectedTasks as a result
of invoking theput and/orsvc method of eachTask in the
Stream.

A put method is invoked when aTask at one layer in
a Stream passes a message to an adjacentTask in another
layer. Theput method runssynchronouslywith respect to
its caller,i.e., it borrows the thread of control from theTask
that originally invoked itsput method. This thread of con-
trol typically originates either “upstream” from an applica-
tion process, “downstream” from a pool of threads that han-
dle I/O device interrupts [14], or internal to the Stream from
an event dispatching mechanism (such as a timer-driven call-
out queue used to trigger retransmissions in a connection-
oriented transport protocolModule ).

Thesvc method is used to perform service-specific pro-
cessingasynchronouslywith respect to otherTask s in its
Stream. Unlikeput , thesvc method is not directly invoked
from an adjacentTask . Instead, it is invoked by a sepa-
rate thread associated with itsTask . This thread provides
an execution context and thread of control for theTask ’s
svc method. This method runs an event loop that continu-
ously waits for messages to arrive on theTask ’s Message

Queue. A Message Queue is a standard component in
a Task that is used to buffer a sequence of data messages
and control messages for subsequent processing in thesvc
method. When messages arrive, thesvc method dequeues
the messages and performs theTask subclass’s service-
specific processing tasks.

Within the implementation of aput or svc method,
a message may be forwarded to an adjacentTask in the
Stream via theput next Task utility method. The
put next method calls theput method of the nextTask
residing in an adjacent layer. This invocation ofput may
borrow the thread of control from the caller and handle the
message immediately (i.e., the synchronous processing ap-
proach illustrated in Figure 3 (1)). Conversely, theput
method may enqueue the message and defer handling to its
svc method that is executing in a separate thread of con-
trol (i.e., the asynchronous processing approach illustrated
in Figure 3 (2)). As discussed in Section 3, the particular
processing approach that is selected often has a significant
impact on performance and ease of programming.

In addition to theopen , close , put , and svc pure
virtual method interfaces, eachTask also contains a num-
ber of reusable utility methods (such asput next , getq ,
andputq ) that may be used by service-specific subclasses
to query and/or modify the internal state of aTask object.
This internal state includes a pointer to the adjacentTask
on a Stream, a back-pointer to aTask ’s enclosingModule
(which enables it to locate its sibling), aMessage Queue ,
and a pair of high and low water mark variables that are used
to implement layer-to-layer flow control between adjacent
Modules in a Stream. The high water mark indicates the
amount of bytes of messages theMessage Queue is will-
ing to buffer before it becomes flow controlled. The low
water mark indicates the level at which a previously flow
controlledTask is no longer considered to be full.

Two types of messages may appear on aMessage
Queue: simple and composite. A simple message contains
a singleMessage Block and a composite message con-
tains multipleMessage Block s linked together. Compos-
ite messages generally consist of acontrolblock followed by
one or moredatablocks. A control block contains bookkeep-
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ing information (such as destination addresses and length
fields), whereas data blocks contain the actual contents of a
message. The overhead of passingMessage Block s be-
tweenTask s is minimized by passing pointers to messages
rather than copying data.

2.3.4 The Multiplexor Class

A Multiplexor defines mechanisms that demultiplex
messages destined for differentModules that comprise
a set of inter-related Streams.Multiplexor s are used
to routeMessage Block s between inter-related streams
(such as those used to implement complex protocol fami-
lies in the Internet and the ISO OSI reference models). A
Multiplexor is implemented via a C++ template class
called Map Manager . Map Manager is parameterized
by an external identifier(such as a network address, port
number, or type-of-service field) and aninternal identifier
(such as a pointer to aModule ). These template parame-
ters are instantiated in protocol-specificStream classes to
produce specializedMap Manager objects that perform ef-
ficient intra-Stream message routing. EachMap Manager
object contains a set ofModule objects that may be linked
above and below aMultiplexor in essentially arbitrary
configurations.

2.4 The Reactor Class Category

Components in theReactor class category are responsible
for demultiplexing (1) temporal events generated by a timer-
driven callout queue, (2) I/O events received on communica-
tion ports, and (3) signal events and dispatching the appro-
priate pre-registered handler(s) to process these events. The

Reactor encapsulates the functionality of theselect and
poll I/O demultiplexing mechanisms within a portable and
extensible C++ wrapper [12].Select andpoll are UNIX
system calls that detect the occurrence of different types of
input and output events on one or more I/O descriptors si-
multaneously. To improve portability, theReactor pro-
vides the same interface regardless of whetherselect or
poll is used as the underlying I/O demultiplexor. In addi-
tion, theReactor contains mutual exclusion mechanisms
designed to perform callback-style programming correctly
and efficiently in a multi-threaded event processing environ-
ment.

TheReactor contains a set of methods illustrated in Fig-
ure 4. These methods provide a uniform interface to manage
objects that implement various types of service-specific han-
dlers. Certain methods register, dispatch, and remove I/O
descriptor-based and signal-based handler objects from the
Reactor . Other methods schedule, cancel, and dispatch
timer-based handler objects. As shown in Figure 4, these
handler objects all derive from theEvent Handler ab-
stract base class. This class specifies an interface for event
registration and service handler dispatching.

The Reactor uses the virtual methods defined in
the Event Handler interface to integrate the demulti-
plexing of I/O descriptor-based, timer-based, and signal-
based events. I/O descriptor-based events are dis-
patched via thehandle input , handle output , and
handle exceptions methods; timer-based events are
dispatched via thehandle timeout method; and Signal-
based events are dispatched via thehandle signal
method. Subclasses ofEvent Handler may augment
the base class interface by defining additional methods and
data members. In addition, virtual methods in theEvent
Handler interface may be selectively overridden to imple-
ment application-specific functionality. Once the pure virtual
methods in theEvent Handler base class have been sup-
plied by a subclass, an application may define an instance of
the resulting composite service handler object.

When an application instantiates and registers a composite
I/O descriptor-based service handler object, theReactor
extracts the underlying I/O descriptor from the object. This
descriptor is stored in a table along with I/O descriptors from
other registered objects. Subsequently, when the application
invokes its main event loop, these descriptors are passed as
arguments to the underlying OS event demultiplexing sys-
tem call (e.g.,select or poll ). As events associated with
a registered handler object occur at run-time, theReactor
automatically detects these events and dispatches the appro-
priate method(s) of the service handler object associated with
the event. This handler object then becomes responsible for
performing its service-specific functionality before returning
control to the mainReactor event-loop.

2.5 The Service Configurator Class Category

Components in theService Configurator class cat-
egory are responsible for explicitly linking or unlinking ser-
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vices dynamically into or out of the address space of an ap-
plication at run-time. Explicit dynamic linking enables the
configuration and reconfiguration of application-specific ser-
vices without requiring the modification, recompilation, re-
linking, or restarting of an executing application [4]. The
Service Configurator components discussed below
include the theService Object inheritance hierarchy
(Figure 5 (1)), theService Repository class (Fig-
ure 5 (2)), and theService Config class (Figure 5 (3)).

2.5.1 The Service Object Inheritance Hierarchy

TheService Object class is the focal point of a multi-
level hierarchy of types related by inheritance. The interfaces
provided by the abstract classes in this type hierarchy may be
selectively implemented by service-specific subclasses in or-
der to accessService Configurator features. These
features provide transparent dynamic linking, service han-
dler registration, event demultiplexing, service dispatching,
and run-time control of services (such as suspending and re-
suming a service temporarily). By decoupling the service-
specific portions of a handler object from the underlying
Service Configurator mechanisms, the effort neces-
sary to insert and remove services from an application at run-
time is significantly reduced.

The Service Object inheritance hierarchy consists
of the Event Handler and Shared Object abstract
base classes, as well as theService Object abstract
derived class. TheEvent Handler class was described
above in theReactor Section 2.4. The behavior of the
other classes in theService Configurator class cate-
gory is outlined below:

� The Shared Object Abstract Base Class: This abstract
base class specifies an interface for dynamically linking and

unlinking objects into and out of the address space of an ap-
plication. This abstract base class exports three pure virtual
methods:init , fini , andinfo . These functions impose
a contract between the reusable components provided by the
Service Configurator and service-specific objects
that utilize these components. By using pure virtual meth-
ods, theService Configurator ensures that a service
handler implementation honors its obligation to provide cer-
tain configuration-related information. This information is
subsequently used by theService Configurator to
automatically link, initialize, identify, and unlink a service
at run-time.

The init method serves as the entry-point to an object
during run-time initialization. This method is responsible for
performing application-specific initialization when an object
derived fromShared Object is dynamically linked. The
info method returns a humanly-readable string that con-
cisely reports service addressing information and documents
service functionality. Clients may query an application to re-
trieve this information and use it to contact a particular ser-
vice running in the application. Thefini method is called
automatically by theService Configurator class cat-
egory when an object is unlinked and removed from an appli-
cation at run-time. This method typically performs termina-
tion operations that release dynamically allocated resources
(such as memory or synchronization locks).

The Shared Object base class is defined indepen-
dently from theEvent Handler class to clearly separate
their two orthogonal sets of concerns. For example, certain
applications (such as a compiler or text editor) might benefit
from dynamic linking, though they might not require timer-
based, signal-based, or I/O descriptor-based event demul-
tiplexing. Conversely, other applications (such as anftp
server) require event demultiplexing, but might not require
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dynamic linking.

� The Service Object Abstract Derived Class: Support
for dynamic linking, event demultiplexing, and service dis-
patching is typically necessary to automate the dynamic
configuration and reconfiguration of application-specific ser-
vices in a distributed system. Therefore, theService
Configurator class category defines theService
Object class, which is a composite class that combines
the interfaces inherited from both theEvent Handler
and theShared Object abstract base classes. During
development, application-specific subclasses ofService
Object may implement thesuspend and resume vir-
tual methods in this class. Thesuspend and resume
methods are invoked automatically by theService
Configurator class category in response to certain ex-
ternal events (such as those triggered by receipt of the
UNIX SIGHUP signal). An application developer may de-
fine these methods to perform actions necessary to sus-
pend a service object without unlinking it completely, as
well as to resume a previously suspended service object.
In addition, application-specific subclasses must implement
the four pure virtual methods (init , fini , info , and
get handle ) that are inherited (but not defined) by the
Service Object subclass.

To provide a consistent environment for defining, config-
uring, and using Streams, theTask class in theStream
class category is derived from theService Object in-
heritance hierarchy (illustrated in Figure 5 (1)). This en-
ables hierarchically-related, application-specific services to
be linked and unlinked into and out of a Stream at run-time.

2.5.2 The Service Repository Class

The ASX framework supports the configuration of appli-
cations that contain one or more Streams, each of which
may have one or more inter-connected service-specific
Modules . Therefore, to simplify run-time administration,
it may be necessary to individually and/or collectively con-
trol and coordinate theService Object s that comprise
an application’s currently active services. TheService
Repository is an object manager that coordinates local
and remote queries and updates involving the services of-
fered by an application. A search structure within the object
manager binds service names (represented as ASCII strings)
with instances of compositeService Object s (repre-
sented as C++ object code). A service name uniquely identi-
fies an instance of aService Object stored in the repos-
itory.

Each entry in theService Repository contains a
pointer to theService Object portion of an service-
specific C++ derived class (shown in Figure 5 (2)). This en-
ables theService Configurator classes to automat-
ically load, enable, suspend, resume, or unloadService
Object s from a Stream dynamically. The repository also
maintains a handle to the underlying shared object file for
each dynamically linkedService Object . This han-

dle is used to unlink and unload aService Object
from a running application when its service is no longer
required. An iterator class is also supplied along with the
Service Repository . This class may be used to visit
every Service Object in the repository without com-
promising data encapsulation.

2.5.3 The Service Config Class

As illustrated in Figure 5 (3), theService Config class
integrates several otherASXframework components (such as
theService Repository , theService Object in-
heritance hierarchy, and theReactor ). The resulting com-
positeService Config component is used to automate
the static and/or dynamic configuration of concurrent appli-
cations that contain one or more Streams. TheService
Config class uses a configuration file to guide its config-
uration and reconfiguration activities. Each application may
be associated with a distinct configuration file. This file char-
acterizes the essential attributes of the service(s) offered by
an application. These attributes include the location of the
shared object file for each dynamically linked service, as
well as the parameters required to initialize a service at run-
time. By consolidating service attributes and installation pa-
rameters into a single configuration file, the administration of
Streams within an application is simplified. Application de-
velopment is also simplified by decoupling the configuration
and reconfiguration mechanisms provided by the framework
from the application-specific attributes and parameters spec-
ified in a configuration file. Further information on the con-
figuration format utilized by theService Config class
is presented in [4].

2.6 The Concurrency Class Category

Components in theConcurrency class category are
responsible for spawning, executing, synchronizing, and
gracefully terminating services at run-time via one or more
threads of control within one or more processes. The follow-
ing section discusses the two main groups of classes (Synch
andThread Manager ) in theConcurrency class cate-
gory.

2.6.1 The Synch Classes

Components in theStream , Reactor , and Service
Configurator class categories described above con-
tain a minimal amount of internal locking mechanisms to
avoid over-constraining the granularity of the synchroniza-
tion strategies used by an application [22]. In particular,
only components in theASXframework that would not func-
tion correctly in a multi-threaded environment (such as en-
queueingMessage Block s onto aMessage Queue ,
demultiplexingMessage Blocks onto internalModule
addresses stored in aMultiplexor object, or register-
ing an Event Handler object with theReactor ) are
protected by synchronization mechanisms provided by the
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Synch classes. TheSynch classes provide type-safe C++
interfaces for two basic types of synchronization mecha-
nisms: Mutex and Condition objects [24]. AMutex
object is used to ensure the integrity of a shared resource
that may be accessed concurrently by multiple threads of
control. A Condition object allows one or more cooper-
ating threads to suspend their execution until a condition ex-
pression involving shared data attains a particular state. The
ASXframework also provides a collection of more sophisti-
cated concurrency control mechanisms (such asMonitors ,
Readers Writer locks, and recursiveMutex objects)
that build upon the two basic synchronization mechanisms
described below.

A Mutex object may be used to serialize the execution of
multiple threads by defining a critical section where only one
thread executes its code at a time. To enter a critical section,
a thread invokes theMutex::acquire method. To leave
a critical section, a thread invokes theMutex::release
method. These two methods are implemented via adaptive
spin-locks that ensure mutual exclusion by using an atomic
hardware instruction. An adaptive spin-lock operates by
polling a designated memory location using the hardware in-
struction until (1) the value at this location is changed by
the thread that currently owns the lock (signifying that the
lock has been released and may now be acquired) or (2) the
thread that is holding the lock goes to sleep (at which point
the thread that is spinning also goes to sleep to avoid needless
polling) [25]. On a shared memory multi-processor, the over-
head incurred by a spin-lock is relatively minor since polling
affects only the local instruction and data cache of the CPU
where the thread is spinning. A spin-lock is a simple and ef-
ficient synchronization mechanism for certain types of short-
lived resource contention. For example, in theASX frame-
work, eachMessage Queue in a Task object contains a
Mutex object that prevents race conditions from occurring
whenMessage Block s are enqueued and dequeued con-
currently by multiple threads of control running in adjacent
Tasks .

A Condition object is a somewhat different synchro-
nization mechanism that enables a thread to suspend itself
indefinitely (via theCondition::wait method) until a
condition expression involving shared data attains a par-
ticular state. When another cooperating thread indicates
that the state of the shared data has changed (by invok-
ing the Condition::signal method), the associated
Condition object wakes up the suspended thread. The
newly awakened thread then re-evaluates the condition ex-
pression and potentially resumes processing if the shared
data is now in an appropriate state. For example, each
Message Queue in theASXframework contains a pair of
Condition objects (namednotfull andnotempty ),
in addition to aMutex object. TheseCondition objects
implement flow control between adjacentTask s. When
one Task attempts to insert aMessage Block into a
neighboringTask that has reached its high water mark, the
Message Queue::enTask method performs await
operation on thenotfull condition object. This operation
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Figure 6: Components in theIPC SAP Class Category

atomically relinquishes the PE and puts the calling thread
to sleep awaiting notification when flow control conditions
abate. Subsequently, when the number of bytes in the flow
controlledTask ’s Message Queue fall below its low wa-
ter mark, the thread running the blockedTask is automat-
ically awakened to finish inserting the message and resume
its processing tasks.

Unlike Mutex objects,Condition object synchroniza-
tion is not implemented with a spin-lock since there is gen-
erally no indication of how long a thread must wait for a
particular condition to be signaled. Therefore,Condition
objects are implemented via sleep-locks that trigger a context
switch to allow other threads to execute. Section 3 discusses
the consequences of spin-locks vs. sleep-locks on applica-
tion performance.

2.6.2 The Thread Manager Class

TheThread Manager class contains a set of mechanisms
that manage groups of threads that collaborate to imple-
ment collective actions (such as a pool of threads that ren-
der different portions of a large image in parallel). TheThe
Manager class shields applications from many incompati-
bilities between different flavors of multi-threading mecha-
nisms (such as POSIX threads, MACH cthreads, and Solaris
threads).

In addition, the Thread Manager class provides
a number of mechanisms (such assuspend all and
resume all ) that suspend and resume a set of collabo-
rating threads atomically. This feature is useful for dis-
tributed applications that execute one or more services con-
currently. For example, when initializing a Stream com-
posed ofModule s that execute in separate threads of con-
trol and collaborate by passing messages between threads,
it is important to ensure that allTasks in the Stream
are completely inter-connected before allowing messages to
flow through the Stream. The mechanisms in theThread
Manager class allow these initialization activities to occur
atomically.
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2.7 The IPC SAP Class Category

Components in theIPC SAP class category encapsulate
standard OS local and remote IPC mechanisms (such as
sockets and TLI) within a type-safe and portable object-
oriented interface.IPC SAP stands for “InterProcess Com-
munication Service Access Point.” As shown in Figure 6,
a forest of class categories are rooted at theIPC SAP base
class. These class categories includesSOCK SAP(which
encapsulates the socket API),TLI SAP (which encapsu-
lates the TLI API),SPIPE SAP (which encapsulates the
UNIX SVR4 STREAM pipe API), andFIFO SAP (which
encapsulates the UNIX named pipe API).

Each class category inIPC SAP is itself organized as an
inheritance hierarchy where every subclass provides a well-
defined subset of local or remote communication mecha-
nisms. Together, the subclasses within a hierarchy comprise
the overall functionality of a particular communication ab-
straction (such as the Internet-domain or UNIX-domain pro-
tocol families). Inheritance-based hierarchical decomposi-
tion facilitates the reuse of code that is common among the
variousIPC SAP class categories. For example, the C++
interface to the lower-level UNIX OS device control system
calls likefcntl andioctl are inherited and shared by all
the other components in theIPC SAP class category.

3 Performance Experiments on the
Communication Subsystem

To illustrate how the components of theASX framework
are used in practice, this section describes results from per-
formance experiments that measure the impact of alterna-
tive methods for parallelizing communication subsystems.
A communication subsystem is a distributed system that
consists ofprotocol functions(such as routing, segmenta-
tion/reassembly, connection management, end-to-end flow
control, remote context management, demultiplexing, mes-
sage buffering, error protection, session control, and pre-
sentation conversions) andoperating system mechanisms
(such as process management, asynchronous event invoca-
tion, message buffering, and layer-to-layer flow control) that
support the implementation and execution of protocol stacks
that contain hierarchically-related protocol functions [15].

Advances in VLSI and fiber optic technology are shifting
performance bottlenecks from the underlying networks to the
communication subsystem [26]. Designing and implement-
ing multi-processor-based communication subsystems that
execute protocol functions and OS mechanisms in parallel
is a promising technique for increasing protocol processing
rates and reducing latency. To significantly increase com-
munication subsystem performance, however, the speed-up
obtained from parallel processing must outweight the con-
text switching and synchronization overhead associated with
parallel processing.

A context switch is generally triggered when an execut-
ing process either voluntarily or involuntarily relinquishes

the processing element (PE) it is executing upon. Depending
on the underlying OS and hardware platform, performing a
context switch may involve dozens to hundreds of instruc-
tions due to the flushing of register windows, instruction and
data caches, instruction pipelines, and translation look-aside
buffers [27]. Synchronization mechanisms are necessary to
serialize access to shared objects (such as messages, mes-
sage queues, protocol context records, and demultiplexing
tables) related to protocol processing. Certain methods of
parallelizing protocol stacks incur significant synchroniza-
tion overhead from managing locks associated with process-
ing these shared objects [28].

A number ofprocess architectureshave been proposed
as the basis for parallelizing communication subsystems
[26, 29, 28]. A process architecture binds one or more pro-
cessing elements (PEs) together with the protocol tasks and
messages that implement protocol stacks in a communica-
tion subsystem. Figure 7 (1) illustrates the three basic ele-
ments that form the foundation of a process architecture:

1. Control messages and data messages– which are sent
and received from one or more applications and net-
work devices

2. Protocol processing tasks– which are the units of proto-
col functionality that process the control messages and
data messages

3. Processing elements(PEs) – which execute protocol
tasks. There are two fundamental types of process ar-
chitectures (task-basedandmessage-based) that struc-
ture these three basic elements differently.

Two fundamental types of process architectures (task-
basedand message-based) may be created by structuring
the three basic process architecture elements shown in Fig-
ure 7 (1) in different ways. Task-based process architectures
are formed by binding one or more PEs to different units of
protocol functionality (shown in Figure 7 (2)). In this ar-
chitecture, tasks are the active objects, whereas messages
processed by the tasks are the passive objects. Parallelism
is achieved by executing protocol tasks in separate PEs and
passing data messages and control messages between the
tasks/PEs. In contrast, message-based process architectures
are formed by binding the PEs to the protocol control mes-
sages and data messages received from applications and net-
work interfaces (as shown in Figure 7 (3)). In this architec-
ture, messages are the active objects, whereas tasks are the
passive objects. Parallelism is achieved by escorting multiple
data messages and control messages on separate PEs simul-
taneously through a stack of protocol tasks. Section 3 ex-
amines how the choice of process architecture significantly
affects context switch and synchronization overhead. A sur-
vey of alternative process architectures appears in [15].

Selecting an effective process architecture is an important
design decision in application domains other than communi-
cation subsystems. For example, real-time PBX monitoring
systems [3] and video-on-demand servers also perform non-
communication-related tasks (such as database query pro-
cessing) that benefit from a carefully structured approach
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to parallelism. This section focuses primarily upon the im-
pact of process architectures on communication subsystem
performance since network protocol behavior and function-
ality is well-understood and the terminology is relatively
well-defined. Moreover, a large body of literature exists
with which to compare performance results presented in Sec-
tion 3. The remainder of this section describes relevant
aspects of performance experiments that measure the im-
pact of different process architectures on connectionless and
connection-oriented protocol stacks.

3.1 Multi-processor Platform

All experiments were conducted on an otherwise idle Sun
690MP SPARCserver, which contains 4 SPARC 40 MHz
processing elements (PEs), each capable of performing at 28
MIPs. The operating system used for the experiments is re-
lease 5.3 of SunOS, which provides a multi-threaded kernel
that allows multiple system calls and device interrupts to exe-
cute in parallel [25]. All the process architectures in these ex-
periments execute protocol tasks in separateunboundthreads
multiplexed over 1, 2, 3, or 4 SunOSlightweight processes
(LWPs) within a process. SunOS 5.3 maps each LWP di-
rectly onto a separate kernel thread. Since kernel threads are
the units of PE scheduling and execution in SunOS, this map-
ping enables multiple LWPs (each executing protocol pro-
cessing tasks in an unbound thread) to run in parallel on the
SPARCserver’s PEs.

Rescheduling and synchronizing a SunOS LWP involves
a kernel-level context switch. The time required to perform
a context switch between two LWPs was measured to be ap-
proximately 30usecs. During this time, the OS performs
system-related overhead (such as flushing register windows,
instruction and data caches, instruction pipelines, and trans-
lation lookaside buffers) on the PE and therefore does not
process protocol tasks. Measurements also revealed that it
requires approximately 3 micro-seconds to acquire or re-
lease aMutex object implemented with a SunOS adap-
tive spin-lock. Likewise, measurements indicated that ap-

proximately 90 micro-seconds are required to synchronize
two LWPs usingCondition objects implemented using
SunOS sleep-locks. The larger amount of overhead for the
Condition operations compared with theMutex opera-
tions occurs from the more complex locking algorithms in-
volved, as well as the additional context switching incurred
by the SunOS sleep-locks that implement theCondition
objects.

3.2 Communication Protocols

Two types of protocol stacks are used in the experiments,
one based on the connectionless UDP transport protocol and
the other based on the connection-oriented TCP transport
protocol. The protocol stacks contain the data-link, trans-
port, and presentation layers.3 The presentation layer is in-
cluded in the experiments since it represents a major bottle-
neck in high-performance communication systems due pri-
marily to the large amount of data movement overhead it in-
curs [30, 29].

Both the connectionless and connection-oriented proto-
col stacks were developed by specializing existing compo-
nents in theASXframework via techniques involving inheri-
tance and parameterized types. These techniques are used to
hold the protocol stack functionality constant while system-
atically varying the process architecture. For example, each
protocol layer is implemented as aModule whose read-side
and write-side inherit standard interfaces and implementa-
tions from theTask class. Likewise, synchronization and
demultiplexing mechanisms required by a protocol layer or
protocol stack are parameterized using template arguments

3Preliminary tests indicated that the PE, bus, and memory performance
of the SunOS multi-processor platform was capable of processing messages
through the protocol stack at a much faster rate than the platform’s 10 Mbps
Ethernet network interface was capable of handling. Therefore, for the pro-
cess architecture experiments, the network interface was simulated with a
single-copy pseudo-device driver operating in loop-back mode. For this
reason, the routing and segmentation/reassembly functions of the network
layer processing were omitted from these experiments since both the sender
and receiver portions of the test programs reside on the same host machine.
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that are instantiated based on the type of process architecture
being tested.

Data-link layer processing in each protocol stack is per-
formed by theDLP Module . ThisModule transforms net-
work packets received from a network interface or loop-back
device into a canonical message format used internally by
the Stream components. The transport layer component of
the protocol stacks are based on the UDP and the TCP im-
plementation in the BSD 4.3 Reno release. The 4.3 Reno
TCP implementation contains the TCP header prediction en-
hancements, as well as the slow start algorithm and conges-
tion avoidance features. The UDP and TCP transport proto-
cols are configured into theASXframework via theUDPand
TCP Modules , respectively.

Presentation layer functionality is implemented in the
XDR Module using marshalling routines produced by the
ONC eXternal Data Representation (XDR) stub genera-
tor (rpcgen ). The ONC XDR stub generator automati-
cally translates a set of type specifications into marshalling
routines that encode/decode implicitly-typed messages be-
fore/after they are exchanged among hosts that may possess
heterogeneous processor byte-orders. The ONC presentation
layer conversion mechanisms consist of a type specification
language (XDR) and a set of library routines that implement
the appropriate encoding and decoding rules for built-in inte-
gral types (e.g.,char, short, int, and long) and real types (e.g.,
float and double). In addition, these library routines may be
combined to produce marshalling routines for arbitrary user-
defined composite types (such as record/structures, unions,
arrays, and pointers). Messages exchanged via XDR are
implicitly-typed, which improves marshalling performance
at the expense of flexibility. TheXDR functions selected
for both the connectionless and connection-oriented proto-
col stacks convert incoming and outgoing messages into and
from variable-sized arrays of structures containing both in-
tegral and real values. This conversion processing involves
byte-order conversions, as well as dynamic memory alloca-
tion and deallocation.

3.3 Process Architectures

3.3.1 Design of the Task-based Process Architecture

Figure 8 illustrates theASXframework components that im-
plement a task-based process architecture for the TCP-based
connection-oriented and UDP-based connectionless protocol
stacks. Protocol-specific processing for the data-link and
transport layer are performed in twoModules clustered to-
gether into one thread. Likewise, presentation layer and ap-
plication interface processing is performed in twoModules
clustered into a separate thread. These threads cooperate in
a producer/consumer manner, operating in parallel on the
header and data fields of multiple incoming and outgoing
messages.

The LP DLP::svc and LP XDR::svc methods per-
form service-specific processing in parallel within a Stream
of Modules . When messages are inserted into aTask ’s
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Figure 8: A Task-based Process Architecture

Message Queue , thesvc method dequeues the messages
and performs theTask subclass’s service-specific process-
ing tasks (such as data-link layer processing or presentation
layer processing). Depending on the “direction” of a mes-
sage (i.e., incoming or outgoing), each cluster ofModules
performs its associated protocol functions before passing the
message to an adjacentModule running asynchronously in
a separate thread. Messages are not copied when passed be-
tween adjacentTasks since threads all share a common ad-
dress space. However, moving messages between threads
typically invalidates per-PE data caches.

The connectionless and connection-oriented task-based
process architecture protocol stacks are designed in a sim-
ilar manner. The primary difference is that the objects in the
connectionless transport layerModule implement the sim-
pler UDP functionality that does not generate acknowledge-
ments, keep track of round-trip time estimates, or manage
congestion windows. The design of the task-based process
architecture test driver always uses PEs in multiples of two:
one for the cluster of data-link and transport layer processing
Modules and the other for the cluster of presentation layer
and application interface processingModules .

3.3.2 Design of the Message-based Process Architecture

Figure 9 illustrates a message-based process architecture for
the connection-oriented protocol stack. When an incom-
ing message arrives, it is handled by theMP DLP::svc
method, which manages a pool of pre-spawned threads.
Each message is associated with a separate thread that es-
corts the message synchronously through a series of inter-
connectedTask s in a Stream. Each layer of the protocol
stack performs its protocol functions and then makes an up-
call [31] to the next adjacent layer in the protocol stack by
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Figure 9: A Message-based Process Architecture

invoking theTask::put method in that layer. Theput
method executes the protocol tasks associated with its layer.
For instance, theMP TCP::put method utilizesMutex
objects that serialize access to per-connection control blocks
as separate messages from the same connection ascend the
protocol stack in parallel.

The connectionless message-based protocol stack is struc-
tured in a similar manner. However, the connectionless
protocol stack performs the simpler set of UDP functional-
ity. Unlike theMP TCP::put method, theMP UDP::put
method handles each message concurrently and indepen-
dently, without explicitly preserving inter-message ordering.
This reduces the amount of synchronization operations re-
quired to locate and update shared resources.

3.4 C++ Features Used to Simplify Process
Architecture Implementation

Many of the protocol functions, process architecture syn-
chronization mechanisms, andASX framework support
components (such as demultiplexing and message buffer-
ing classes) are reused throughout the process architec-
ture test programs described above. For example, process
architecture-specific synchronization strategies may be in-
stantiated by selectively instrumenting protocol functions
with different types of mutual exclusion mechanisms. When
combined with C++ language features such as inheritance
and parameterized types, these objects help to decouple pro-
tocol processing functionality from the concurrency control
scheme used by a particular process architecture.

For example, objects of classMultiplexor use aMap
Manager component to demultiplex incoming messages to
Modules . Map Manager is a search structure container
class that is parameterized by an external ID, internal ID,
and a mutual exclusion mechanism, as follows:

template <class EX_ID, class IN_ID, class MUTEX>
class Map_Manager {
public:

bool bind (EX_ID, IN_ID *);
bool unbind (EX_ID);
bool find (EX_ID ex_id, IN_ID &in_id);

private:
MUTEX lock;
// ...

The type ofMUTEXthat this template class is instantiated
with depends upon the particular choice of process architec-
ture. For instance, theMap Manager used in the message-
based implementation of the TCP protocol stack described
in Section 3.3.2 is instantiated with the following class pa-
rameters:
typedef Map_Manager <TCP_Addr, TCB, Mutex>

MP_Map_Manager;

This particular instantiation ofMap Manager locates the
transport control block (TCB) associated with theTCP ad-
dress of an incoming message. TheMap Manager class
uses theMutex class described in Section 2.6.1 to ensure
that itsfind method executes as a critical section. This pre-
vents race conditions with other threads that are inspecting
or inserting entries into the connection map in parallel.

In contrast, the task-based process architecture implemen-
tation of the TCP protocol stack described in Section 3.3.1
does not require the same type of concurrency control within
a connection. In this case, demultiplexing is performed
within the svc method in theLP DLP readTask of the
data-link layerModule , which runs in its own separate
thread of control. Therefore, theMap Manager used for
the connection-oriented task-based process architecture is in-
stantiated with a differentMUTEXclass, as follows:
typedef Map_Manager <TCP_Addr, TCB, Null_Mutex>

LP_Map_Manager;

The implementation of theacquire andrelease meth-
ods in theNull Mutex class are essentially “no-op” inline
functions that may be removed completely by the compiler
optimizer.

The ASX framework employs a C++ idiom that in-
volves using a class constructor and destructor to acquire
and release locks on synchronization objects, respectively
[32]. TheMutex Block class illustrated below defines a
“block” of code over which aMutex object is acquired and
then automatically released when the block of code is exited
and the object goes out of scope:
template <class MUTEX>
class Mutex_Block
{
public:

Mutex_Block (MUTEX &m): mutex (m) {
this->mutex.acquire ();

}
˜Mutex_Block (void) {

this->mutex.release ();
}

private:
MUTEX &mutex;

}

This C++ idiom is used in the implementation of theMap
Manager::find method, as follows:
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template <class EX_ID, class IN_ID, class MUTEX> int
Map_Manager<EX_ID, IN_ID, MUTEX>::find

(EX_ID ex_id, IN_ID &in_id)
{

Mutex_Block<MUTEX> monitor (this->lock);

if (/* ex_id is successfully located */)
return 0;

else
return -1;

}

When the find method returns, the destructor for the
Mutex Block object automatically releases theMutex
lock. Note that theMutex lock is released regardless of
which arm in theif/else statement returns from thefind
method. In addition, this C++ idiom also properly releases
the lock if an exception is raised during processing in the
body of thefind method.

3.5 Process Architecture Experiment Results

This section presents measurement results obtained from
the data reception portion of the connection-oriented and
connectionless protocol stacks implemented using the task-
based and message-based process architectures described
above. Three types of measurements were obtained for each
combination of process architecture and protocol stack:total
throughput, context switching overhead, andsynchronization
overhead.

Total throughput was measured by holding the protocol
functionality, application traffic patterns, and network in-
terfaces constant and systematically varying the process ar-
chitecture to determine the resulting performance impact.
Each benchmarking session consisted of transmitting 10,000
4 Kbyte messages through an extended version of the widely
availablettcp protocol benchmarking tool. The original
ttcp tool measures the processing resources and overall
user and system time required to transfer data between a
transmitter process and a receiver process communicating
via TCP or UDP. The flow of data is uni-directional, with the
transmitter flooding the receiver with a user-specified num-
ber of data buffers. Various sender and receiver parameters
(such as the number of data buffers transmitted and the size
of application messages and protocol windows) may be se-
lected at run-time.

The version ofttcp used in our experiments was en-
hanced to allow a user-specified number of communicating
applications to be measured simultaneously. This feature
measured the impact of multiple connections on process ar-
chitecture performance (two connections were used to test
the connection-oriented protocols). Thettcp tool was also
modified to use theASX-based protocol stacks configured via
the process architectures described in Section 3.5. To mea-
sure the impact of parallelism on throughput, each test was
run using 1, 2, 3, and 4 PEs successively, using 1, 2, 3, or
4 LWPs, respectively. Furthermore, each test was performed
multiple times to detect the amount of spurious interference
incurred from other internal OS tasks (the variance between
test runs proved to be insignificant).
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Figure 10: Process Architecture Throughput

Context switching and synchronization measurements
were obtained to help explain differences in the through-
put results. These metrics were obtained from the SunOS
5.3 /proc file system, which records the number of vol-
untary and involuntary context switches incurred by threads
in a process, as well as the amount of time spent waiting to
obtain and release locks on mutex and condition objects.

Figure 10 illustrates throughput (measured in Mbits/sec)
as a function of the number of PEs for the task-based and
message-based process architectures used to implement the
connection-oriented (CO) and connectionless (CL) protocol
stacks. The results in this figure indicate that paralleliza-
tion definitely improves performance. Each 4 Kbyte mes-
sage effectively required an average of between 3.2 and 3.9
milliseconds to process when 1 PE was used, but only .9 to
1.9 milliseconds to process when 4 PEs were used. How-
ever, the message-based process architectures significantly
outperformed their task-based counterparts as the number
of PEs increased from 1 to 4. For example, the perfor-
mance of the connection-oriented task-based process archi-
tecture was only slightly better using 4 PEs (approximately
16 Mbits/sec, or 1.92 milliseconds per-message processing
time) than the message-based process architecture was us-
ing 2 PEs (14 Mbits/sec, or 2.3 milliseconds per-message
processing time). Moreover, if a larger number of PEs had
been available, it appears likely that the performance im-
provement gained from parallel processing in the task-based
process architectures would have leveled off sooner than the
message-based tests due to the higher rate of growth for con-
text switching and synchronization shown in Figure 11 and
Figure 12.

Figure 11 illustrates the number ofinvoluntaryandvolun-
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Figure 11: Process Architecture Context Switching Overhead

tary context switches incurred by the process architectures
measured in this study. An involuntary context switch occurs
when the OS kernel preempts a running thread. For exam-
ple, the OS preempts running threads periodically when their
LWP time-slice expires in order to schedule other threads
to execute. A voluntary context switch is triggered when a
thread puts itself to sleep until certain resources (such as I/O
devices or synchronization locks) become available. For ex-
ample, when a protocol task attempts to acquire a resource
that may not become available immediately (such as obtain-
ing a message from an empty list of messages in aTask ),
the protocol task puts itself to sleep by invoking thewait
method of a condition object. This action causes the OS
kernel to preempt the current thread and perform a context
switch to another thread that is capable of executing proto-
col tasks immediately.

As shown in Figure 11, The task-based process archi-
tectures exhibited slightly higher levels of involuntary con-
text switching than the message-based process architectures.
This is due mostly to the fact that the task-based tests re-
quired more time to process the 10,000 messages and were
therefore pre-empted a greater number of times. Further-
more, the task-based process architectures also incurred sig-
nificantly more voluntary context switches, which accounts
for the substantial improvement in overall throughput ex-
hibited by the message-based process architectures. The
primary reason for the increased context switching is that
the locking mechanisms used by the message-based process
architectures utilize adaptive spin-locks (which rarely trig-
ger a context switch), rather than the sleep-locks used by
task-based process architectures (whichdo trigger a context
switch).

Figure 12 indicates the amount of execution time/proc
reported as being devoted to waiting to acquire and release
locks in the connectionless and connection-oriented bench-
mark programs. As with context switching benchmarks,
the message-oriented process architectures incurred consid-
erably less synchronization overhead, particularly when 4
PEs were used. As before, the spin-locks used by message-
based process architecture reduce the amount of time spent
synchronizing, in comparison with the sleep-locks used by
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the task-based process architectures.

4 Concluding Remarks

Despite an increase in the availability of operating system
and hardware platforms that support networking and paral-
lel processing [25, 33, 22, 34], developing distributed appli-
cations that effectively utilize parallel processing remains a
complex and challenging task. The ADAPTIVE Service eX-
ecutive (ASX) provides an extensible object-oriented frame-
work that simplifies the development of distributed appli-
cations on shared memory multi-processor platforms. The
ASX framework employs a variety of advanced OS mech-
anisms (such as multi-threading and explicit dynamic link-
ing), object-oriented design techniques (such as encapsula-
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tion, hierarchical classification, and deferred composition)
and C++ language features (such as parameterized types, in-
heritance, and dynamic binding) to enhance software quality
factors (such as robustness, ease of use, portability, reusabil-
ity, and extensibility) without degrading application perfor-
mance. In general, the object-oriented techniques and C++
features enhance the software quality factors, whereas the
advanced OS mechanisms improve application functionality
and performance.

A key aspect of concurrent distributed application perfor-
mance involves the type of process architecture selected to
structure parallel processing of tasks in an application. Em-
pirical benchmark results reported in this paper indicate that
the task-based process architectures incur relatively high-
levels of context switching and synchronization overhead,
which significantly reduces their performance. Conversely,
the message-based process architectures incur much less
context switching and synchronization, and therefore exhibit
higher performance. TheASX framework helped to con-
tributed to these performance experiments by providing a set
of object-oriented components that decouple the protocol-
specific functionality from the underlying of process archi-
tecture, thereby simplifying experimentation.

The ASX framework components described in this paper
are freely available via anonymous ftp fromics.uci.edu
in the filegnu/C++ wrappers.tar.Z . This distribution
contains complete source code, documentation, and exam-
ple test drivers for the C++ components developed as part
of the ADAPTIVE project [35] at the University of Califor-
nia, Irvine. Components in theASX framework have been
ported to both UNIX and Windows NT and are currently be-
ing used in a number of commercial products including the
AT&T Q.port ATM signaling software product, the Ericsson
EOS family of telecommunication switch monitoring appli-
cations, and the network management portion of the Mo-
torola Iridium mobile communications system.
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