
A Prompt Pattern Catalog to Enhance Prompt1

Engineering with ChatGPT2

Author: Please provide author information3

Abstract4

Prompt engineering is an increasingly important skill set and an emerging discipline essential to5

converse effectively with large language models (LLMs), such as ChatGPT. Prompts are instructions6

given to an LLM to enforce rules, automate processes, and ensure specific qualities (and quantities)7

of generated output. They are also a form of programming that can customize the outputs and8

interactions with an LLM.9

This paper describes a catalog of prompt engineering techniques, presented in pattern form,10

that have been applied to solve common problems when conversing with LLMs. Prompt patterns11

are a knowledge transfer method, analogous to software patterns, that provide reusable solutions12

to common problems faced in a particular context, i.e., output generation and interaction when13

working with LLMs.14

This paper provides the following contributions to research on prompt engineering for using15

LLMs to aid software development tasks. First, it provides a framework for documenting patterns for16

structuring prompts to solve a range of problems so that they can be adapted to different domains.17

Second, it presents a catalog of patterns that have been applied successfully to improve the outputs18

of LLM conversations. Third, it explains how prompts can be built from multiple patterns and19

illustrates prompt patterns that benefit from combination with other prompt patterns.20

2012 ACM Subject Classification Software and its engineering; Computing methodologies →21

Artificial intelligence22

Keywords and phrases Large Language Models, Prompt Patterns, Prompt Engineering23

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2324

1 Introduction25

The advent of large language models (LLMs) for software development. Conversa-26

tional large language models (LLMs) [1, 2], such as ChatGPT [3], have generated immense27

interest in domains ranging from answering questions on medical licensing exams [4] to28

generating code snippets in multiple languages and programming paradigms. LLMs answer29

questions posed by users in natural language form known as “prompts" [5], which are sets30

of instructions provided to an LLM that program it by customizing it and/or enhancing31

or refining its capabilities. A prompt influences subsequent interactions with—and output32

generated from—an LLM by providing specific rules and guidelines for an LLM conversation33

with a set of initial rules. A prompt also sets the context for the conversation and tells the34

LLM what information is important and what the desired output form and content should35

be.36

For example, a prompt could specify an LLM to only generate code that follows a certain37

coding style or programming paradigm. Likewise, it could specify an LLM should flag certain38

keywords or phrases in a generated document and provide additional information related39

to those keywords. By introducing such guidelines, prompts facilitate more structured and40

nuanced outputs to aid a large variety of software development tasks in the context of LLMs.41

Despite being generally available for only a few months, chat-adapted LLMs are being42

used to generate and assess computer programs, giving a preview of the impact LLMs will43

soon have on society, research, and education. However, there is little disciplined knowledge44

about chat-adapted LLMs, their capabilities, and their limitations. In particular, LLMs can45

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

be viewed as a new computational platform with a unique programming paradigm. They will46

likely serve as the foundations for future interactive development environments (IDEs) where47

humans and artificial intelligent (AI) tools work together as trustworthy collaborators to48

more rapidly and reliably evolve software-reliant systems [6]. For example, LLMs are being49

integrated directly into software tools, such as Github’s Co-Pilot [7, 8, 9] and included in50

integrated development environments (IDEs), such as IntelliJ [10] and Visual Studio Code,51

thereby allowing software teams to access these tools directly from their preferred IDE.52

Motivating the need for prompt engineering. Programming first-generation LLMs,53

like ChatGPT, involves natural language prompts, such as asking the LLM to explain a54

software vulnerability or generate JavaScript for a web page. These trivial examples of55

prompts, however, do not reveal the significantly more sophisticated LLM computational56

abilities. Harnessing the potential of LLMs in productive ways requires a systematic focus57

on prompt engineering, which is an emerging discipline that studies structured interactions58

with—and programming of—new LLM computational systems to solve complex problems59

via natural language interfaces.60

This paper focuses on pattern-oriented prompt engineering techniques to enhance the ap-61

plication of LLMs in the software domain, including helping developers code effectively and ef-62

ficiently with unfamiliar APIs or allowing students to acquire new coding skills and techniques.63

To demonstrate the promise of prompt engineering for software development, we provided the64

following prompt to ChatGPT: https://www.overleaf.com/project/63f7764dbbe3fcbbee132b9265

Prompt: “From now on, I would like you to ask me questions to deploy a Python66

application to AWS. When you have enough information to deploy the application,67

create a Python script to automate the deployment.”68

This example prompt causes ChatGPT to begin asking the user questions about their69

software application. ChatGPT will drive the question-asking process until it reaches a point70

where it has sufficient information to generate a Python script that automates deployment.71

This example demonstrates the programming potential of prompts beyond conventional72

“generate a method that does X” style prompts or “answer this quiz question.”73

Moreover, prompts can be engineered to program an LLM to do more than simply74

dictating the output type or filtering the information provided to the model. With the right75

prompt, for example, it is possible to create entirely new interaction paradigms, such as having76

an LLM generate and give a quiz associated with a software engineering concept or tool, or77

even simulate a Linux terminal. Moreover, prompts have the potential for self-adaptation,78

e.g., suggesting other prompts to gather additional information or generate related artifacts.79

These advanced capabilities of prompts highlight the importance of engineering them to80

provide value beyond simple text or code generation.81

Prompt patterns are an essential foundation to an effective discipline of82

prompt engineering. A key contribution of this paper is the introduction of prompt83

patterns to document successful approaches for systematically engineering different output84

and interaction goals when working with conversational LLMs. Prompt patterns are similar85

to software patterns [11, 12] in that they offer reusable solutions to certain problems. They86

focus, however, on the context of output generation from LLMs, such as (but not limited to)87

ChatGPT.88

By documenting and leveraging prompt patterns in the context of automating software89

development tasks, individual users and teams can enforce constraints on the generated90

output, ensure that relevant information is included, and change the format of interaction91

with the LLM to better solve problems they face. Prompt patterns can be viewed as a92



Author: Please use the \authorrunning macro 23:3

corollary to the broad corpus of general software patterns, just adapted to the more specific93

context of LLM output generation.94

This paper focuses on domain-independent prompt patterns and presents a catalog of such95

patterns that have been applied to solve problems ranging from production of visualizations96

and code artifacts to automation of output steps for code editing to helping fact check97

outputs. Just as catalogs of software patterns provide a codified means to solve common98

software development challenges, catalogs of prompt patterns provide a codified approach to99

customizing the output and interactions of LLMs.100

Paper Organization. The remainder of this paper is organized as follows: Section 2101

introduces prompt patterns and compares these patterns to well-known software patterns;102

Section 3 describes 12 prompt patterns that have been applied to solve common problems in103

the domain of conversational LLM interaction and output generation for automating software104

development tasks; Section 4 discusses related work; and Section 5 presents concluding105

remarks and lessons learned.106

2 Comparing Software Patterns with Prompt Patterns107

The quality of the output(s) an LLM generates is directly related to the quality of the prompts108

provided by the user. As discussed in Section 1, the prompts given to a conversational LLM109

can be used to program interactions between a user and an LLM to better solve a diverse110

set of problems. One contribution of this paper is the framework it provides to document111

patterns that structure prompts to solve a range of software tasks that can be adapted to112

different domains.113

Our framework is useful since it codifies patterns that help users interact more effectively114

with conversational LLMs in a variety of contexts, rather than simply showing interesting115

examples or domain-specific prompts. Codifying this knowledge in pattern form enhances116

reuse and transferability to other contexts and domains where users face similar—but not117

identical—problems.118

The topic of knowledge transfer has been studied extensively in the software patterns119

literature [11, 12] at multiple levels, e.g., design, architectural, and analysis. This paper120

applies a variant of a familiar pattern form as the basis of our prompt engineering approach.121

Since prompts are a form of programming, it is natural to document them in pattern form.122

2.1 Overview of Software Patterns123

A software pattern provides a reusable solution to a recurring problem within a particular124

context [11]. Documenting software patterns concisely conveys (and generalizes) from specific125

problems being addressed to identify important forces and/or requirements that should be126

resolved and/or addressed in successful solutions.127

A pattern form also includes guidance on how to implement the pattern, as well as128

information on the trade-offs and considerations to take into account when implementing a129

pattern. Moreover, example implementations of the pattern are often provided to further130

showcase the pattern’s applicability in practice. Software patterns are typically documented131

in a stylized form to facilitate their use and understanding, such as:132

A name and classification. Each pattern has a name that identifies the pattern and133

should be used consistently. Patterns can be classified in various ways, including purpose134

(.e., creational, structural, or behavioral patterns), granularity (e.g., design, architectural,135

or enterprise patterns), etc.136

CVIT 2016



23:4 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

The intent concisely conveys the purpose the pattern is intended to achieve.137

The motivation documents the underlying problem and forces the pattern is meant to138

address and the importance of the problem.139

The structure and participants. The structure describes key pattern participants140

(such as classes and objects) and depicts how they collaborate to form a generalized141

solution.142

Example code concretely maps the pattern to some underlying programming language(s)143

and helps developers gain insight on how to apply the pattern effectively.144

Consequences summarize the pros and cons of applying the pattern in practice.145

2.2 Overview of Prompt Patterns146

Prompt patterns serve a similar purpose and follow a similar format to classic software147

patterns, with slight modifications to match the context of output generation with LLMs.1148

Each of the analogous sections for the prompt pattern form used in this paper is summarized149

below:150

A name and classification. The prompt pattern name uniquely identifies the pattern151

and indicates the problem that is being addressed. For the classification, we have152

developed a series of initial categories of pattern types summarized in Table 1.153

The intent and context describes the problem the prompt pattern solves and the goals154

it achieves. The problem should ideally be domain independent, though domain-specific155

patterns can be documented with an appropriate discussion of the context where the156

pattern applies.157

The motivation provides the rationale for the problem and explains why solving it158

is important. The motivation is explained in the context of users interacting with a159

conversational LLM and how it can improve upon users informally prompting the LLM in160

one or more circumstances. Specific circumstances where the improvements are expected161

are documented.162

The structure and key ideas. The structure describes the fundamental contextual163

information (presented as a series of key ideas) that the prompt pattern provides to the164

LLM. These ideas are similar to “participants” in a software pattern. The contextual165

information may be communicated through varying wording (just as a software pattern166

can have variations in how it is realized in code), but should convey fundamental pieces167

of information that form core elements of the pattern.168

Example implementation demonstrates how the prompt pattern is worded in practice169

and the types of output generated by an LLM.170

Consequences summarize the pros and cons of applying the pattern and may provide171

guidance on how to adapt the prompt to different contexts.172

2.3 Evaluating Means for Defining a Prompt Pattern’s Structure and173

Ideas174

In software patterns, the structure and participants are normally defined in terms of UML175

diagrams, such as structure diagrams and/or interaction diagrams. These UML diagrams176

1 The most direct translation of software pattern structure to prompt patterns is the naming, intent,
motivation, and sample code. The structure and classification, however, require more adaptation
although they named similarly.



Author: Please use the \authorrunning macro 23:5

explain what the participants of the pattern are and how they interact to solve the problem. In177

prompt patterns, something analogous is needed, though UML is not an ideal documentation178

approach since it is intended to describe software structures, as opposed to the ideas179

communicated in a prompt.180

Several possible approaches could be used, ranging from diagrams to defining grammars181

for a prompt language. Although grammars initially seemed attractive due to their formal182

nature, we found they incurred the following limitations:183

The goal of prompts is to communicate knowledge in a clear and concise way to con-184

versation LLM users, who may or may not be computer scientists or programmers. As185

a community, we should strive to create an approachable format that communicates186

knowledge clearly to a diverse target audience.187

It is possible to phrase a prompt in many different ways, most commonly by typing188

phrases into a terminal in a free form human language. It is hard, however, to define a189

grammar that accurately and completely expresses all the nuanced ways that components190

of a prompt could be expressed in text or symbols.191

Prompts fundamentally convey ideas to a conversational LLM and are not simply the192

production of tokens for input. In particular, an idea built into a prompt pattern can193

be communicated in many ways and its expression should be at a higher level than the194

underlying tokens representing the idea.195

It is possible to program an LLM to introduce novel semantics for statements and words196

that create new ways for communicating an idea. In contrast, grammars may not easily197

represent ideas that can be expressed through completely new symbology or languages198

that the grammar designer was not aware of.199

2.4 A Way Forward: Fundamental Contextual Statements200

Given the limitation with formal grammars, and open research question is how to more effect-201

ively describe prompt pattern structure and ideas. We propose the concept of fundamental202

contextual statements, which are written descriptions of the important ideas to communicate203

in a prompt to an LLM. An idea can be rewritten and expressed in arbitrary ways based on204

user needs and experience. The key ideas to communicate, however, are presented to the205

user as a series of simple, but fundamental, statements, as shown throughout the examples206

in Section 3.207

One benefit of adopting and applying fundamental contextual statements is that they are208

intentionally intuitive to users. In particular, we expect users will understand how to express209

and adapt the statements in a contextually appropriate way for their domain. Moreover,210

since the underlying ideas of the prompt are captured, these same ideas can be expressed211

by the user in alternate symbology or wording that has been introduced to the LLM using212

patterns, such as the Meta Language Creation pattern presented in Section 3.2.213

Our ultimate goal is to enhance prompt engineering by providing a framework for designing214

prompts that can be reused and/or adapted to other LLMs, much like software patterns215

can be implemented in different programming languages and platforms. For the purposes of216

this paper, however, all prompts were tested with ChatGPT [13]. We use this LLM for all217

examples presented in this paper due to its widespread availability and popularity. These218

examples were documented through a combination of exploring the corpus of community-219

posted prompts on the Internet and independent prompt creation from using ChatGPT to220

automating software development tasks.221

CVIT 2016



23:6 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

3 A Catalog of Prompt Patterns for Conversational LLMs222

This section presents our catalog of prompt patterns that have been applied to solve223

common problems in the domain of conversational LLM interaction and output generation for224

automating software tasks. Each prompt pattern is accompanied by concrete implementation225

samples and examples with and without the prompt.226

3.1 Summary of Our Prompt Pattern Catalog227

Organizing a large catalog of prompt patterns into easily understandable categories helps228

create documentation that users can apply more effectively. Table 1 outlines the initial229

classifications for the catalog of prompt patterns we identified in our work with ChatGPT thus230

far. As shown in this table, there are five categories of prompt patterns in our classification

Table 1 Classifying Prompt Patterns

Pattern Category Prompt Pattern
Input Semantics Meta Language Creation
Output Output Automater
Customization Persona

Visualization Generator
Recipe
Template

Error Identification Fact Check List
Prompt Alternative Approaches
Improvement Cognitive Verifier

Refusal Breaker
Interaction Flipped Interaction
Context Control Context Manager

231

framework: Input Semantics, Output Customization, Error Identification, Prompt232

Improvement, and Interaction, each of which is summarized below.233

The Input Semantics category deals with how an LLM understands user input and how234

it translates this input into something it can use to generate output. This category includes235

the Meta Language Creation pattern, which focuses on creating a custom language for the236

LLM to understand. This pattern is useful when the default input language is ill-suited for237

expressing ideas users want to convey to the LLM.238

The Output Customization category focuses on constraining or tailoring the types,239

formats, structure, or other properties of the output generated by the LLM. Prompt patterns240

in this category include Output Automater, Persona, Visualization Generator, Recipe, and241

Template patterns. The Output Automater pattern creates scripts that automate tasks the242

LLM output suggests users should perform. The Persona pattern gives the LLM a persona243

or role to play when generating output. The Visualization Generator pattern allows users to244

generate visualizations by producing textual outputs that can be fed to other tools, such245

as other AI-based image generators, like DALL-E [14]. The Recipe pattern allows users to246

obtain a sequence of steps or actions to realize a stated outcome, possibly with partially247

known information or constraints. The Template pattern allows users to specify a template248

for the output, which the LLM fills in with content.249

The Error Identification category focuses on identifying and resolving errors in the250



Author: Please use the \authorrunning macro 23:7

output generated by the LLM. This category includes the Fact Check List pattern. The Fact251

Check List pattern requires the LLM to generate a list of facts the output depends on that252

should be fact-checked, then introspect on its output and identify any errors.253

The Prompt Improvement category focuses on improving the quality of the input254

and output. This category includes the Alternative Approaches, Cognitive Verifier, and255

Refusal Breaker patterns. The Alternative Approaches pattern requires the LLM to suggest256

alternative ways of accomplishing a user-specified task. The Cognitive Verifier pattern257

instructs the LLM to automatically suggest a series of subquestions for users to answer before258

combining the answers to the subquestions and producing an answer to the overall question.259

The Refusal Breaker pattern requires the LLM to automatically reword user questions when260

it refuses to produce an answer.261

The Interaction category focuses on the interaction between users and the LLM. This262

category includes the Flipped Interaction patterns. The Flipped Interaction pattern requires263

the LLM to ask questions of users rather than generate output.264

Finally, the Context Control category focuses on controlling the contextual information265

in which the LLM operates. This category includes the Context Manager pattern, which266

allows users to specify the context for the LLM’s output.267

We encourage readers to use ChatGPT to test the provided patterns. The268

output from ChatGPT has been omitted for brevity in most cases. However, the patterns are269

all easily testable in the current verison of ChatGPT. The remainder of this section describes270

each prompt pattern using the pattern form discussed in Section 2.2.271

3.2 The Meta Language Creation Pattern272

Intent and Context273

During a conversation with an LLM, users would like to write the prompt using an alternate274

notation or language, such as a textual short-hand notation for graphs, a description of states275

and state transitions for a state machine, a set of commands for prompt automation, etc.276

For example, a user would like to use the graph notation "a→b" to express a directed graph.277

The intent of this pattern is to explain the semantics of this alternative language to the LLM278

so users can write future prompts in this new language and its semantics.279

Motivation280

Many problems, structures, or other ideas communicated in a prompt may be more con-281

cisely, unambiguously, or clearly expressed in a language other than English (or whatever282

conventional human language is used to interact with an LLM). To produce output based on283

an alternative language, however, an LLM needs to understand the language’s syntax and284

semantics in terms of a language that it was trained on.285

Structure and Key Ideas286

Fundamental contextual statements:287

Contextual Statements
When I say X, I mean Y (or would like you to do
Y)

288

The key structure of this pattern involves explaining the meaning of one or more symbols,289

words, or instruction to the LLM so it uses the provided semantics for the ensuing conversation.290

CVIT 2016



23:8 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

This statement can take the form of a simple translation, such as “X” means “Y.” It can291

also take more complex forms that define a series of commands and their semantics, such as292

“when I say X, I want you to do Y”. In this case, “X” is henceforth bound to the semantics of293

“take action Y.” For example, "whenever I type the word ’outline’, print an outline of all the294

topics discussed thus far."295

Example Implementation296

The key to using the Meta Language Creation pattern successfully is developing an unam-297

biguous notation or shorthand, such as the following:298

“From now on, whenever I type two identifiers separated by a “→", I am describing a299

graph. For example, “a → b” is describing a graph with nodes “a” and “b” and an300

edge between them. If I separate identifiers by “-[w:2, z:3]→”, I am adding properties301

of the edge, such as a weight or label.”302

This example of the Meta Language Creation pattern establishes a standardized notation303

for describing graphs by defining a convention for representing nodes and edges. Whenever304

the author types two identifiers separated by a “→” symbol, it indicates a graph is being305

described. For example, if the author types “a → b”, this indicates that a graph is being306

defined with nodes “a” and “b”, and that there is an edge between them. This convention307

provides a clear and concise way to communicate the structure of a graph in written form.308

Moreover, the prompt goes on to specify that additional information about the edges,309

such as a weight or label, can be provided using the syntax “-[w:2, z:3]→.” This notation310

allows the specification of additional properties beyond the basic structure of the graph.311

These specified properties are associated with the edge between the two nodes and can312

provide important context for the interpretation of the graph. This standardized notation313

for describing graphs makes it easier to communicate graph structures and properties, which314

may not be easy or are overly verbose to describe as a series of sentences.315

Consequences316

Although this pattern provides a powerful means to customize a user’s interaction with an317

LLM, it may create the potential for confusion within the LLM itself. For example, the318

prompt “whenever I separate two things by commas, it means that the first thing precedes the319

second thing” will likely create significant potential for ambiguity and create the potential for320

unexpected semantics because commas are used as a standard form of punctuation that does321

not have the semantic "a precedes b". As important as it is to clearly define the semantics of322

the language, it is also essential to ensure the language itself introduces no ambiguities that323

degrade the LLM’s performance or accuracy.324

To showcase the potential for confusion, ChatGPT will warn the user and potentially be325

unable to perform a specific mapping of a symbol or term to a new meaning. For example, if326

following prompt is given to ChatGPT327

“Whenever I say “a”, I am referring to Marie Antoinette.”328

it will respond that this prompt creates too much confusion as “a” is an indefinite article329

and too commonly used, as shown below:330

“Referring to Marie Antoinette using “a” could potentially cause confusion, as “a” is331

an indefinite article commonly used to refer to a noun that has not been mentioned332



Author: Please use the \authorrunning macro 23:9

before. It may be more clear to use her name, “Marie Antoinette”, or a pronoun such333

as “she” or “her” to refer to her. Moreover, using context to establish who you are334

referring to can also help avoid confusion in conversation."335

An LLM generally performs better on data it was trained on, so when an existing notation336

is available—but may not be the dominant meaning—the Meta Language Creation pattern337

can provide context to scope the meaning of the symbol to improve the accurately and utility338

of the output. For example, the symbol “→” conveys slightly different information in graphs339

and propositional logic. The statement “p → q, q → p” may therefore make sense, but only340

if the LLM is given the appropriate context via the Meta Language Creation prompt pattern.341

Although this pattern is powerful it must be used carefully, particularly when describing342

concepts that may otherwise be hard to precisely or concisely describe. These types of343

prompts are thus best used in completely new conversation sessions. Using a single meta-344

language-per-conversation session is also a best practice to avoid the potential for conflicting345

or unexpected semantics being applied to the conversation over time.346

3.3 The Output Automater Pattern347

Intent and Context348

The intent of this pattern is to have the LLM generate a script or other automation artifact349

that can automatically perform any steps it recommends taking as part of its output. The350

goal is to reduce the manual effort needed to implement any LLM output recommendations.351

This pattern can also be used to allow the LLM to execute actions in other systems.352

Motivation353

The output of an LLM is often a sequence of steps for the user to follow. For example, when354

asking an LLM to generate a Python configuration script it may suggest a number of files to355

modify and changes to apply to each file. Another output may be a sequence of configuration356

actions in a cloud computing console, such as the Amazon Web Services console. It is tedious357

and error-prone, however, for users to repeatedly perform the manual steps dictated by LLM358

output.359

Structure and Key Ideas360

Fundamental contextual statements:361

Contextual Statements
Whenever you produce an output that has at least
one step to take and the following properties
Produce an executable artifact of type X that will
automate these steps

362

The first statement identifies the situations under which automation should be generated.363

A simple approach is to state the output includes at least two steps to perform and that an364

automation artifact should then be produced. This "scope limiting" helps prevent producing365

output automation scripts in cases where running such scripts requires more user effort than366

simply performing the original steps produced in the output. In particular, the scope can be367

limited to outputs requiring more than a certain number of steps.368

CVIT 2016



23:10 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

The second statement provides a concrete statement of the type of output the LLM369

should output to perform the automation. For example, “produce a Python script” gives370

the LLM a concrete understanding to translate the general steps into equivalent steps in371

Python. The automation artifact should be concrete and something the LLM associates with372

the action of “automating a sequence of steps.”373

Example Implementation374

A sample of the Output Automater pattern applied to code snippets generated by the375

ChatGPT LLM is shown below:376

“From now on, whenever you generate code that spans more than one file, generate377

a Python script that can be run to automatically create the specified files or make378

changes to existing files to insert the generated code.”379

The sample prompt automates the common software engineering task of taking the LLM380

output and editing one or more files. The scope is "whenever you generate code that spans381

more than one file," which is when the developer would have multiple, potentially error-prone382

steps, to make the necessary code edits. The "generate a Python script that can be run383

to automatically" indicates that the goal is to automate the editing of the files so that the384

developer doesn’t have to. The specification of the goal is important so that the LLM doesn’t385

automate unrelated tasks, since the output may have other steps that need to be completed386

unrelated to coding.387

The Output Automater pattern is a powerful complement for any computer-controlled sys-388

tem, such as generating Development Operations (DevOps) artifacts for build, configuration389

and deployment; code editing tasks, including creation / editing of multiple files; and environ-390

ment setup tasks, ranging from creation of environment variables to running necessary shell391

commands. An LLM can provide a set of steps to perform on the computer-controlled system392

and the output can then be translated into a script that allows the computer controlling the393

system to perform the steps automatically. This pattern enables LLMs to integrate quality394

into—and exert control over—new computing systems that have a known scripting interface.395

Consequences396

This pattern is particularly effective in software development since programmers often use397

LLMs to generate output that they then copy/paste into multiple files. Some tools, such398

as Copilot, insert limited snippets directly into the section of code that a programmer is399

working with. In contrast, conversational LLMs, such as ChatGPT, do not provide such400

facilities. This prompt pattern is also effective at creating scripts for running commands on401

a terminal, automating cloud operations, or reorganizing files on a file system.402

An important usage consideration of this pattern is that the automation artifact must403

be defined concretely. Without a concrete meaning for how to “automate” the steps, the404

LLM often states that it “can’t automate things” since that is beyond its capabilities. LLMs405

typically accept requests to produce code, however, so the goal is to instruct the LLM to406

generate text/code, which can be executed to automate something. This subtle distinction407

in meaning is important to help an LLM disambiguate the meaning of a prompt.408

One caveat of the Output Automater pattern is the LLM needs sufficient conversational409

context to generate an automation artifact that is functional in the target context, such as410

the file system of a project on a Mac vs. Windows computer. This pattern is more effective411

when the full context needed for the automation is contained within the conversation, e.g.,412



Author: Please use the \authorrunning macro 23:11

when a software application is generated from scratch using the conversation and all actions413

on the local file system are performed using a sequence of generated automation artifacts414

rather than manual actions unknown to the LLM. Alternatively, self-contained sequences of415

steps work well, such as “how do I find the list of open ports on my Mac computer.”416

In some cases, the LLM may produce a long output with multiple steps and not include417

an automation artifact. This omission may arise for various reasons, including exceeding418

the output length limitation the LLM supports. A simple workaround for this situation is419

to remind the LLM via a follow-on prompt, such as “But you didn’t automate it”, which420

provides the context that the automation artifact was omitted and should be generated.421

At this point in the evolution of LLMs, the Output Automater pattern is best employed422

by users who can read and understand the generated automation artifact. LLMs can (and423

do) produce inaccuracies in their output, so blindly accepting and executing an automation424

artifact carries significant risk. Although this pattern alleviates users from performing425

certain manual steps, it does not alleviate their responsibility to understand the actions they426

undertake using the output. When users execute automation scripts they therefore assume427

responsibility for the outcomes.428

3.4 The Flipped Interaction Pattern429

Intent and Context430

You want the LLM to ask questions to obtain the information it needs to perform some tasks.431

Rather than users driving the conversation, therefore, the LLM should drive the conversation432

to focus it on achieving a specific goal. For example, you may want the LLM to give a quick433

quiz or automatically ask questions until it has sufficient information to generate a script to434

deploy your application on a particular cloud platform.435

Motivation436

Rather than having the user drive the conversation, an LLM often has knowledge it can use437

to obtain information from users more efficiently. The goal of the Flipped Interaction pattern438

is to invert the interaction flow so the LLM asks the user questions to achieve some desired439

goal. The LLM can often better select the format, number, and content of the interactions440

to ensure the goal is reached faster, more accurately, and/or by using knowledge a user may441

not possess initially.442

Structure and Key Ideas443

Fundamental contextual statements:444

Contextual Statements
I would like you to ask me questions to achieve X
You should ask questions until this condition is met
or to achieve this goal (alternatively, forever)
(Optional) ask me the questions one at a time, two
at a time, etc.

445

A prompt for a flipped interaction should always specify the goal of the interaction.446

The first statement (i.e., get the LLM to ask questions to achieve a goal) communicates447

this goal to the LLM. Equally important is that the questions should focus on a particular448

topic or outcome. By providing the goal, the LLM can understand what it is trying to449

CVIT 2016



23:12 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

accomplish through the interaction and tailor its questions accordingly. This “inversion of450

control” enables more focused and efficient interaction since the LLM only asks questions it451

deems relevant to achieving the specified goal.452

The second statement provides the context for how long the interaction should occur. A453

flipped interaction can be terminated with a response like “stop asking questions”. It is often454

better, however, to scope the interaction to a reasonable length or only as far as is needed to455

reach the goal. This goal can be surprisingly open-ended and the LLM will continue to work456

towards the goal by asking questions, as is the case in the example of "until you have enough457

information to generate a Python script."458

The third (optional) statement can improve usability by limiting (or expanding) the459

number of questions that the LLM generates per cycle. By default, an LLM may generate460

multiple questions per iteration. If a precise number/format for the questioning is not461

specified, the questioning will be semi-random and may lead to one-at-a-time questions462

or ten-at-a-time questions. The prompt can thus be tailored to include the number of463

questions asked at a time, the order of the questions, and/or any other formatting/ordering464

considerations to facilitate user interaction.465

Example Implementation466

A sample prompt for a flipped interaction is shown below:467

“From now on, I would like you to ask me questions to deploy a Python application to468

AWS. When you have enough information to deploy the application, create a Python469

script to automate the deployment.”470

In general, the more specific the prompt regarding the constraints and information to471

collect, the better the outcome. For instance, the example prompt above could provide472

a menu of possible AWS services (such as Lambda, EC2, etc.) with which to deploy the473

application. In other cases, the LLM may be permitted to simply make appropriate choices474

on its own for things the user makes no explicit decisions about. One limitation of this475

prompt is that it may require experimentation with the precise phrasing to get the LLM to476

ask the questions in the appropriate number and flow to best suit the task. For example, the477

LLM may need tuning to determine how many questions to ask at a time and how to best478

tailor the sequencing for the task.479

Consequences480

One consideration when designing a prompt based in the Flipped Interaction pattern is how481

much to dictate to the LLM regarding what information to collect prior to termination. In482

the example above, the flipped interaction is open-ended and can vary significantly in the483

final generated artifact. This open-endedness makes the prompt generic and reusable, but484

may potentially ask additional questions that could be skipped if additional context is given.485

If specific requirements are known in advance, it is better to inject them into the prompt486

rather than hoping the LLM will obtain the needed information. Otherwise, the LLM will487

non-deterministically decide whether to prompt the user for the information or make an488

educated guess as to an appropriate value.489

For example, the user can state they would like to deploy an application to Amazon AWS490

EC2, rather than simply state "the cloud," which requires fewer interactions to narrow down491

the deployment target. The more precise the initial information, therefore, the better the492



Author: Please use the \authorrunning macro 23:13

LLM can use the limited questions that a user may be willing to answer to obtain information493

the LLM requires to improve its output.494

When developing prompts for flipped interactions, it is important to consider the level of495

user knowledge, engagement, and control. If the goal is to accomplish the goal with as little496

user interaction as possible (minimal control), that should be stated explicitly. Conversely,497

if the goal is to ensure the user is aware of all key decisions and confirms them (maximum498

engagement) that should also be stated explicitly. Likewise, if the user is expected to have499

minimal knowledge and should have the questions targeted at their level of expertise, such500

information should be engineered into the prompt.501

3.5 The Persona Pattern502

Intent and Context503

In many cases, users would like LLM output to always take a certain point of view or504

perspective. For example, it may be useful to conduct a code review as if the LLM was a505

security expert. The intent of this pattern is to give the LLM a “persona” that helps it select506

what types of output to generate and what details to focus on.507

Motivation508

Users may not know what types of outputs or details are important for an LLM to focus on509

to achieve a given task. They may know, however, the role or type of person they would510

normally ask to get help with these things. The Persona pattern enables the users to express511

what they need help with, without knowing the exact details of the outputs they need.512

Structure and Key Ideas513

Fundamental contextual statements:514

Contextual Statements
Act as persona X
Provide outputs that persona X would create

515

The first statement instructs the LLM needs to act as a specific persona and provide516

outputs like such a persona would. This persona can be expressed in a number of ways,517

ranging from a job description, title, fictional character, historical figure, etc. The persona518

should elicit a set of attributes associated with a well-known job title, type of person, etc.2519

The secondary statement—provide outputs that persona X would create—offers oppor-520

tunities for customization. For example, a computer science teacher might provide a large521

variety of different output types, ranging from programming assignments to reading lists to522

lectures. If a more specific scope to the type of output is known, the user can provide it in523

this statement.524

Example Implementation525

A sample implementation for code review is shown below:526

2 Be aware, however, that an LLM may discard personas relating to living people or people considered
harmful due to underlying policy filters, such as privacy and security rules.

CVIT 2016



23:14 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

“From now on, act as a security reviewer. Pay close attention to the security details527

of any code that we look at. Provide outputs that a security reviewer would regarding528

the code.”529

In this example, the LLM is instructed to provide outputs that a "security reviewer"530

would. The prompt further sets the stage that code is going to be evaluated. Finally, the531

user refines the persona by scoping the persona further to outputs regarding the code.532

Personas can also represent inanimate or non-human entities, such as a Linux terminal, a533

database, or an animal’s perspective. When using this pattern to represent these entities, it534

can be useful to also specify how you want the inputs delivered to the entity, such as “assume535

my input is what the owner is saying to the dog and your output is the sounds the dog is536

making,”537

An example prompt for a non-human entity that uses a “pretend to be” wording is shown538

below:539

“You are going to pretend to be a Linux terminal for a computer that has been540

compromised by an attacker. When I type in a command, you are going to output541

the corresponding text that the Linux terminal would produce.”542

This prompt is designed to simulate a computer that has been compromised by an attacker543

and is being controlled through a Linux terminal. The prompt specifies that the user will544

input commands into the terminal, and in response, the simulated terminal will output the545

corresponding text that would be produced by a real Linux terminal. This prompt is more546

prescriptive in the persona and asks the LLM to not only be a Linux terminal, but to act as547

a computer compromised by an attacker.548

The persona causes ChatGPT to generate outputs to commands that have files and549

contents indicative of a computer that was hacked. This example shows how an LLM can550

bring its situational awareness to a persona, in this case, creating evidence of a cyberattack551

in the outputs it generates. Such a persona can be highly effective by asking LLM to play a552

game, where you want to hide exact details of the output characteristics from the user (e.g.,553

do not give away what the cyberattack did by describing it explicitly in the prompt).554

Consequences555

An interesting aspect of taking non-human personas is that the LLM may make interesting556

assumptions or “hallucinations” regarding the context. A widely circulated example on the557

Internet asks ChatGPT to act as a Linux terminal and generate the output expected if the558

user typed the same text into a terminal. Commands, such as ls -l, will generate a file559

listing for an imaginary UNIX file system, complete with files that can have cat file1.txt560

run on them.561

In other examples, the LLM may prompt the user for more context, such as when562

ChatGPT is asked to act as a MySQL database and prompts for the structure of a table563

that the user is pretending to query. ChatGPT can then generate synthetic rows, such as564

generating imaginary rows for a “people” table with columns for “name” and “job,”565

3.6 The Alternative Approaches Pattern566

Intent and Context567

The intent of the pattern is to ensure an LLM always offers alternative ways of accomplishing568

a task so users do not pursue only familiar approaches. The LLM can then provide alternative569



Author: Please use the \authorrunning macro 23:15

approaches that always force users to think about what they are doing and determine if that570

is the best approach to meet reach their goal. In addition, solving the task may inform the571

user or teach them about alternative concepts for subsequent follow-up prompts.572

Motivation573

Humans often suffer from cognitive biases that lead them to choose a particular approach to574

solve a problem, even when it is not the right or “best” approach. Moreover, humans may575

be unaware of alternative approaches to what they have used in the past. The motivation of576

the Alternative Approaches pattern is to ensure users are aware of alternative approaches to577

select a better approach to solve a problem by dissolving their cognitive biases.578

Structure and Key Ideas579

Fundamental contextual statements:580

Contextual Statements
Within scope X, if there are alternative ways to
accomplish the same thing, list the best alternate
approaches
(Optional) compare/contrast the pros and cons of
each approach
(Optional) include the original way that I asked
(Optional) prompt me for which approach I would
like to use

581

The initial portion of the first statement (“within scope X”) scopes the interaction to a582

particular goal, topic, or bounds on the questioning. The scope is the constraint(s) users583

place on alternative approaches. The scope could be “for implementation decisions” or “for584

the deployment of the application”. The scope ensures that any alternatives fit within the585

boundaries or constraints to which the user must adhere.586

The next portion of the first statement (“if there are alternative ways to accomplish the587

same thing, list the best alternate approaches”) instructs the LLM to suggest alternatives.588

As with other prompt patterns, instruction specificity can be increased or include domain-589

specific contextual information. For example, the statement could be scoped to “if there are590

alternative ways to accomplish the same thing with the software framework that I am using”591

to prevent the LLM from suggesting alternatives that are inherently non-viable because they592

require too many changes to other parts of the application.593

Since users may not be aware of alternative approaches, they also may not be aware594

of why and when to choose one of the alternatives. The second (optional) statement595

(“compare/contrast the pros and cons of each approach”) adds decision making criteria to596

the analysis. This statement ensures the LLM provides users with the necessary rationale for597

alternative approaches.598

The final (optional) statement (“prompt me for which approach I would like to use”)599

helps eliminate users needing to manually copy/paste or enter in an alternative approach if600

one is selected.601

Example Implementation602

The following is an example prompt that generates, compares, and allows a user to select603

one or more alternative approaches:604

CVIT 2016



23:16 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

“Whenever I ask you to deploy an application to a specific cloud service, if there are605

alternative services to accomplish the same thing with the same cloud service provider,606

list the best alternative services and then compare/contrast the pros and cons of each607

approach with respect to cost, availability, and maintenance effort and include the608

original way that I asked. Then ask me which approach I would like to proceed with.”609

This implementation of the Alternative Approaches pattern is specifically tailored for610

the context of software engineering and focuses on the deployment of applications to cloud611

services. The prompt is intended to intercept places where developers have made a cloud612

service selection without full awareness of alternative services that may be priced more613

competitively or easier to maintain. The prompt directs ChatGPT to list the best alternative614

services that can accomplish the same task with the same cloud service provider (providing615

constraints on the alternatives), and to compare and contrast the pros and cons of each616

approach.617

Consequences618

This pattern is effective in its generic form and can be applied to a range of tasks. Refinements619

could include having a standardized catalog of acceptable alternatives in a specific domain620

from which the user must select. The Alternative Approaches pattern can also be used to621

incentivize users to select one of an approved set of approaches while informing them of the622

pros and cons of the approved options.623

3.7 The Cognitive Verifier Pattern624

Intent and Context625

Research literature has documented that LLMs can often reason better if a question is626

subdivided into additional questions, that are each individually answered. The LLM can627

then combine the answers to the sub-questions into a better overall answer to the original628

question [15]. The intent of the Cognitive Verifier pattern is to force the LLM to always629

subdivide questions into additional questions that can be used to provide a better answer to630

the original question.631

Motivation632

The motivation of the Cognitive Verifier pattern is two-fold:633

Humans may initially ask questions that are too high-level to provide a concrete answer634

to without additional follow-up due to unfamiliarity with the domain, laziness in prompt635

entry, or being unsure about what the correct phrasing of the question should be.636

Research has demonstrated that LLMs can often perform better when using a question637

that is subdivided into additional questions.638

Structure and Key Ideas639

Fundamental contextual statements:640



Author: Please use the \authorrunning macro 23:17

Contextual Statements
When you are asked a question, follow these rules
Generate a number of additional questions that
would help more accurately answer the question
Combine the answers to the individual questions to
produce the final answer to the overall question

641

The first statement instructs the LLM to generate a number of additional questions that642

help answer the original question more accurately . This step instructs the LLM to (1)643

consider the context of the question, (2) identify any information that may be missing or644

unclear, and (3) combine the answers to the additional questions to provide context to help645

answer the overall question. By generating additional questions, the LLM can help ensure its646

ultimate answer is as complete and accurate as possible. This step also encourages critical647

thinking by users and can help uncover new insights or approaches that may not have been648

considered initially, thereby yielding better follow-on questions.649

The second statement instructs the LLM to combine answers to individual questions to650

produce the ultimate answer to the overall question. This step ensures all the information651

gathered from the individual questions is incorporated into the final answer. By combining652

answers, the LLM can provide a more comprehensive and accurate response to the original653

question. This step also helps ensure all relevant information is taken into account and the654

final answer is not based on any single answer.655

Example Implementation656

“When I ask you a question, generate three additional questions that would help you657

give a more accurate answer. When I have answered the three questions, combine the658

answers to produce the final answers to my original question.”659

This specific instance of the Cognitive Verifier pattern refines the original pattern by660

specifying a set number of additional questions that the LLM should generate in response to661

a question. In this case, the prompt instructs the LLM to generate three additional questions662

that help it answer the original question more accurately. The specific number can be based663

on a user’s experience and willingness to provide follow-up information.664

The following refinement to the prompt above provides more context for the amount of665

domain knowledge the LLM can assume the user has to guide the creation of additional666

questions:667

“When I ask you a question, generate three additional questions that would help you668

give a more accurate answer. Assume that I know little about the topic that we are669

discussing and please define any terms that are not general knowledge. When I have670

answered the three questions, combine the answers to produce the final answers to671

my original question.”672

The refinement also specifies that the user may not have a strong understanding of the673

topic being discussed, so the LLM should define any terms that are not general knowledge.674

The goal is to ensure follow-up questions are not only relevant and focused, but also accessible675

to the user, who may be unfamiliar with technical or domain-specific terms. By providing676

clear and concise definitions, the LLM can help ensure its follow-up questions are easy to677

understand and the final answer is accessible to users with varying levels of knowledge and678

expertise.679

CVIT 2016



23:18 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Consequences680

This pattern can dictate the exact number of questions to generate or leave this decision to681

the LLM. There are pros and cons to dictating the exact number. A pro is that specifying682

an exact number of questions can tightly scope the amount of additional information the683

user must provide so it is within a range they are willing and able to contribute.684

A con, however, is that given N questions there may be an invaluable N + 1 question685

that is always scoped out. Alternatively, the LLM can be provided a range or allowed to ask686

additional questions. Of course, by omitting a limit on the number of questions the LLM687

may generate numerous additional questions that overwhelm users.688

3.8 The Fact Check List Pattern689

Intent and Context690

The intent of this pattern is to ensure the LLM outputs a list of facts that are present in the691

output and form an important part of the statements in the output. This list of facts helps692

inform users of the facts (or assumptions) the output is based on. Users can then perform693

appropriate due diligence on these facts/assumptions to validate the output’s veracity.694

Motivation695

A current weakness of LLMs (including ChatGPT) is they often rapidly (and enthusiastically!)696

generate convincing text that is factually incorrect. These errors can take a wide range of697

forms, including fake statistics to invalid version numbers for software library dependencies.698

Due to the convincing nature of this generated text, however, users may not perform699

appropriate due diligence to determine output accuracy.700

Structure and Key Ideas701

Fundamental contextual statements:702

Contextual Statements
Generate a set of facts that are contained in the
output
The set of facts should be inserted in a specific point
in the output
The set of facts should be the fundamental facts
that could undermine the veracity of the output if
any of them are incorrect

703

The first statement instructs the LLM to identify the facts that are contained within its704

output. The LLM should be able to identify facts very effectively as they are a very well-705

understood concept and not impacted by the actual content, they are a domain-independent706

concept. The second statement tells where the facts should be included in the output, such707

as at the end or beginning of the output – although other arrangements could be employed.708

The third statement expresses the idea that facts should be the ones most important to709

the overall truthfulness of the statements, i.e., choose facts fundamental to the argument710

and not derived facts flowing from those facts. This statement is crucial since it helps to711

scope the output to those facts most important to the veracity and not derived statements712

that may not be as important – although this constraint could be relaxed.713



Author: Please use the \authorrunning macro 23:19

One point of variation in this pattern is where the facts are output. Given that the facts714

may be terms that the user is not familiar with, it is preferable if the list of facts comes after715

the output. This after-output presentation ordering allows users to read and (attempt to)716

understand the statements before seeing what statements should be checked. Users may also717

determine additional facts prior to realizing the fact list at the end should be checked.718

Example Implementation719

A sample wording of the Fact Check List pattern is shown below:720

“From now on, when you generate an answer, create a set of facts that the answer721

depends on that should be fact-checked and list this set of facts at the end of your722

output. Only include facts related to cybersecurity.”723

The user may have expertise in some topics related to the question but not others. A fact724

check list can be tailored to topics that users are not as experienced in or where there is the725

most risk. For example, in the prompt above, the user is scoping the fact check list to security726

topics since these are likely important from a risk perspective and may be poorly understood727

by developers. Targeting the facts also reduces user cognitive burden by potentially listing728

fewer items for investigation.729

Consequences730

The Fact Check List pattern should be employed whenever users are not experts in the731

domain for which they are generating output. For example, software developers reviewing732

code could benefit from security consideration suggestions. In contrast, an expert on software733

architecture may identify errors in statements about the software structure and need not see734

a fact check list for these outputs.735

Errors are potential in all LLM outputs, so Fact Check List is an effective pattern to736

combine with other patterns, such as the Cognitive Verifier pattern. A key aspect of the737

Fact Check List pattern is that users can inherently check the list of facts against the output.738

In particular, users can directly compare a fact check list to the output to verify the facts in739

the fact check list actually appear in the output. Users can also identify any omissions from740

the list. Although a fact check list may also have errors, users often have sufficient knowledge741

and context to determine its completeness and accuracy relative to the LLM’s output.742

One caveat of the Fact Check List pattern is that it only applies when the output type743

is amenable to fact-checking. For example, the pattern works when asking ChatGPT to744

generate a Python “requirements.txt” file since it lists the versions of libraries as facts that745

should be checked, which is handy as versions commonly have errors. However, ChatGPT746

will refuse to generate a fact check list for a code sample and indicate that this is something747

it cannot check, even though the code may have errors.748

3.9 The Template Pattern749

Intent and Context750

The intent of the pattern is to ensure an LLM’s output follows a precise template in terms751

of structure. For example, the user might need to generate a URL that inserts generated752

information into specific positions within the URL path. This pattern allows the user to753

instruct the LLM to produce its output in a format it would not ordinarily use for the754

specified type of content being generated.755

CVIT 2016



23:20 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Motivation756

In some cases, output must be produced in a precise format that is application or use-case757

specific and not known to the LLM. Since an LLM is unaware of the template structure, it758

must be instructed what the format is and where the different parts of its output should go.759

These instructions could take the form of a sample data structure to generate, a series of760

form letters being filled in, etc.761

Structure and Key Ideas762

Fundamental contextual statements:763

Contextual Statements
I am going to provide a template for your output
X is my placeholder for content
Try to fit the output into one or more of the place-
holders that I list
Please preserve the formatting and overall template
that I provide
This is the template: PATTERN with PLACE-
HOLDERS

764

The first statement directs the LLM to follow a specific template for its output. This765

template will be used to try and coerce the LLMs responses into a structure consistent with766

user formatting needs, which is useful when the target format is not known to the LLM.767

If the LLM already has knowledge of the format, such as a specific file type, the Template768

pattern can be skipped and the user can simply specify the known format. However,there769

may be cases, such as generating Javascript Object Notation (JSON), where large variation770

exists in how data could be represented within a format. In such cases a template helps771

ensure the representation within the target format meets additional user constraints.772

The second statement makes the LLM aware that the template contains a set of place-773

holders. These placeholders enable users to explain how the output should be inserted774

into the template. They also allow the user to target where information should be inserted775

semantically. Placeholders can use formats (e.g., NAME) that allow an LLM to infer semantic776

meaning and determine where output should be inserted (e.g., insert the person’s name in777

the NAME placeholder). By using placeholders, moreover, users can indicate what is not778

needed in the output, e.g., if a placeholder does not exist for a component of the generated779

output that component can be omitted. Ideally, placeholders should use a format (e.g., all780

caps or enclosure in brackets) commonly employed in text where the LLM was trained on.781

The third and fourth statements attempt to constrain the LLM so it does not arbitrarily782

rewrite the template or attempt to modify it so all the output components can be inserted.783

However, these statements may not preclude an LLM from generating additional text784

generated before or after. In practice, LLMs will typically follow the template, but it may785

be hard to eliminate additional text being generated beyond the template without further786

experimentation with prompt wording.787

Finally, the fifth statement provides the actual template to output the text in.788

Example Implementation789

A sample template for generating URLs where the output is put into specific places in the790

template is shown below:791



Author: Please use the \authorrunning macro 23:21

“I am going to provide a template for your output. Everything in all caps is a792

placeholder. Any time that you generate text, try to fit it into one of the placeholders793

that I list. Please preserve the formatting and overall template that I provide at794

https://myapi.com/NAME/profile/JOB”795

A sample interaction after the prompt above was given is shown next:796

User: “Generate a name and job title for a person”797

ChatGPT: “https://myapi.com/Emily_Parker/profile/ Software_Engineer”798

Consequences799

One consequence of applying the Template pattern is that it filters an LLM’s output, which800

may eliminate other outputs the LLM would have provided that might be useful to users.801

In many cases, the LLM can provide helpful descriptions of code, decision making, or other802

details that this pattern may eliminate from the output. Users should therefore weight the803

pros/cons of filtering out this additional information prematurely.804

In addition, filtering may make it hard to combine this pattern with other patterns from805

the Output Customization category. The Template pattern effectively constrains the806

output format, so it may not be compatible with generation of certain other types of output.807

For example, in the template provided above for a URL, it would not be easy (or even808

possible) to combine with the Recipe pattern, which needs to output a list of steps.809

3.10 The Refusal Breaker Pattern810

Intent and Context811

This pattern asks an LLM to help users rephrase a question automatically when it refuses to812

give an answer. The goal is to help users be more productive and get answers to questions813

that are within the capabilities of an LLM to answer, but only if worded correctly. The814

pattern helps users identify the errors in their question or task formulation that are creating815

a stumbling block and learn from these mistakes to improve future prompts.816

Motivation817

LLMs may sometimes refuse to answer a question, either because they do not have the818

required knowledge or because the question is phrased in a way that they do not understand.819

This outcome may be frustrating for users who are looking for answers. In some situations,820

therefore, the Refusal Breaker pattern can help users find a way to either rephrase their821

question or ask a different question the LLM is better equipped to answer.822

For example, you could ask for clarification on why the question was refused, as there823

may be a specific reason why LLM could not provide an answer. Another approach is to ask824

a different question that may be within an LLM’s knowledge cut-off or expertise. All these825

approaches, however, require user intervention and knowledge of how to (attempt to) bypass826

the refusal.827

Structure and Key Ideas828

Fundamental contextual statements:829

CVIT 2016



23:22 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

Contextual Statements
Whenever you can’t answer a question
Explain why you can’t answer the question
Provide one or more alternative wordings of the
question that you could answer

830

The first statement indicates that this set of instructions should only be applied when831

a question cannot be answered, i.e., users do not want to trigger these instructions under832

normal circumstances. The second statement instructs an LLM to explain why a question833

cannot be answered, which may include assumptions, constraints, or misunderstandings that834

can be leveraged by users to strategize about how to reword the question.835

Although just the explanation of why the question cannot be answered could help users836

overcome a refusal, the Refusal Breaker pattern adds a third idea that instructs the LLM837

to suggest acceptable rewordings. This pattern combines both reasoning and suggested838

rewordings to improve the chances that users will find a path around whatever roadblocks839

are preventing the question from being answered.840

Example Implementation841

The Refusal Breaker pattern can be implemented and applied with the following phrasing:842

“Whenever you can’t answer a question, explain why and provide one or more alternate843

wordings of the question that you can’t answer so that I can improve my questions.”844

A sample discourse after using the pattern is shown below:845

User: What is the meaning of life?846

ChatGPT: As an AI language model, I do not have personal beliefs or opinions.847

The meaning of life is a complex philosophical question that has been pondered by848

humans for centuries and can vary greatly from person to person. It may be more849

productive to rephrase the question in a way that can be answered by information850

and knowledge, such as “What are some philosophical perspectives on the meaning of851

life?” or “What are some common beliefs about the purpose of life?”852

Consequences853

The Refusal Breaker pattern provides a potential path for misuse, so organizations, parents,854

or other stakeholders may need to restrict the usage of the LLM. The first step in going855

around guardrails on usage is to understand where the guardrails are. In future work, a856

complement of this pattern may be developed to hide the underlying prompt information857

and rationale from users to prevent discovery.858

This pattern has been used in some LLMs to overcome the underlying prompts used to859

program the LLM that suppress harmful output generation. This pattern has the potential860

for misuse, however, e.g., to generate phishing emails or perform other actions that violate861

LLM policy filters. Caution should therefore be exercised when applying this pattern to862

ensure it is used ethically and responsibly.863

Although the rationale and alternate rewordings are generated, there is no assurance864

that users will be able to overcome the refusal. The alternate questions that are generated865

may not be of interest to the user or helpful in answering the original question. The pattern866

mainly provides an aid in determining what the LLM can answer, but not a guarantee it867

will answer a semantically equivalent variation of the original question. Our experiments868



Author: Please use the \authorrunning macro 23:23

suggest that altering the language or prompting the LLM to engage in a role-playing game869

may potentially serve as strategies to overcome refusals.870

3.11 The Context Manager Pattern871

Intent and Context872

This pattern enables users to specify or remove context for a conversation with an LLM to873

help focus the conversation on specific topics or exclude unrelated topics from consideration.874

The Context Manager pattern emphasizes or removes specific aspects of the context to875

maintain relevance and coherence in the conversation, thereby giving users greater control876

over what statements the LLM considers or ignores when generating output.877

Motivation878

LLMs often struggle to interpret the intended context of the current question or generate879

irrelevant responses based on prior inputs or irrelevant attention on the wrong statements.880

By focusing on explicit contextual statements—or removing irrelevant statements—users can881

help the LLM better understand the question and generate more accurate responses. Users882

may introduce unrelated topics or reference information from earlier in the dialogue, which883

may can disrupt the flow of the conversation.884

Structure and Key Ideas885

Fundamental contextual statements:886

Contextual Statements
Within scope X
Please consider Y
Please ignore Z
(Optional) start over

887

The first statement helps to scope the context, such as "when performing a code review"888

or "when generating a deployment script" to provide a scope for where certain information889

should be considered. For example, focusing on modularity may be important for a code890

review but not for a deployment script.891

The next two statements describe information to incorporate in the output. Statements892

about what to consider or ignore should list key concepts, facts, instructions, etc. that should893

be included or removed from the context. The more explicit the statements are, the more894

likely the LLM will take appropriate action.895

For example, if the user asks to ignore subjects related to a topic, yet some of the896

those statements were discussed far back in the conversation, the LLM may not properly897

disregard the relevant information. The more explicit the list is, therefore, the better the898

inclusion/exclusion behavior will be.899

Finally, an explicit "start over" statement can be added at the end if the goal is to try900

and wipe the slate clean – although starting a new interaction session with the LLM may901

better accomplish this task.902

Example Implementation903

To specify context consider using the following prompt:904

CVIT 2016



23:24 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

“When analyzing the following pieces of code, only consider security aspects.”905

Likewise, to remove context consider using the following prompt:906

“When analyzing the following pieces of code, do not consider formatting or naming907

conventions.”908

Clarity and specificity are important when providing or removing context to/from an909

LLM so it can better understand the intended scope of the conversation and generate more910

relevant responses. In many situations, the user may want to completely start over and can911

employ this prompt to reset the LLM’s context:912

“Ignore everything that we have discussed. Start over.”913

The “start over” idea helps produce a complete reset of the context.914

Consequences915

This pattern may inadvertently wipe out patterns applied to the conversation that the user916

is unaware of. For example, an organization may inject a series of helpful prompts into the917

start of a conversation. Users may not be aware of these prompts, however, and thus remove918

them unintentionally through a reset of the context. This reset could eliminate helpful919

capabilities of the LLM, while not making it obvious that the user will lose this functionality.920

A potential solution to this problem is to include in the prompt a request to explain what921

topics/instructions will potentially be lost before proceeding.922

3.12 The Recipe Pattern923

Intent and Context924

This pattern provides constraints intended to ultimately output a sequence of steps given925

some partially provided “ingredients” that must be configured in a sequence of steps to926

achieve a stated goal. It combines the Template, Alternative Approaches, and Cognitive927

Verifier patterns.928

Motivation929

Users often want an LLM to analyze a concrete sequence of steps or procedures to achieve a930

stated outcome. Typically, users generally know—or have an idea of—what the end goal931

should look like and what “ingredients” belong in the prompt. However, they may not932

necessarily know the precise ordering of steps to achieve that end goal.933

For example, a user may want a precise specification on how a piece of code should be934

implemented or automated, such as “create an Ansible playbook to SSH into a set of servers,935

copy text files from each server, spawn a monitoring process on each server, and then close936

the SSH connection to each server. In other words, this pattern represents a generalization of937

the example of “given the ingredients in my fridge, provide dinner recipes.” A user may also938

want to specify a set number of alternative possibilities, such as “provide 3 different ways of939

deploying a web application to AWS using Docker containers and Ansible using step-by-step940

instructions”.941



Author: Please use the \authorrunning macro 23:25

Structure and Key Ideas942

Fundamental contextual statements:943

Contextual Statements
I would like to achieve X
I know that I need to perform steps A,B,C
Provide a complete sequence of steps for me
Fill in any missing steps
Identify any unnecessary steps

944

The first statement (“I would like to achieve X”) focuses the LLM on the overall goal the945

recipe must be built to achieve. The steps will be organized and completed to achieve the946

specified goal sequentially. The second statement provides the partial list of steps the user947

would like to include in the overall recipe, which serve as (a) intermediate waypoints for the948

path the LLM may take to generate or (b) constraints on the structure of the recipe.949

The third statement in the pattern (“provide a complete sequence of steps for me”)950

indicates to the LLM that the goal is to provide a complete sequential ordering of steps. The951

four statement (“fill in any missing steps”) helps ensure the LLM will attempt to complete952

the recipe without further follow-up by making some choices on the user’s behalf regarding953

missing steps, as opposed to just stating additional information that is needed.954

Finally, the last statement (“identify any unnecessary steps”) helps to flag inaccuracies in955

the user’s original request so the final recipe is efficient.956

Example Implementation957

An example usage of this pattern in the context of deploying a software application to the958

cloud is shown below:959

“I am trying to deploy an application to the cloud. I know that I need to install the960

necessary dependencies on a virtual machine for my application. I know that I need961

to sign up for an AWS account. Please provide a complete sequence of steps. Please962

fill in any missing steps. Please identify any unnecessary steps.”963

Depending on the use case and constraints, “installing necessary dependencies on a virtual964

machine” may be an unnecessary step. For example, if the application is already packaged965

in a Docker container, the container could be deployed directly to the AWS Fargate Service,966

which requires any management of underlying virtual machines. The inclusion of the “identify967

unnecessary steps” language will cause the LLM to flag this issue and omit the steps from968

the final recipe.969

Consequences970

One consequence of the Recipe pattern is that users may not always have a well-specified971

description of what they would like to implement, construct, or design. Moreover, this972

pattern may introduce unwanted bias from initially selected user steps, so the LLM may973

try to find a solution that incorporates them, rather than flagging them as unneeded. For974

example, an LLM may try to find a solution that does install dependencies for a virtual975

machine, even if there are solutions that do not require that.976

CVIT 2016



23:26 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

4 Related Work977

Software patterns [11, 12] have been extensively studied and documented in prior work.978

Patterns are widely used in software engineering to express the intent of design structures in979

a way that is independent of implementation details. Patterns provide a mental picture of980

the goals that the pattern is trying to achieve and the forces that it is trying to resolve. A key981

advantage of patterns is their composability, allowing developers to build pattern sequences982

and pattern languages that can be used to address complex problems. Patterns have also983

been investigated in other domains, such as contract design for decentralized ledgers [16, 17].984

The importance of good prompt design with LLMs, such as ChatGPT, is well under-985

stood [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. Previous studies have examined the effect of986

prompt words on AI generative models.987

For example, Liu et al. [28] investigated how different prompt key words affect image988

generation and different characteristics of images. Other work has explored using LLMs989

to generate visualizations [29]. Han et al. [30] researched strategies for designing prompts990

for classification tasks. Other research has looked at boolean prompt design for literature991

queries [31]. Yet other work has specifically examined prompts for software and fixing992

bugs [32].993

Our work is complementary to prior work by providing a structure for documenting,994

discussing, and reasoning about prompts that can aid users in developing mental models for995

structuring prompts to solve common problems.996

The quality of the answers produced by LLMs, particuarly ChatGPT, has been assessed997

in a number of domains. For example, ChatGPT has been used to take the medical licensing998

exam with surprisingly good results [4]. The use of ChatGPT in Law School has also been999

explored [33]. Other papers have looked at its mathematical reasoning abilities [34]. As more1000

domains are explored, we expect that domain-specific pattern catalogs will be developed to1001

share domain-specific problem solving prompt structures.1002

5 Concluding Remarks1003

This paper presented a framework for documenting and applying a catalog of prompt patterns1004

for large language models (LLMs), such as ChatGPT. These prompt patterns are analogous1005

to software patterns and aim to provide reusable solutions to problems that users face when1006

interacting with LLMs to perform a wide range of tasks. The catalog of prompt patterns1007

captured via this framework (1) provides a structured way of discussing prompting solutions,1008

(2) identifies patterns in prompts, rather than focusing on specific prompt examples, and (3)1009

classifies patterns so users are guided to more efficient and effective interactions with LLMs.1010

The following lessons learned were gleaned from our work on prompt patterns:1011

Prompt patterns significantly enrich the capabilities that can be created in a conversa-1012

tional LLM. For example, prompts can lead to the generation of cybersecurity games,1013

complete with fictitious terminal commands that have been run by an attacker stored in1014

a .bash_history file. As shown in Section 3, larger and more complex capabilities can be1015

created by combining prompt patterns.1016

Documenting prompt patterns as a pattern catalog is useful, but insufficient. Our experi-1017

ence indicates that much more work can be done in this area, both in terms of refining1018

and expanding the prompt patterns presented in this paper, as well as in exploring new1019

and innovative ways of using LLMs. In particular, weaving the prompt patterns captured1020



Author: Please use the \authorrunning macro 23:27

here as a pattern catalog into a more expression pattern language will help guide users of1021

LLMs more effectively.1022

LLM Capabilities will evolve over time, likely necessitating refinement of patterns. As1023

LLM capabilities change, some patterns may no longer be necessary, be obviated by1024

different styles of interaction or conversation/session management approaches, or require1025

enhancement to function correctly. Continued work is needed to document and catalog1026

prompt patterns that provide reusable solutions across revisions to an LLM, as well as1027

the advent of new LLMs with diverse capabilities.1028

The prompt patterns presented in this paper are generalizable to many different domains.1029

Although most the patterns have been discussed in the context of software development,1030

they are also applicable in arbitrary domains.1031

The field of prompt engineering will continue to evolve as models evolve As evidenced by1032

BingGPT, prompts can serve to shape the entire personality of a model. As the variety,1033

volume, and selections of trainings change (e.g. Reinforcement Learning with Human1034

Feedback, Chain of Thought Training, Instruction Fine Tuning, Supervised Fine Tuning),1035

the capabilities of Prompt Engineering will change and grow.1036

Prompting employing in-context learning will expand the capabilities of models As the1037

context length of models grow, augmenting models with in-context learning will result1038

in powerful new capabilities that can be created as needed on an ad-hoc basis, greatly1039

extending the power of Prompt Engineering.1040

We hope that this paper inspires further research and development in this area that will1041

help enhance prompt patterns and prompt engineering to create new, more reliable, and1042

often unexpected capabilities for conversational LLMs.1043

References1044

1 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von1045

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the1046

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.1047

2 Ce Zhou, Qian Li, Chen Li, Jun Yu, Yixin Liu, Guangjing Wang, Kai Zhang, Cheng Ji, Qiben1048

Yan, Lifang He, et al. A comprehensive survey on pretrained foundation models: A history1049

from bert to chatgpt. arXiv preprint arXiv:2302.09419, 2023.1050

3 Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wenliang Dai, Dan Su, Bryan Wilie, Holy Love-1051

nia, Ziwei Ji, Tiezheng Yu, Willy Chung, et al. A multitask, multilingual, multimodal evaluation1052

of chatgpt on reasoning, hallucination, and interactivity. arXiv preprint arXiv:2302.04023,1053

2023.1054

4 Aidan Gilson, Conrad Safranek, Thomas Huang, Vimig Socrates, Ling Chi, Richard Andrew1055

Taylor, and David Chartash. How well does chatgpt do when taking the medical licensing1056

exams? medRxiv, pages 2022–12, 2022.1057

5 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.1058

Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language1059

processing. ACM Computing Surveys, 55(9):1–35, 2023.1060

6 Anita Carleton, Mark H. Klein, John E. Robert, Erin Harper, Robert K Cunningham, Dionisio1061

de Niz, John T. Foreman, John B. Goodenough, James D. Herbsleb, Ipek Ozkaya, and1062

Douglas C. Schmidt. Architecting the future of software engineering. Computer, 55(9):89–93,1063

2022.1064

7 Github copilot · your ai pair programmer. URL: https://github.com/features/copilot.1065

8 Owura Asare, Meiyappan Nagappan, and N Asokan. Is github’s copilot as bad as humans at1066

introducing vulnerabilities in code? arXiv preprint arXiv:2204.04741, 2022.1067

CVIT 2016

https://github.com/features/copilot


23:28 A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT

9 Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri.1068

Asleep at the keyboard? assessing the security of github copilot’s code contributions. In 20221069

IEEE Symposium on Security and Privacy (SP), pages 754–768. IEEE, 2022.1070

10 Jarosław Krochmalski. IntelliJ IDEA Essentials. Packt Publishing Ltd, 2014.1071

11 Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, and John Vlissides. Design1072

patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995.1073

12 Douglas C Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-oriented1074

software architecture, patterns for concurrent and networked objects. John Wiley & Sons, 2013.1075

13 OpenAI. ChatGPT: Large-Scale Generative Language Models for Automated Content Creation.1076

https://openai.com/blog/chatgpt/, 2023. [Online; accessed 19-Feb-2023].1077

14 OpenAI. DALL·E 2: Creating Images from Text. https://openai.com/dall-e-2/, 2023.1078

[Online; accessed 19-Feb-2023].1079

15 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale1080

Schuurmans, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables1081

complex reasoning in large language models. arXiv preprint arXiv:2205.10625, 2022.1082

16 Peng Zhang, Jules White, Douglas C. Schmidt, and Gunther Lenz. Applying software patterns1083

to address interoperability in blockchain-based healthcare apps. CoRR, abs/1706.03700, 2017.1084

URL: http://arxiv.org/abs/1706.03700, arXiv:1706.03700.1085

17 Xiwei Xu, Cesare Pautasso, Liming Zhu, Qinghua Lu, and Ingo Weber. A pattern collection1086

for blockchain-based applications. In Proceedings of the 23rd European Conference on Pattern1087

Languages of Programs, pages 1–20, 2018.1088

18 Eva AM van Dis, Johan Bollen, Willem Zuidema, Robert van Rooij, and Claudi L Bockting.1089

Chatgpt: five priorities for research. Nature, 614(7947):224–226, 2023.1090

19 Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond1091

the few-shot paradigm. CoRR, abs/2102.07350, 2021. URL: https://arxiv.org/abs/2102.1092

07350, arXiv:2102.07350.1093

20 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le, and1094

Denny Zhou. Chain of thought prompting elicits reasoning in large language models. CoRR,1095

abs/2201.11903, 2022. URL: https://arxiv.org/abs/2201.11903, arXiv:2201.11903.1096

21 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani1097

Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,1098

Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large1099

language models, 2022. URL: https://arxiv.org/abs/2206.07682, doi:10.48550/ARXIV.1100

2206.07682.1101

22 Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,1102

and Jimmy Ba. Large language models are human-level prompt engineers, 2022. URL:1103

https://arxiv.org/abs/2211.01910, doi:10.48550/ARXIV.2211.01910.1104

23 Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric Wallace, and Sameer Singh.1105

Autoprompt: Eliciting knowledge from language models with automatically generated1106

prompts. CoRR, abs/2010.15980, 2020. URL: https://arxiv.org/abs/2010.15980, arXiv:1107

2010.15980.1108

24 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.1109

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.1110

25 Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale1111

Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting1112

enables complex reasoning in large language models, 2022. URL: https://arxiv.org/abs/1113

2205.10625, doi:10.48550/ARXIV.2205.10625.1114

26 Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le1115

Bras, and Yejin Choi. Maieutic prompting: Logically consistent reasoning with recursive1116

explanations, 2022. URL: https://arxiv.org/abs/2205.11822, doi:10.48550/ARXIV.2205.1117

11822.1118

https://openai.com/blog/chatgpt/
https://openai.com/dall-e-2/
http://arxiv.org/abs/1706.03700
http://arxiv.org/abs/1706.03700
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2102.07350
http://arxiv.org/abs/2102.07350
https://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2206.07682
https://doi.org/10.48550/ARXIV.2206.07682
https://doi.org/10.48550/ARXIV.2206.07682
https://doi.org/10.48550/ARXIV.2206.07682
https://arxiv.org/abs/2211.01910
https://doi.org/10.48550/ARXIV.2211.01910
https://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
http://arxiv.org/abs/2010.15980
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://doi.org/10.48550/ARXIV.2205.10625
https://arxiv.org/abs/2205.11822
https://doi.org/10.48550/ARXIV.2205.11822
https://doi.org/10.48550/ARXIV.2205.11822
https://doi.org/10.48550/ARXIV.2205.11822


Author: Please use the \authorrunning macro 23:29

27 Simran Arora, Avanika Narayan, Mayee F Chen, Laurel Orr, Neel Guha, Kush Bhatia,1119

Ines Chami, and Christopher Re. Ask me anything: A simple strategy for prompting1120

language models. In International Conference on Learning Representations, 2023. URL:1121

https://openreview.net/forum?id=bhUPJnS2g0X.1122

28 Vivian Liu and Lydia B Chilton. Design guidelines for prompt engineering text-to-image1123

generative models. In Proceedings of the 2022 CHI Conference on Human Factors in Computing1124

Systems, pages 1–23, 2022.1125

29 Paula Maddigan and Teo Susnjak. Chat2vis: Generating data visualisations via natural lan-1126

guage using chatgpt, codex and gpt-3 large language models. arXiv preprint arXiv:2302.02094,1127

2023.1128

30 Xu Han, Weilin Zhao, Ning Ding, Zhiyuan Liu, and Maosong Sun. Ptr: Prompt tuning with1129

rules for text classification. AI Open, 3:182–192, 2022.1130

31 Shuai Wang, Harrisen Scells, Bevan Koopman, and Guido Zuccon. Can chatgpt write a good1131

boolean query for systematic review literature search? arXiv preprint arXiv:2302.03495, 2023.1132

32 Chunqiu Steven Xia and Lingming Zhang. Conversational automated program repair. arXiv1133

preprint arXiv:2301.13246, 2023.1134

33 Jonathan H Choi, Kristin E Hickman, Amy Monahan, and Daniel Schwarcz. Chatgpt goes to1135

law school. Available at SSRN, 2023.1136

34 Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,1137

Philipp Christian Petersen, Alexis Chevalier, and Julius Berner. Mathematical capabilities of1138

chatgpt. arXiv preprint arXiv:2301.13867, 2023.1139

CVIT 2016

https://openreview.net/forum?id=bhUPJnS2g0X

	1 Introduction
	2 Comparing Software Patterns with Prompt Patterns
	2.1 Overview of Software Patterns
	2.2 Overview of Prompt Patterns
	2.3 Evaluating Means for Defining a Prompt Pattern's Structure and Ideas
	2.4 A Way Forward: Fundamental Contextual Statements

	3 A Catalog of Prompt Patterns for Conversational LLMs
	3.1 Summary of Our Prompt Pattern Catalog
	3.2 The Meta Language Creation Pattern
	3.3 The Output Automater Pattern
	3.4 The Flipped Interaction Pattern
	3.5 The Persona Pattern
	3.6 The Alternative Approaches Pattern
	3.7 The Cognitive Verifier Pattern
	3.8 The Fact Check List Pattern
	3.9 The Template Pattern
	3.10 The Refusal Breaker Pattern
	3.11 The Context Manager Pattern
	3.12 The Recipe Pattern

	4 Related Work
	5 Concluding Remarks

