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Abstract

This paper describes the design of the ACE object-oriented
thread encapsulation C++ class library. This library shields
programmers from differences between Solaris threads,
POSIX pthreads, and Win32 threads. The architecture of
this class library is presented from an end-user and inter-
nal design perspective and key design and implementation
issues are discussed. Readers will gain an understanding of
the overall design approach, as well as the tradeoffs between
various software quality factors such as performance, porta-
bility, and extensibility.

1 Introduction

Certain types of distributed applications benefit from us-
ing a concurrent model of execution to perform their tasks.
Concurrency is particularly useful to improve performance
and simplifying programming for network servers on multi-
processor platforms. For server applications, using threads
to handle multiple client requests concurrently is often more
convenient and less error-prone than the following design al-
ternatives:

� Artificially serializing requests at a transport layer in-
terface;

� Queueing requests internally and handling them itera-
tively;

� Forking a heavy-weight process for each client request.

This paper describes a C++ class library contained in
the ADAPTIVE Communications Environment (ACE) [1].
ACE encapsulates and enhances the lightweight concurrency
mechanisms provided both by Solaris 2.x threads [2], POSIX
Pthreads [3], and Win32 threads [4].

The material presented in this paper is intended for a tech-
nical audience interested in understanding the strategies and

tactics of object-oriented (OO) concurrent programming us-
ing threads. It is assumed that the reader is familiar with gen-
eral OO design and programming techniques (such as design
patterns [5], application frameworks [6], modularity, infor-
mation hiding, and object modeling [7]), OO notations (such
as OMT [8]), fundamental C++ programming language fea-
tures (such as classes, inheritance, dynamic binding, and pa-
rameterized types [9]), basic UNIX systems programming
concepts (such as process management, virtual memory, and
interprocess communication [10]), and networking termi-
nology (such as client/server architectures [11], RPC [12],
CORBA [13], and TCP/IP [14, 15]).

This paper does not assume in-depth knowledge of
concurrency, in general, or Solaris/POSIX/Win32 multi-
threading and synchronization mechanisms, in particular. An
overview of concurrent programming and multi-threading
is presented in Section 3. The overview defines key ter-
minology and outlines the various alternative mechanisms
available for concurrent programming on Solaris 2.x, POSIX
pthreads, and Win32 threads.

This paper is organized as follows: Section 2 gives an
overview of the goals of the ACE OS thread encapsula-
tion library and outlines the OO architecture of the library
components. Section 3 presents relevant background mate-
rial on concurrent programming, in general, and the Solaris
multi-threading model, in particular. Section 4 presents an
end-user perspective that motivates the design of the ACE
thread encapsulation library, focusing on a “use case” exam-
ple culled from a concurrent client/server application. Sec-
tion 5 describes the public interfaces and internal design of
the ACE threads encapsulation library in detail. Section 6
presents several examples that illustrate the OO components
defined in Section 5. Finally, Section 7 presents concluding
remarks.

2 Overview of the ACE OO Concur-
rency Mechanisms

2.1 Overall Goals

A distinct feature of modern operating systems (such as So-
laris, OSF/1, Windows NT, and OS/2) compared to previous
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generations of SunOS is its integrated support for kernel-
level and user-level multi-threading and synchronization.1

However, the existing multi-threading and synchronization
mechanisms shipped with these operating systems are rela-
tively low-level APIs written in C. Developing applications
using a mixture of C++ classes and low-level C APIs places
an unacceptable burden on developers. Mixing these two
styles within a single application leads to an “impedance”
mismatch between object-oriented and procedural program-
ming. Such a hybrid programming style is distracting and a
chronic maintenance problem.

To avoid having each developer re-implement their ownad
hoc C++ wrappers for OS threading mechanisms, the ACE
toolkit provides a set of object-oriented concurrency com-
ponents described in this paper. These ACE components
provide a portable and extensible interface for concurrent
programming. This interface simplifies thread management
and synchronization mechanisms used to develop clients and
servers. This interface has been ported to many drafts of the
POSIX pthreads standard [3], Solaris threads [2], Microsoft
WIN32 threads [4], and VxWorks tasks.

2.1.1 Overall Requirements

In conjunction with the goal of encapsulating and simplify-
ing the concurrency substrate of OS threading mechanisms,
the ACE OO thread encapsulation class library is being de-
veloped in response to the following common application re-
quirements.

� Simplify program design– by allowing multiple appli-
cation tasks to proceed independently using conven-
tional synchronous programming abstractions (such as
CORBA remote method invocations);

� Transparently improve performance– by using the par-
allel processing capabilities of hardware platforms such
as the SPARCcenter 1000 and 2000 shared memory
symmetric multi-processors;

� Explicitly improve performance– by reducing data
copying and by overlapping computation with commu-
nication;

� Improve perceived response time– for interactive ap-
plications (such as user interfaces or network manage-
ment applications) by associating separate threads with
different tasks or services in an application.

2.1.2 Design Goals

The ACE OO thread class library was developed to achieve
the following design goals:

� Improve consistency of programming style by enabling
developers to use C++ and OO consistently throughout
their concurrent applications.

1This section focuses on Solaris 2.x threading and synchronization
mechanisms for concreteness. However, most of the mechanisms, design
principles, and interfaces are equivalent for POSIX Pthreads and Win32
threads, as well.

� Improve the portability and reusability of the underly-
ing concurrency mechanisms.

� Reduce the amount of obtrusive changes to make appli-
cations thread-safe.

� Eliminate or minimize the potential for subtle synchro-
nization errors.

� Enhance abstraction and modularitywithout compro-
mising performance.

2.2 Architectural Overview of ACE OO
Thread Encapsulation Components

Figure 1 is a Booch object model that illustrates the compo-
nents in the ACE threads encapsulation class library. These
components include the C++ classes and class categories de-
scribed below.2

2.2.1 The ACE Locks Class Category

� Mutex, Thread Mutex, and ProcessMutex: These
classes provide a simple and efficient mechanism that se-
rializes access to a shared resource (such as a file or
object in shared memory). They encapsulate Solaris,
POSIX, and Win32 synchronization variables (mutex t ,
pthread mutex t , and HANDLE, respectively) and are
described in Section 5.1.1.

� RW Mutex, RW Thread Mutex, RW ProcessMutex:
These classes serialize access to shared resources whose con-
tents are searched more than they are changed. They encap-
sulate the Solarisrwlock t synchronization variable (the
POSIX pthreads and Win32 threads implementation uses
other mechanisms) and is described in Section 5.1.3.

� Semaphore, ThreadSemaphore, ProcessSemaphore, :
These classes implement Dijkstra’s “counting semaphore”
abstraction, which is a general mechanism for serializing
multiple threads of control. They encapsulate the Solaris
sema t synchronization variable (the POSIX pthreads and
Win32 threads implementation use other mechanisms) and is
described in Section 5.1.2.

� Null Mutex: The Null Mutex class provides a zero-
overhead implementation of the locking interface used by
the other C++ wrappers for synchronization. This class is
described in Section 5.1.5.

� Token: The Token class provides a more general-
purpose synchronization mechanism than aMutex . For ex-
ample, it implements “recursive mutex” semantics, where a
thread that owns the token can reacquire it without deadlock-
ing. In addition, threads that are blocked awaiting aToken
are serviced in strict FIFO order as other threads release the
token (in contrast,Mutex don’t strictly enforce an acquisi-
tion order). This class is described in Section 5.1.6.

2All ACE classes are prefixed withACE to avoid polluting the global
name space of programs. For brevity, this prefix has been omitted in all the
following code.
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Figure 1: Object Model for ACE OO Thread Encapsulation Components

� RecursiveThread Mutex: A
Recursive Thread Mutex extends the default Solaris
thread mutex semantics by allowing calls toacquire meth-
ods to nest as long as the thread that owns the lock is the one
that re-acquires it. It works with theThread Mutex class
outlined above and is described in Section 5.1.4.

2.2.2 The ACE Guards Class Category

� Guard, Write Guard, and Read Guard: these classes
ensure that a lock is automatically acquired and released
upon entry and exit to a block of C++ code, respectively.
They are described in Section 5.2.1.

� Thread Control: TheThread Control class is used
in conjunction with theThread Manager class to auto-
mate the graceful termination and cleanup of a thread’s ac-
tivities within its originating function. This class is described
in Section 5.2.2.

2.2.3 The ACE Conditions Class Category

� Condition: The Condition class is used to block on
a change in the state of a condition expression involving
shared data. It encapsulates the Solaris and POSIX pthreads
cond t synchronization variable (Win32 threads are imple-
mented using other mechanisms) and is described in Sec-
tion 5.3.1.

� Null Condition: The Null Condition class pro-
vides a zero-overhead implementation of theCondition
interface used for single-threaded applications. It is de-
scribed in Section 5.3.2.

2.2.4 The ACE Managers Class Category

� Thread Manager: The Thread Manager class con-
tains a set of mechanisms to manage groups of threads that
collaborate to implement collective actions. This class is de-
scribed in Section 5.4.1.
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� Thread Spawn: TheThread Spawn class provides a
standard utility that manages the creation of threads to handle
requests from clients concurrently. This class is described in
Section 5.4.2.

2.2.5 The ACE Active Objects Class Category

� Task: TheTask class is the central mechanism in ACE
for defining active objects[16, 17]. These active objects
queue messages for input and output and perform user-
defined message processing services in separate threads of
control. This class is described in Section 5.5.1.

2.2.6 Miscellaneous ACE Concurrency Classes

� Thread: The Thread class encapsulates the Solaris
threads, POSIX Pthreads, and Win32 threads family of
thread creation, termination, and management routines. This
class is described in Section 5.6.1.

� Atomic Op: The Atomic Op class transparently pa-
rameterizes synchronization into basic arithmetic operations.
This class is described in Section 5.6.2.

� Barrier: TheBarrier class implements “barrier syn-
chronization,” which is particularly useful for many types
of parallel scientific applications. This class is described in
Section 5.6.3.

� TSS: TheTSSclass allows objects that are “physically”
thread-specific (i.e., private to a thread) to be accessed as
though they were “logically” global to a program. This class
is described in Section 5.6.4.

3 Background on Concurrent Pro-
gramming and Multi-threading

Most UNIX systems programmers are familiar with tradi-
tional process management system calls (such asfork ,
exec , wait , andexit ). There is less experience, however,
with emerging multi-threading and synchronization mecha-
nisms for UNIX (such as Solaris threads [2], POSIX pthreads
[3], or Win32 threads [4]). This section presents an overview
of background material relevant to concurrent programming
and Solaris threads. More detailed discussions of concurrent
programming, and Solaris/POSIX/Win32 threads appear in
[2, 18, 19, 3, 4].

3.1 Processes and Threads

A processis a collection of resources that enable the execu-
tion of program instructions. These resources include virtual
memory, I/O descriptors, a run-time stack, signal handlers,
user and group ids, and access control tokens. On earlier-
generation UNIX systems (such as SunOS 4.x), processes
were “single-threaded.” In UNIX, operations in single-
threaded programs are generally synchronous since control
is always in either the program (i.e., the user code) or in

the operating system (via system calls). To some extent, the
single-threaded nature of traditional UNIX processes simpli-
fies programming since processes do not interfere with one
another without explicit intervention by programmers.

However, many applications (particularly networking
servers) are difficult to develop using single-threaded pro-
cesses. For example, a single-threaded network file server
must not block for extended periods of time handling one
client request since the responsiveness for other clients
would suffer. There are several common workarounds to
avoid blocking in single-threaded servers:

� Event demultiplexers/dispatcher– one approach is to
develop an event demultiplexer/dispatcher (such as the
object-oriented Reactor framework [20]). This tech-
nique is widely used to manage multiple input de-
vices in single-threaded user-interface frameworks. The
main event demultiplexer/dispatcher detects an incom-
ing event, demultiplexes the event to the appropri-
ate event handler, and then dispatches an application-
specific callback method associated with the event han-
dler.

The primary drawback with this approach is that long
duration conversations must be developed as finite state
machines. This approach becomes unwieldy as the
number of states increase. In addition, since only non-
blocking operations may be used, it is difficult to im-
prove performance via techniques such as “I/O stream-
ing” or schemes that benefit from locality of reference
in data and instruction caches.

� User-level co-routines– another approach is to develop
a non-preemptive, user-level co-routine package that
explicitly saves and restores context information. This
enables tasks to suspend their execution until another
co-routine resumes them at a later point. The multi-
tasking mechanisms on Windows 3.1 and the Mac Sys-
tem 7 OS are widely available systems that use this ap-
proach.

In general, co-routines are complicated to use correctly
since developers must manually perform task preemp-
tion by explicitly yielding the thread of control peri-
odically. Moreover, each task must execute for a rel-
atively short duration. Otherwise, clients may detect
that requests are being handled sequentially rather than
concurrently. Another limitation with co-routines is
that application performance may be reduced if the OS
blocks all services in a process whenever one task in-
curs a page fault. Moreover, the failure of a single task
(e.g.,spinning in an infinite loop) may hang the entire
process.

� Multi-processing– another approach for alleviating the
complexity of single-threaded UNIX processes is to use
the coarse-grained multi-processing capabilities pro-
vided by thefork and exec system calls. Fork
spawns a separate child process that executes a task
concurrently with its parent. It is possible for separate

4



processes to collaborate directly by using mechanisms
such as shared memory and memory-mapped files. On
a local host, shared memory is a faster means of IPC
than message passing since it avoids explicit data copy-
ing.

However, the overhead and inflexibility offork and
exec makes dynamic process invocation prohibitively
expensive and overly complicated for many applica-
tions. For example, the process management overhead
for short-duration services (such as resolving the Eth-
ernet number of an IP address, retrieving a disk block
from a network file server, or setting an attribute in an
SNMP MIB) is excessive. Moreover, it is difficult to
exert fine-grain control over scheduling and process pri-
ority usingfork andexec . In addition, processes that
share C++ objects in shared memory segments must
make non-portable assumptions about the placement of
virtual table pointers.

Multi-threading mechanisms provide a more elegant, and
sometimes more efficient, way to overcome the limitations
with the traditional concurrent processing techniques de-
scribed above. A thread is a single sequence of execution
steps performed in the context of a process. In addition to an
instruction pointer, a thread consists of other resources such
as a run-time stack of function activation records, a set of
general-purpose registers, and thread-specific data.

Conventional workstation operating systems (such as vari-
ants of UNIX [2, 21, 22] and Windows NT [4]) support the
concurrent execution of multiple processes, each of which
may contain 1 or more threads. A process serves as the unit
of protection and resource allocation within a separate hard-
ware protected address space. A thread serves as the unit
of execution that runs within a process address space that is
shared with 0 or more threads.

3.2 Benefits of Threads-based Concurrent
Programming

It is often advantageous to implement concurrent applica-
tions that perform multiple tasks in separate threads rather
than in separate processes for the following reasons:

� Thread creation– unlike forking a new processes,
spawning a new thread does not require (1) duplicating
the parent’s address space memory, (2) setting up new
kernel data structures, and (3) consuming an extra pro-
cess slot in order to perform a subtask within a larger
application.

� Context switching– Threads maintain minimal state
information. Therefore, context switching overhead
is reduced since less state information must be stored
and retrieved. In particular, context switching between
threads is less time consuming than context switching
between UNIX heavyweight processes. This is due to
the fact that TLB virtual address mappings not need be

changed when switching between threads in the same
process. Moreover, threads that run strictly in user-level
do not incur any context switching overhead.

� Synchronization – It may not be necessary to
switch between kernel-mode and user-mode when
scheduling and executing an application thread.
Thread-synchronization is less expensive than process-
synchronization. For example, the entities being syn-
chronized are often not global entities, but are local-
ized. Global synchronization always involves the ker-
nel, whereas the local (or “intra-process”) synchroniza-
tion used by application threads may require no kernel
intervention.

� Data Copying – communicating between separate
threads via shared memory is often much faster than
using IPC message passing between separate processes
since it avoids the overhead of explicit data copying.
For example, cooperating database services that fre-
quently reference common memory-resident data struc-
tures may be simpler and more efficient to implement
via threads. In general, using the shared address space
of a process to communicate between threads is easier
and more efficient than using shared memory mecha-
nisms (such as System V shared memory or memory-
mapped files) to communication between processes.

3.3 Overview of Multi-Processing and Multi-
threading on Solaris

This section summarizes relevant background material on
the multi-processing (MP) and multi-threading (MT) mech-
anisms provided by Solaris 2.x. Details of other threading
models and implementations (such as SGI, Sequent, OSF/1,
and Windows NT) are somewhat different, though the basic
concepts are very similar.

A traditional UNIX process is a relatively “heavyweight”
entity that contains a single-thread of control. In contrast,
the thread-based concurrency mechanisms available on So-
laris 2.x are more sophisticated, flexible, and efficient (when
used properly). As shown in Figure 2, the Solaris MP/MT ar-
chitecture operates at 2 levels (kernel-space and user-space)
and contains the following 4 components:

� Processing elements– which are the CPUs that execute
user-level and kernel-level instructions. The seman-
tics of the Sun MP/MT model are intended to work for
both uni-processors and symmetrical multi-processors
on shared memory hardware.

� Kernel threads– which are the fundamental entities that
are scheduled and executed by the processing elements
(PEs) in kernel space. The OS kernel maintains a small
data structure and a stack for each kernel thread. Con-
text switching between kernel threads is relatively fast
since it does not require changing virtual memory infor-
mation.
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Figure 2: Solaris 2.x Multi-processing and Multi-threading Architecture

� Lightweight processes (LWPs)– which are associated
with kernel threads. In Solaris 2.x, a UNIX process is
no longer a thread of control. Instead, each process con-
tains one or more LWPs. There is a 1-to-1 mapping
between its LWPs and its kernel threads.3 The kernel-
level scheduler in Solaris uses LWPs (and thereby ker-
nel threads) to schedule application tasks. An LWP con-
tains a relatively large amount of state (such as regis-
ter data, accounting and profiling information, virtual
memory address ranges, and timers). Therefore, con-
text switching between LWPs is relatively slow.

For the time-sharing scheduler class (the default), the
scheduler divides the available PE(s) among multiple
active LWPs viapreemption. With this technique, each
LWP runs for a finite period of time (typically 10 mil-
liseconds). After the time-slice of the current LWP
has elapsed, the OS scheduler selects another available
LWP, performs a context switch, and places the pre-
empted LWP onto a queue. The kernel schedules LWPs
using several criteria (such as priority, availability of
resources, scheduling class, etc.). There is no fixed or-
der of execution for LWPs in the time-sharing scheduler

3On the other hand, not every kernel thread has an LWP. For example,
there are system threads (like the pagedaemon, NFS daemon, and the callout
thread) that have a kernel thread and operate entirely in kernel space.

class.

� Application threads– Each LWP may be thought of as a
“virtual PE,” upon which application threads are sched-
uled and multiplexed by a user-level thread library.
Each application thread shares its process address space
with other threads, though it has a unique stack and reg-
ister set. An application thread may spawn other appli-
cation threads. Within a process, each of these applica-
tion threads execute independently (though not neces-
sarily in parallel depending on the hardware).

Solaris 2.x provides a multi-level concurrency model
that permits application threads to be spawned and
scheduled using one of the following two modes:

1. Bound threads– which map 1-to-1 onto LWPs and
kernel threads. Bound threads permit independent
tasks to execute in parallel on multiple PEs. Thus,
if two application threads are running on sepa-
rate LWPs (and thus separate kernel threads), they
may execute in parallel (assuming they are run-
ning on a multiprocessor or using asynchronous
I/O). Moreover, application threads may perform
blocking system calls and handle page faults with-
out impeding each other’s progress.
A kernel-level context switch is required to
reschedule bound threads. Likewise, synchroniza-
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tion operations on bound threads require OS ker-
nel intervention. Bound threads are most useful
when an application is designed to take advan-
tage of parallelism available on the hardware plat-
form. Since each bound thread requires allocation
of kernel resources, it may be inefficient to allo-
cate a large number of bound threads.

2. Unbound threads– which are multiplexed in an
n-to-m manner atop one or more LWPs and ker-
nel threads by a thread run-time library. This
user-level library implements a non-preemptive,
cooperative multi-tasking concurrency model. It
schedules, dispatches, and suspends unbound
threads, while minimizing kernel involvement.
Compared with using application threads bound
to LWPs, unbound application threads require less
overhead to spawn, context switch, and synchro-
nize.
Depending upon the number of kernel threads
that an application and/or library associates with
a process, one or more unbound threads may ex-
ecute on multiple PEs in parallel. Since each un-
bound thread does not allocate kernel resources,
it is possible to allocate a very large number of
unbound threads without significantly degrading
performance.

3.4 Challenges of Concurrent Programming

On a multi-processor, more than one LWP may run in paral-
lel on separate PEs. On a uni-processor, only one LWP will
be active at any point in time. Regardless of the hardware
platform, programmers must ensure that access to shared re-
sources (such as files, databases records, network devices,
terminals, or shared memory) is serialized to preventrace
conditions. A race condition occurs when the order of execu-
tion of two or more concurrent LWPs leads to unpredictable
and erroneous results (such as a database record being left in
an inconsistent state). Race conditions may be eliminated by
using the Solaris 2.x synchronization mechanisms described
in Section 3.5. These mechanisms serialize access to critical
sections of code that access shared resources.

In addition to the challenges of concurrency control,
the following limitations arise when using multi-threading
(rather than multi-processing or single-threaded, reactive
event loops) to implement concurrent applications:

� Robustness– Executing all tasks via threads within a
single process address space may reduce application ro-
bustness. This problem occurs since separate threads
within the same process address space are not protected
from one another. In order to reduce context switching
and synchronization overhead, threads receive little or
no protection from the hardware memory management
unit (MMU).4

4An MMU protects separate process address spaces from accidental or
malicious corruption by other active processes in the system.

Since threads are not protected, one faulty service in
a process may corrupt global data shared by services
running on other threads in the process. This, in turn,
may produce incorrect results, crash an entire process,
cause a network server to hang indefinitely, etc. A re-
lated problem is that certain UNIX system calls invoked
in one thread may have undesirable side-effects on an
entire process. For example, theexit system call has
the side-effect of destroying all the threads within a pro-
cess (thr exit should be used to terminate only the
current thread).

� Access Privileges– Another limitation with multi-
threading is that all threads within a process share the
same userid and access privileges to files and other pro-
tected resources. Therefore, to prevent accidental or
intentional access to unauthorized resources, network
services that base their security mechanisms on process
ownership (such as the Internetftp andtelnet ser-
vices) are typically implemented in separate processes.

� Performance– A common misconception is that multi-
threading an application will automatically improve
performance. In many circumstances, however, multi-
threading does not improve performance. For example,
compute-bound applications on a uni-processor [19]
will not benefit from multi-threading since computa-
tion will not overlap communication. In addition, fine-
grained locking causes high levels of synchronization
overhead [23, 24]. This prevents applications from fully
exploiting the benefits of parallel processing.

There are some circumstances where multi-threading
may improve performance significantly. For example,
a multi-threading connection-oriented application gate-
way may benefit by being run on a multi-processor plat-
form. Likewise, on a uni-processor, I/O-bound applica-
tions may benefit from multi-threading since computa-
tion is overlapped with communication and disk opera-
tions.

3.5 Overview of Solaris 2.x Synchronization
and Threading Mechanisms

This section outlines and illustrates the synchronization
and threading mechanisms available on Solaris 2.x, POSIX
pthreads, and Win32 threads. In these systems, threads
share various resources (such as open files, signal handlers,
and global memory) within a single process address space.
Therefore, they must utilizesynchronization mechanismsto
coordinate access to shared data, to avoid the race conditions
discussed in Section 3.4. To illustrate the need for synchro-
nization mechanisms, consider the following C++ code frag-
ment:

typedef u_long COUNTER;
COUNTER request_count; // At file scope

void *run_svc (Queue<Message> *q)
{

Message *mb; // Message buffer
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while (q->dequeue (mb)) > 0)
{

// Keep track of number of requests
++request_count;

// Identify request and
// perform service processing here...

}
return 0;

}

This code forms part of the main event-loop of a network
daemon (such as an distributed database for medical images
or a distributed file server). In the code, the main event-loop
waits for messages to arrive from clients. When a message
arrives, the main thread removes it from the message queue
via itsdequeue method. Depending on the type of message
that is received, the thread then performs some type of pro-
cessing (e.g., image database query, file update, etc.). The
request count variable keeps track of the number of in-
coming client requests. This information might be used to
update an attribute in an SNMP MIB.

The code shown above works fine as long asrun svc
executes in a single thread of control. Incorrect results will
occur on many multi-processor platforms, however, when
run svc is executed simultaneously by multiple threads of
control running on different PEs. The problem here is that
the code is not “thread-safe.” Since auto-increment oper-
ations on the global variablerequest count contain a
race condition. Thus, different threads may increment ob-
solete versions of therequest count variable stored in
their per-PE data caches.

This phenomenon may be demonstrated by executing the
C++ code in Example 1 below on a shared memory multi-
processor running the Solaris 2.x operating system. Solaris
2.x allows multiple threads of control to execute in parallel
on a shared memory multi-processor. The example shown
below is a simplified version of the network daemon illus-
trated above:

Example 1

typedef u_long COUNTER;
static COUNTER request_count; // At file scope

void *run_svc (int iterations)
{

for (int i = 0; i < iterations; i++)
++request_count; // Count # of requests

return (void *) iterations;
}

typedef void *(*THR_FUNC)(void *);

// Main driver function for the
// multi-threaded server.

int main (int argc, char *argv[])
{

int n_threads =
argc > 1 ? atoi (argv[1]) : 4;

int n_iterations =
argc > 2 ? atoi (argv[2]) : 1000000;

thread_t t_id;

// Divide iterations evenly among threads.

int iterations = n_iterations / n_threads;

// Spawn off N threads to run in parallel.
for (int i = 0; i < n_threads; i++)

thr_create (0, 0, THR_FUNC (&run_svc),
(void *) iterations,
THR_BOUND | THR_SUSPENDED,
&t_id);

// Resume all suspended threads
// (threads id’s are contiguous...)
for (i = 0; i < n_threads; i++)

thr_continue (t_id--);

// Wait for all threads to exit.
int status;
while (thr_join (0, &t_id,

(void **) &status) == 0)
cout << "thread id = " << t_id

<< ", status = " << status << endl;

cout << n_iterations << " = iterations\n"
<< request_count << " = request count"
<< endl;

return 0;
}

The Solaristhr create thread library routine is called
n thread times to spawnn new threads of control. In this
example, each newly created thread executes therun svc
function, which is passed the value ofiterations as its
only argument. This value causes therun svc routine to
iteraten iterations

n threads
times.

Each thread is spawned using theTHRBOUNDand
THRSUSPENDEDflags. THRBOUNDinforms the Solaris
thread run-time library to bind the thread to a dedicated LWP.
Each LWP may run in parallel on a separate PE in a multi-
processor system. TheTHRSUSPENDEDflag creates each
thread in the “suspended” state. This ensures that all threads
are completely initialized before resuming the tests by call-
ing thr continue . The thr continue function is a
Solaris thread library routine that resumes the execution of
suspended threads. Note that this example takes advantage
of the fact that thread ids are allocated contiguously by So-
laris in ascending order.

Once all threads have been resumed, thethr join rou-
tine blocks the execution of the main thread.thr join is
similar to the UNIX wait system call – it reaps the sta-
tus of exiting threads.thr join will reap threads and re-
turn 0 until all the threads runningrun svc have exited.
When all other threads have exited, the main thread prints
out the total number ofiterations and the final value of
request count , and then exits the program.

Compiling this code into an executablea.out file and
running it on 1 thread for 10,000,000 iterations produces the
following results:

% a.out 1 10000000
thread id = 4, status = 1000000
10000000 = iterations
10000000 = request count

This result appears as expected. However, when executed on
4 threads for 10,000,000 iterations on a 4 PE machine, the
program prints the following:

% a.out 4 10000000
thread id = 5, status = 1000000
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thread id = 7, status = 1000000
thread id = 6, status = 1000000
thread id = 4, status = 1000000
10000000 = iterations
5000000 = request count

Clearly, something is wrong since the value of the global
variablerequest count is only one-half the total number
of iterations. The problem here is that auto-increments on
variablerequest count are not being serialized properly.

In general,run svc will produce incorrect results when
executed in parallel on shared memory multi-processor plat-
forms that do not providestrong sequential ordercache con-
sistency models. To enhance performance, many shared
memory multi-processors employweakly-orderedcache
consistency semantics. For example, the V.8 and V.9 family
of SPARC multi-processors provides bothtotal store order
and partial store ordermemory cache consistency seman-
tics. With total store order semantics, reading a variable that
is being accessed by threads on different PEs may not be
serialized with simultaneous writes to the same variable by
threads on other PEs. Likewise, with partial store order se-
mantics, writes may also not be serialized with other writes.
In either case, expressions that require more than a single
load and store of a memory location (such asfoo++ or i =
i � 10) may produce inconsistent results due to cache laten-
cies across multiple PEs. To ensure that reads and writes of
variables shared between threads are updated correctly, pro-
grammers must manually enforce the order that changes to
these variables become globally visible.

A common technique for enforcing a strong sequential
order on atotal store orderor partial store ordershared
memory multi-processor is to protect the increment of the
request count variable using a synchronization mech-
anism. Solaris 2.x provides several synchronization mech-
anisms. This paper describes C++ wrappers for the four
primary synchronization mechanisms provided by Solaris
2.x: mutexes, readers/writer locks, counting semaphores,
andcondition variables[19]. ACE contains C++ wrappers
(Mutex , RWLock , Semaphore , andCondition ) that
encapsulate these four Solaris 2.x synchronization mecha-
nisms (mutex t , rwlock t , sema t , and cond t , re-
spectively). In the remainder of Section 3 we outline the
behavior of the Solaris synchronization mechanisms. Sec-
tion 4 illustrates the use of C++ wrappers to simplify com-
mon synchronization variable usage and to improve program
reliability.

3.5.1 Mutual Exclusion Locks

Mutex exclusion locks (commonly called “mutexes” or “bi-
nary semaphores”) are used to protect the integrity of a
shared resource that is accessed concurrently by multiple
threads of control. A mutex serializes the execution of mul-
tiple threads by defining a critical section where only one
thread executes its code at a time. Mutexes are simple (e.g.,
only the thread owning a mutex may release it) and efficient
(in terms of time and space).

Operations on mutex variables in operating systems
like Solaris 2.x are implemented via adaptive spin-locks.
Spin-locks ensure mutual exclusion by using an atomic
hardware instruction. A spin-lock is a simple and effi-
cient synchronization mechanism for certain types of short-
lived resource contention, like auto-incrementing the global
request count variable illustrated in Example 1 above.
An adaptive spin-lock polls a designated memory location
using the atomic hardware instruction until one of the fol-
lowing conditions occur [2]:

Mutexes provide an efficient form of mutual exclusion.
They define a critical section where only a single thread may
execute at a time.

� The value at this location is changed by the thread that
currently owns the lock. This signifies that the lock has
been released and may now be acquired by the spinning
thread.

� The thread that is holding the lock goes to sleep. At
this point, the spinning thread also puts itself to sleep to
avoid unnecessary polling.

On a multi-processor, the overhead incurred by a spin-lock
is relatively minor. Hardware-based polling does not cause
contention on the system bus since it only affects the local
PE caches of threads that are spinning on a mutex.

A simple and efficient type of mutex is a “non-recursive”
mutex. A non-recursive does not allow the thread currently
owning a mutex to reacquire the mutex without releasing it
first. Otherwise, deadlock will occur immediately. Solaris
2.x and POSIX pthreads implement non-recursive mutexes
via themutex t data type and the associatedmutex lock
andmutex unlock functions. Win32 does not provide a
non-recursive mutex.

Both POSIX pthreads and Win32 threads implement both
recursive and non-recursive mutexes (other types of mutexes
are discussed in Section 4.4). As described in Section 5.1.4,
the ACE OO thread encapsulation library provides the
Mutex C++ wrapper to portable implement non-recursive
mutex semantics. Non-recursive mutexes are portably im-
plemented in the ACERecursive Thread Mutex class.

3.5.2 Readers/Writer Locks

Readers/writer locks are similar to mutexes. For example,
the thread that acquires a readers/writer lock must also re-
lease it. Multiple threads may acquire a reader/writer lock
simultaneously for reading, but only one thread may acquire
the lock for writing. Readers/writer mutexes help to improve
concurrent execution when resources protected by the mutex
are read far more often than they are written.

Solaris 2.x supports readers/writer mutexes via its
rwlock t type. Neither POSIX pthreads nor Win32
threads support readers/writer locks natively. As described
in 5.1.3, the ACE thread library provides a class called
RWMutex that portably implements the semantics of read-
ers/writer locks within a C++ wrapper class. Both the So-
laris and ACE implementations of readers/writer locks gives
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preference to writers. Thus, if there are multiple readers and
a single writer waiting on the lock the writer will acquire it
first.

3.5.3 Counting Semaphores

Counting semaphores are conceptually non-negative integers
that may be incremented and decremented atomically. If a
thread tries to decrement a semaphore whose value equals
zero the thread is suspended until another thread increments
the semaphore.

Counting semaphores are useful for keeping track of
changes in shared program state. They record the occurrence
of a particular event Since semaphores maintain state they al-
low threads make decisions based upon this state, even if the
event has occurred in the past.

Semaphores are less efficient than mutexes since they re-
tain additional state and use sleep-locks, rather than spin-
locks. However, they more general since they need not be
acquired and released by the same thread that acquired them
initially. This enables them to be used in asynchronous exe-
cution contexts (such as signal handlers).

Solaris 2.x supports for semaphores via itssema t type.
Win32 supports semaphores asHANDLEs. POSIX pthreads
does not support semaphores natively. As described in Sec-
tion 5.1.2, the ACE thread library provides a class called
Semaphore that portable implements the semantics of
semaphores within a C++ wrapper class.

3.5.4 Condition Variables

Condition variables provide a different flavor of locking than
mutexes, readers/writer locks, and counting semaphores.
These three other mechanisms make collaborating threads
wait while the thread holding the lock executes code in a crit-
ical section. In contrast, a condition variable is typically used
by a thread to make itself wait until a condition expression
involving shared data attains a particular state. When an-
other cooperating thread indicates that the state of the shared
data has changed the scheduler wakes up a thread that is
suspended on that condition variable. The newly awakened
thread then re-evaluate its condition expression and poten-
tially resumes processing if the shared data has attained an
appropriate state.

The condition expression waited for by a condition vari-
able may be arbitrarily complex. In general, condition
variables permit more complex scheduling decisions, com-
pared with the other synchronization mechanisms. Condition
variable synchronization is implemented using sleep-locks,
which trigger a context switch and allow another thread to
execute until the lock is acquired. As described in Sec-
tion 3.5.1, mutexes are implemented using adaptive spin-
locks. Spin-locks consume excessive resources if a thread
must wait a long amount of time for a particular condition to
become signaled.

Condition variables are more useful than semaphores or
mutexes for situations involving condition expressions se-

mantics. In this case, a waiting thread must block until a
certain condition expression involving shared state becomes
true (e.g.,a list is no longer empty and network flow con-
trol abates). In this case, there is no need to maintain event
history. Thus, condition variables do not record when they
are “signalled.” If not used correctly, this can lead to “lost
wakeup” problems [19].

Solaris 2.x and POSIX pthreads support condition vari-
ables via thecond t type. The native Win32 API does not
support condition variables. As described in Section 5.3.1,
the ACE thread library provides a class calledCondition
that portably implements the semantics of condition vari-
ables within a C++ wrapper class.

3.6 Process vs. Thread Synchronization Se-
mantics

To increase flexibility and improve performance, Solaris
2.x provides two flavors of synchronization semantics that
are optimized for either (1) threads that execute within the
same process (i.e.,intra-process serialization) and (2) threads
that execute in separate processes (i.e., inter-process seri-
alization). In Solaris 2.x, theUSYNCTHREADflag to the
* init functions of the synchronization mechanisms cre-
ates variables that are optimized for threads within a single
processes. Likewise, theUSYNCPROCESSflag creates a
synchronization variable that is valid across multiple pro-
cesses. The latter type of synchronization mechanism is
more general, though somewhat less efficient if all threads
run within a single process.

3.7 Mutex Example

The following code illustrates how Solaris mutex variables
may be used to solve the auto-increment serialization prob-
lem we observed earlier withrequest count :

Example 2

typedef u_long COUNTER;
// At file scope
static COUNTER request_count;
// mutex protecting request_count (initialized
// to zero).
static mutex_t m;

void *run_svc (void *)
{

for (int i = 0; i < iterations; i++)
{

mutex_lock (&m); // Acquire lock
++request_count; // Count # of requests
mutex_unlock (&m); // Release lock

}

return (void *) iterations;
}

In the code above,m is a global variable of typemutex t .
In Solaris, any synchronization variable that is zero’d out
is initialized using its default semantics. For example, the
mutex t variablem is always initialized to start out in the
unlockedstate. Therefore, the first time thatmutex lock is
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called it will acquire ownership of the lock. Any other thread
that attempts to acquire the lock will be forced to wait (e.g.,
by spinning) until the owner of the lock releasesm.

Example 2 shown above solves the original synchroniza-
tion problem, it suffers from the following drawbacks:

� Inelegant and inconsistent– the code mixes C functions
with C++ objects, as well as different identifier naming
conventions. Using a hybrid programming style is dis-
tracting and can become a maintenance problem.

� Obtrusive– the solution requires changing the source
code. When developing a large software system, manu-
ally performing these types of changes leads to mainte-
nance problems if all these changes are not made con-
sistently.

� Non-portable– this code will only work with Solaris
2.x synchronization mechanisms. In particular, port-
ing the code to use POSIX pthreads and Windows NT
threads will require changing the locking code.

� Error-prone – It is easy for programmers to forget to
call mutex unlock . This will starve other threads
that are trying to acquire the lock. Furthermore, dead-
lock will occur if the owner of the lock tries to reacquire
a mutex it owns already.

It is also possible that a programmer will forget to ini-
tialize the mutex variable. As mentioned above, in So-
laris 2.x, a zero’dmutex t variable is implicitly ini-
tialized. However, no such guarantees are made for
mutex t variables that are allocated as fields in dy-
namically allocated structures or classes. Moreover,
other thread mechanisms (such as POSIX pthreads and
Windows NT threads) do not make these guarantees and
all synchronization objects must be initialized explic-
itly.

In Section 4 we will examine how the use of C++ wrappers
helps to overcome these problem, by improving the function-
ality, portability, and robustness of Solaris synchronization
mechanisms.

4 Simplifying Concurrent Program-
ming with OO and C++

This section examines a use case to motivate and demon-
strate the benefits of encapsulating Solaris concurrency
mechanisms within C++ wrappers. This use case depicts a
representative scenario that is based upon a production sys-
tem [25]. Additional examples of the ACE OO thread en-
capsulation class library appear in Section 6, following the
presentation the library interfaces in Section 5.

Many useful C++ classes have evolved incrementally by
generalizing from solutions to practical problems that arise

during system development. After the interface and im-
plementation of a class have stabilized, however, this iter-
ative process of generalizing classes over time is often de-
emphasized. That is unfortunate since a major barrier to en-
try for object-oriented design and C++ is (1) learning and
internalizing the process ofhow to identify and describe
classes and objects and (2) understanding when and how
to apply (or not apply) C++ features such as templates, in-
heritance, dynamic binding, and overloading to simplify and
generalize their programs.

In an effort to capture the dynamics of C++ class de-
sign evolution, the following section illustrates the process
by which object-oriented techniques and C++ idioms were
incrementally applied to solve a surprisingly subtle prob-
lem. This problem arose during the development of a fam-
ily of concurrent distributed applications that execute effi-
ciently on both uni-processor and multi-processor platforms.
This section focuses on the steps involved in generalizing
from existing code by using templates and overloading to
transparently parameterize synchronization mechanisms into
a concurrent application. The infrastructure code is based
on components in the ADAPTIVE Communication Environ-
ment (ACE) framework described in [1, 26, 20].

This example examines several C++ language features
that solve the serialization problem presented in Sec-
tion 3.5.1 more elegantly. As described in that section, the
original solution was inelegant, non-portable, error-prone,
and required obtrusive changes to the source code. This sec-
tion illustrates a progression of C++ solutions that build upon
insights from prior iterations in the design evolution.

4.1 An Initial C++ Solution

A somewhat more elegant solution to the original problem is
to encapsulate the existing Solarismutex t operations with
a C++Thread Mutex wrapper, as follows:5

class Thread_Mutex
{
public:

Thread_Mutex (void) {
mutex_init (&lock_, USYNC_THREAD, 0);

}
˜Thread_Mutex (void) {

mutex_destroy (&lock_);
}
int acquire (void) {

return mutex_lock (&lock_);
}
int release (void) {

return mutex_unlock (&lock_);
}

private:
// Solaris 2.x serialization mechanism.
mutex_t lock_;

};

One advantage of defining a C++ wrapper interface to mutual
exclusion mechanisms is that application code now becomes

5In this paper, many examples of C++ classes are shown with the meth-
ods implemented within the class definition. This style is for exposition
purposes only and should not be used when developing applications.

11



more portable across OS platforms. For example, the fol-
lowing is an implementation of theThread Mutex class
interface based on mechanisms in the Windows NT WIN32
API [4]:6

class Thread_Mutex
{
public:

Thread_Mutex (void) {
InitializeCriticalSection (&lock_);

}
˜Thread_Mutex (void) {

DeleteCriticalSection (&lock_);
}
int acquire (void) {

EnterCriticalSection (&lock_); return 0;
}
int release (void) {

LeaveCriticalSection (&lock_); return 0;
}

private:
// Win32 serialization mechanism.
CRITICAL_SECTION lock_;

};

The use of theThread Mutex C++ wrapper class
cleans up the original code somewhat, improves portabil-
ity, and ensures that initialization occurs automatically when
a Thread Mutex object is defined, as shown in the code
fragment below:

Example 3

typedef u_long COUNTER;
// At file scope.
static COUNTER request_count;
// Thread_Mutex protecting request_count.
static Thread_Mutex m;

void *run_svc (void *)
{

for (int i = 0; i < iterations; i++)
{

m.acquire ();
// Count # of requests.
++request_count;
m.release ();

}

return (void *) iterations;
}

However, the C++ wrapper approach does not solve all the
problems identified in Section 3.5.1. In particular, it does not
solve the problem of forgetting to release the mutex (which
still requires manual intervention by programmers). In ad-
dition, using classThread Mutex still requires obtrusive
changes to the original non-thread-safe source code.

4.2 Another C++ Solution

A straightforward way to ensure locks will be released auto-
matically is to use the semantics of C++ class constructors
and destructors. The following utility class uses these lan-
guage constructs to automate the acquisition and release of a
mutex:

6Note that this implementation only supports mutexes within a single
process. ACE also implements process-wide mutexes using other Win32
mechanisms.

class Guard
{
public:

Guard (const Thread_Mutex &m): lock_ (m) {
lock_.acquire ();

}
˜Guard (void) {

lock_.release ();
}

private:
const Thread_Mutex &lock_;

}

A Guard defines a “block” of code over which a
Thread Mutex is acquired and then released automatically
when the block is exited. It employs a C++ idiom idiom
commonly known as “constructor as resource acquisition –
destructor as resource release” [9, 27, 7].

As shown in the code above, the constructor of aGuard
class acquires the lock on theThread Mutex object auto-
matically when an object of the class is created. Likewise,
the destructor of aGuard class automatically unlocks the
Thread Mutex object when the object goes out of scope.

Note that thelock data member of classGuard is
a reference to aThread Mutex object. This avoids the
overhead of creating and destroying an underlying Solaris
mutex t variable every time the constructor and destructor
of aGuard are executed.

By making a slight change to the code, we now guarantee
that aThread Mutex is acquired and released automati-
cally:

Example 4

typedef u_long COUNTER;
// At file scope.
static COUNTER request_count;
// Thread_Mutex protecting request_count.
static Thread_Mutex m;

void *run_svc (void *)
{

for (int i = 0; i < iterations; i++)
{

{
// Automatically acquire the mutex.
Guard monitor (m);

++request_count;
// Automatically release the mutex.

}
// Remainder of service processing omitted.

}
}

However, this solution still has not fixed the problem with
obtrusive changes to the code. Moreover, adding the extra
’f’ and ’g’ curly brace delimiter block around theGuard
is inelegant and error-prone. A maintenance programmer
might misunderstand the importance of the curly braces and
remove them, yielding the following code:

for (int i = 0; i < iterations; i++)
{

Guard monitor (m);

++request_count;
// Remainder of service processing omitted.

}
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Unfortunately, this “curly-brace elision” has the side-effect
of eliminating all concurrent execution within the application
by serializing the main event-loop. Therefore, all computa-
tions that would have executed in parallel within that section
of code will be serialized unnecessarily.

4.3 An Improved C++ Solution

To solve the remaining problems in a transparent, unobtru-
sive, and efficient manner requires the use of two additional
C++ features: parameterized types and operator overload-
ing. We use these features to provide a template class called
Atomic Op, a portion of which is shown below (the com-
plete interface appears in Section 5.6.2):

template <class TYPE>
class Atomic_Op
{
public:

Atomic_Op (void) { count_ = 0; }
Atomic_Op (TYPE c) { count_ = c; }
TYPE operator++ (void) {

Guard monitor (lock_);
return ++count_;

}
operator TYPE () {

Guard monitor_ (lock_);
return count_;

}
// Other arithmetic operations omitted...

private:
Thread_Mutex lock_;
TYPE count_;

};

TheAtomic Opclass redefines the normal arithmetic op-
erations (such as++, -- , +=, etc.) on built-in data types to
make these operations work atomically. In general, any class
that defines the basic arithmetic operators will work with the
Atomic Opclass due to the “deferred instantiation” seman-
tics of C++ templates.

Since theAtomic Op class uses the mutual exclusion
features of theThread Mutex class, arithmetic opera-
tions on objects of instantiatedAtomic Op classes now
work correctly on a multi-processor. Moreover, C++ fea-
tures (such as templates and operator overloading) allow this
technique to worktransparentlyon a multi-processor, as
well. In addition, all the method operations inAtomic Op
are defined as inline functions. Therefore, an optimizing
C++ compiler will generate code that ensures the run-time
performance ofAtomic Op is no greater than calling the
mutex lock andmutex unlock function directly.

Using theAtomic Op class, we can now write the fol-
lowing code, which is almost identical to the original non-
thread safe code (in fact, only the typedef ofCOUNTERhas
changed):

Example 5

typedef Atomic_Op<u_long> COUNTER;
// At file scope
static COUNTER request_count;

void *run_svc (void *)
{

for (int i = 0; i < iterations; i++)
{

// Actually calls Atomic_Op::operator++()
++request_count;

}
}

By combining the C++ constructor/destructor idiom for
acquiring and releasing theThread Mutex automatically,
together with the use of templates and overloading, we have
produced a simple, yet remarkably expressive parameterized
class abstraction. This abstraction operates correctly and
atomically on an infinite family of types that require atomic
operations. For example, to provide the same thread-safe
functionality for other arithmetic types, we simply instanti-
ate new objects of theAtomic Optemplate class as follows:

Atomic_Op<double> atomic_double;
Atomic_Op<Complex> atomic_complex;

4.4 Extending Atomic Op by Parameterizing
the Type of Mutual Exclusion Mechanism

Although the design of theAtomic OpandGuard classes
described above yield correct and transparently thread-safe
programs, there is still room for improvement. In particular,
note that the type of theThread Mutex data member is
hard-coded into theAtomic Op class. Since templates are
available in C++, this design decision represents an unnec-
essary restriction that is easily overcome. The solution is to
parameterizeGuard and add another type parameter to the
template classAtomic Op, as follows:

template <class LOCK>
class Guard
{
// Basically the same as before...

private:
// new data member change.
const LOCK &lock_;

};

template <class LOCK, class TYPE>
class Atomic_Op
{

TYPE operator++ (void)
{

Guard<LOCK> monitor (lock_);
return ++count_;

}
// ...

private:
LOCK lock_; // new data member
TYPE count_;

};

Using this new class, we can make the following simple
change at the beginning of the source file:

typedef Atomic_Op <Thread_Mutex, u_long> COUNTER;
// At file scope.
COUNTER request_count;

// ... same as before
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4.5 Design Rationale and Performance Issues

Before making the changes described above, it is worthwhile
to analyze the motivation for using templates to parameter-
ize the type of mutual exclusion mechanism used by a pro-
gram is beneficial. After all, just because C++ supports tem-
plates does not make them useful in all circumstances. In
fact, parameterizing and generalizing the problem space via
templates without clear and sufficient reasons may increase
the difficulty of understanding and reusing C++ classes.

The use of templates in theAtomic Op class raises sev-
eral issues. The first is “what is the run-time performance
penalty for all the added abstraction?” The second ques-
tion is “instead of templates, why not use inheritance and
dynamic binding to emphasize uniform mutex interface and
to share common code?” The third is “aren’t the synchro-
nization properties of the program being obscured by using
templates and overloading?” Several of these questions are
related and this section discusses tradeoffs involving differ-
ent design alternatives.

4.5.1 Performance

The primary reason why templates are used for the
Atomic Op class involve run-time efficiency. Once ex-
panded by an optimizing C++ compiler during template in-
stantiation, the additional amount of run-time overhead is
minimal or non-existent. In contrast, inheritance and dy-
namic binding incur overhead at run-time in order to dispatch
virtual method calls.

Figure 3 illustrates the performance exhibited by the mu-
tual exclusion techniques used in Examples 2 through 5
above.7 This figure depicts the number of seconds required
to process 10 million iterations, divided into 2.5 million it-
erations per-thread. The test examples were compiled using
the -O4 optimization level of the Sun C++ 3.0.1 compiler.
Each test was executed 10 times on an otherwise idle 4 PE
Sun SPARCserver 690MP. The results were averaged to re-
duce the amount of spurious variation (which proved to be
insignificant).

Example 2 uses the Solarismutex t functions directly.
Example 3 uses the C++Thread Mutex class wrapper in-
terface. Surprisingly, this implementation consistently per-
formed better than Example 1, which used direct calls to
the underlying Solaris mutex functions. Example 4 uses the
Guard helper class inside of a nested curly brace block to
ensure that theThread Mutex is released automatically.
This version required the most time to execute. Finally,
Example 5 uses theAtomic Op template class, which is
only slightly less efficient than using the Solaris mutex func-
tions directly. More aggressively optimizing C++ compilers
would reduce the amount of variation in the results.

7Example 1 is the original erroneous implementation that did not use
any mutual exclusion operations. Although it operates extremely efficiently
(approximately 0.09 seconds to process 10,000,000 iterations), it produces
results that are totally incorrect!
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Figure 3: Number of Seconds Required to Process
10,000,000 Iterations

Example usecs per operation Ratio
Example 2 2.76 1
Example 3 2.35 0.85
Example 4 4.24 1.54
Example 5 3.39 1.29

Table 1: Serialization Time for Different Examples

Table 1 indicates the number of micro-seconds (usecs) in-
curred by each mutual exclusion operation for Examples 2
through 5. Recall that each loop iteration requires 2 mutex
operations (one to acquire the lock and one to release the
lock). Example 2 is used as the baseline value since it uses
the underlying Solaris primitives directly. The third column
of Examples 3 through 5 are normalized by dividing their
values by Example 2.

4.5.2 Portability

One motivation for parameterizing the type of mutual ex-
clusion mechanism is to increase portability across OS plat-
forms. Templates decouple the formal parameter class name
“Thread Mutex ” from the actual name of the class used
to provide mutual exclusion. This is useful for platforms that
already use the symbolThread Mutex to denote an exist-
ing type or function. By using templates, theAtomic Op
class source code would not require any changes when port-
ing to such platforms.

However, a more interesting motivation arises from the
observation that there are actually several different flavors of
mutex semantics one might want to use (either in the same
program or across a family of related programs). Each of
these mutual exclusion flavors share the same basic acquire
and release protocol, but they possess different serialization
and performance properties. Section 5.1.1 presents a num-
ber of mutual exclusion mechanisms that have proven to be
useful in practice.
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4.5.3 Transparency

One argumentagainstusing templates to parameterize syn-
chronization is that the level of transparency hides the mutual
exclusion semantics of the program. Whether this is consid-
ered a “bug” or a “feature” depends on how one believes that
concurrency and synchronization should be integrated into
a program. For class libraries that contain basic building-
block components (such as theMap Manager described in
Section 5.1.1), allowing synchronization semantics to be pa-
rameterized is often desirable since this enables developers
to preciselycontrol and specify the concurrency semantics
that they want. The alternatives to this strategy are (1) don’t
use class libraries if multi-threading is used (which obvi-
ously limits functionality), (2) do all the locking outside the
library (which may be inefficient or unsafe), or (3) hard-code
the locking strategy into the library implementation (which is
also inflexible and potentially inefficient). All these alterna-
tives are antithetical to principles of reuse in object-oriented
software systems.

4.5.4 Evaluating the Tradeoffs

Selecting an appropriate design strategy for developing a
class library that supports concurrency depends on several
factors. For example, certain library users may welcome
simple interfaces that hide concurrency control mechanisms
from view. In contrast, other library users may be willing to
accept more complicated interfaces in return for additional
control and increased efficiency. A layered approach to class
library design may satisfy both groups of library users. Us-
ing this design approach, the lowest layers of the class library
export most or all of the parameterized types as template ar-
guments. The higher layers provide reasonable default type
values and provide an easier-to-use application developer’s
programming interface.

The new “default template argument” feature recently
adopted by the ANSI C++ committee facilitates the devel-
opment of class libraries that satisfy both types of library
users. This feature allows library developers to specify com-
mon default types as arguments to template class and func-
tion definitions. For example, the following modification to
template classAtomic Op provides it with typical default
template arguments:

template <class LOCK = Thread_Mutex,
class TYPE = u_long>

class Atomic_Op
{
// Same as before
};

// ...

#if defined (MT_SAFE)
// Default is Thread_Mutex and u_long.
typedef Atomic_Op<> COUNTER;
#else
// Don’t serialize.
typedef Atomic_Op<Null_Mutex> COUNTER;
#endif /* MT_SAFE */
COUNTER request_count;

Due to the complexity that arises from incorporating con-
currency into applications, C++ templates are quite useful
for reducing redundant development effort. However, as with
any other language feature, it is possible to misuse templates
and needlessly complicate a system’s design and implemen-
tation (not to mention increasing the compile and link times).
One heuristic to use when deciding whether to use parame-
terized types is to keep track of when existing code is about
to be duplicated in a way that only modifies the data types.
If there is another reasonable scenario that would require
yet a third version that only differs by types, this indicates
that generalizing the original code to use templates may be
worthwhile.

5 Public Interfaces and Internal De-
sign

This section describes the public interfaces and relevant in-
ternal design aspects of components in the ACE OO thread
encapsulation library. The ACE components are divided into
the following groups:

� Low-level C++ threading APIs– which provides a low-
level C++ wrapper for the underlying OS threading and
synchronization APIs. The low-level C++ threading
APIs are contained in a class calledOS. This This class
encapsulates all the differences between various ver-
sions of UNIX and WIN32. The other components in
ACE are programmed to use only the methods in this
class, which makes it easier to port ACE to new plat-
forms.

� High-level C++ threading class– which allow threaded
applications to be programmed using higher-level C++
features like constructors/destructors and templates.
The high-level C++ threading APIs are written in terms
of the low-level ACEOSclass. They are divided into
three groups:

– C++ wrappers for locking mechanisms (described
in Section 5.1).

– C++ wrappers for native threading functions (de-
scribed in Section 5.6.1).

– Higher-level thread management classes (de-
scribed in Section 5.4.1).

A use case example of the ACE OO thread components
was presented in Section 4. The remainder of this sec-
tion presents a more comprehensive discussion of the pub-
lic interfaces, functionality, and internal design of ACE.
Where appropriate, this section depicts private portions of
the C++ wrapper classes in order to illustrate how the wrap-
pers are mapped onto Solaris 2.x threading and synchro-
nization mechanisms. The implementations of the POSIX
pthreads and Win32 wrappers are similar.
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5.1 The ACE Locks Class Category

The ACE C++ wrappers provide a portable, type-safe,
object-oriented interface to Solaris, POSIX, and Win32 OS
synchronization mechanisms described in Section 3.5. The
following bullets outline the primary benefits of these ACE
C++ wrappers:

� Improve correctness: by automating the initialization of
synchronization objects that appear as fields in C++ classes
and structs, as well as by guaranteeing that locks are acquired
and released automatically.

� Uniform synchronization interface: all the C++ wrap-
pers for threading and synchronization provide a uniform in-
terface for acquiring and releasing various types of locks. In
particular, all components in the ACE Locks class category
support four common methods:acquire , try acquire ,
release , andremove . This uniformity makes it possi-
ble to use the lock classes as type parameters in conjunction
with other ACE synchronization components (such as those
defined in Section 5.2.1, 5.6.2, and 5.1.4).

� More intuitive error reporting: the Solaris 2.x and
POSIX pthreads synchronization functions use a somewhat
non-standard mechanism for returning errors to callers. In
contrast, the ACE wrappers use a more standard approach
that returns -1 if a failure occurs, along with settingerrno
to indicate the cause of the failure.

� Simplify common usage pattern: the wrappers simplify
common usage patterns for low-level threading and syn-
chronization mechanisms. The code shown illustrates this
point by using the ACE C++ wrappers formutex t and
cond t to implement a simple version of Dijkstra’s count-
ing semaphores (i.e., P andV are equivalent toacquire
andrelease , respectively).

class Semaphore
{
public:

Semaphore (int initial_value)
: count_nonzero_ (lock_) {
// Automatically acquire lock.
Guard<Thread_Mutex> monitor (lock_);

count_ = initial_value;
// Automatically release the lock

}

// Block the thread until the semaphore
// count becomes greater than 0,
// then decrement it.

void acquire (void) {
// Automatically acquire lock
Guard<Thread_Mutex> monitor (lock_);

// Wait until semaphore is available.
while (count_ == 0)

count_nonzero_.wait ();

count_ = count_ - 1;
// Automatically release the lock

}

// Increment the semaphore, potentially
// unblocking a waiting thread.

void release (void) {

// Automatically acquire lock
Guard<Thread_Mutex> monitor (lock_);

// Allow waiter to continue.
if (count_ == 0)

count_nonzero_.signal ();

count_ = count_ + 1;
// Automatically release the lock

}

private:
Thread_Mutex lock_;
Condition<Thread_Mutex> count_nonzero_;
u_int count_;

};

Note how the constructor for theCondition ob-
ject count nonzero binds theThread Mutex object
lock together with theCondition object. This simpli-
fies theCondition::wait calling interface. In contrast,
the native Solaris and pthreadscond t cond wait inter-
face requires a mutex to be passed as a parameter on every
call towait .

Solaris 2.x and Win32 provide a built-in implementation
of counting semaphores (see the discussion in Section 3.5.3).
However, the POSIX Pthreads [3] threads library doesnot
include a semaphore. Therefore, the class shown above both
illustrates the use of ACE C++ wrappers and documents a
portableSemaphore implementation for POSIX Pthreads
in the ACE thread encapsulation library.

5.1.1 The Mutex Classes

The ACE mutex wrappers provide a simple and efficient
mechanism that serializes access to a shared resource. They
encapsulate the Solaris and POSIX pthreadsmutex t syn-
chronization variable, as well as the Win32HANDLE-based
mutex implementation. The class definition forMutex is
shown below:

class Mutex
{
public:

// Initialize the mutex.
Mutex (int type = USYNC_THREAD);

// Implicitly destroy the mutex.
˜Mutex (void);

// Explicitly destroy the mutex.
int remove (void);

// Acquire lock ownership (wait
// for lock to be released).
int acquire (void) const;

// Conditionally acquire lock
// (i.e., don’t wait for lock
// to be released).
int try_acquire (void) const;

// Release lock and unblock
// the next waiting thread.
int release (void) const;

private:
mutex_t lock_;
// Type of synchronization lock.

};
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In ACE, a thread may enter a critical section by invoking
theacquire method on aMutex object. Any calls to this
method will block until the thread that currently owns the
lock has left its critical section. To leave a critical section, a
thread invokes therelease method on theMutex object
it currently owns. Callingrelease enables another thread
that is blocked on the mutex to enter its critical section.

The Thread Mutex andProcess Mutex classes in-
herit from Mutex and use its constructor to create the ap-
propriate type of mutex, as follows:

class Thread_Mutex : public Mutex
{
public:

Thread_Mutex (void): Mutex (USYNC_THREAD);
};

class Process_Mutex : public Mutex
{
public:

Thread_Mutex (void): Mutex (USYNC_PROCESS);
};

These calls are mapped onto the appropriate underlying
API for creating thread- and process-specific mutexes, re-
spectively. In particular, the Win32 implementation of
Thread Mutex uses the more efficient, but less pow-
erful CRITICAL SECTION implementation, whereas the
Process Mutex implementation uses the less efficient,
but more powerful Win32 mutexHANDLE.

5.1.2 The Semaphore Classes

The ACE semaphore wrappers class implement Dijkstra’s
“counting semaphore” abstraction, which is a general mech-
anism for serializing multiple threads of control. They en-
capsulate the Solarissema t synchronization variable. The
Semaphore class interface is shown below:

class Semaphore
{
public:

// Initialize the semaphore,
// with default value of "count".
Semaphore (u_int count,

int type = USYNC_THREAD,
void * = 0);

// Implicitly destroy the semaphore.
˜Semaphore (void);

// Explicitly destroy the semaphore.
int remove (void);

// Block the thread until the semaphore count
// becomes greater than 0, then decrement it.
int acquire (void) const;

// Conditionally decrement the semaphore if
// count greater than 0 (i.e., won’t block).
int try_acquire (void) const;

// Increment the semaphore, potentially
// unblocking a waiting thread.
int release (void) const;

private:
sema_t semaphore_;

};

TheThread Semaphore andProcess Semaphore
classes inherit fromSemaphore and use its constructor to
create the appropriate type of semaphore, as follows:

class Thread_Semaphore : public Semaphore
{
public:

Thread_Semaphore (void): Semaphore (USYNC_THREAD);
};

class Process_Semaphore : public Semaphore
{
public:

Thread_Semaphore (void): Semaphore (USYNC_PROCESS);
};

5.1.3 The RWMutex Classes

The ACE readers/writer wrappers serialize access to re-
sources whose contents are searched more than they are
changed. They encapsulate therwlock t synchronization
variable, which is implemented natively on Solaris and em-
ulated by ACE on Win32 and Pthreads. TheRWMutex in-
terface is shown below:

class RW_Mutex
{
public:

// Initialize a readers/writer lock.
RW_Mutex (int type = USYNC_THREAD,

void *arg = 0);

// Implicitly destroy a readers/writer lock.
˜RW_Mutex (void);

// Explicitly destroy a readers/writer lock.
int remove (void);

// Acquire a read lock, but
// block if a writer hold the lock.
int acquire_read (void) const;

// Acquire a write lock, but
// block if any readers or a
// writer hold the lock.
int acquire_write (void) const;

// Conditionally acquire a read lock
// (i.e., won’t block).
int try_acquire_read (void) const;

// Conditionally acquire a write lock
// (i.e., won’t block).
int try_acquire_write (void) const;

// Unlock a readers/writer lock.
int release (void) const;

private:
rwlock_t lock_;

};

Note that POSIX Pthreads and Win32 threads do not provide
a rwlock t type. To ensure code portability, ACE provides
an RWMutex implementation based on existing low-level
synchronization mechanisms such as mutexes and condition
variables. In addition, ACE providesRWThread Mutex
andRWProcess Mutex implementations, as well.

5.1.4 The RecursiveThread Mutex Class

A Recursive Thread Mutex extends the default So-
laris non-recursive locking semantics. It allows calls to
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acquire methods to be nested as long as the thread that
owns the lock is the one that re-acquires it. It works with the
Thread Mutex class.

By default, Solaris provides non-recursive mutexes. These
semantics are too restrictive in certain circumstances. There-
fore, ACE provides support for recursive locks via the
Recursive Thread Mutex class. Recursive locks are
particularly useful for callback-driven C++ frameworks [28,
20], where the framework event-loop performs a callback to
user-defined code. Since the user-defined code may subse-
quently re-enter framework code via a method entry point,
recursive locks are useful to prevent deadlock from occur-
ring on locks held within the framework during the callback.

The following C++ class implements recursive lock se-
mantics for the Solaris 2.x synchronization mechanisms
(note that POSIX Pthreads and Win32 provide recursive mu-
texes in their native thread libraries):

class Recursive_Thread_Mutex
{
public:

// Initialize a recursive mutex.
Recursive_Thread_Mutex (const char *name = 0

void *arg = 0);

// Implicitly release a recursive mutex.
˜Recursive_Thread_Mutex (void);

// Explicitly release a recursive mutex.
int remove (void);

// Acquire a recursive mutex (will increment
// the nesting level and not deadmutex if
// owner of the mutex calls this method more
// than once).
int acquire (void) const;

// Conditionally acquire a recursive mutex
// (i.e., won’t block).
int try_acquire (void) const;

// Releases a recursive mutex (will not
// release mutex until nesting level == 0).
int release (void) const;

thread_t get_thread_id (void);
// Return the id of the thread that currently
// owns the mutex.

int get_nesting_level (void);
// Return the nesting level of the recursion.
// When a thread has acquired the mutex for the
// first time, the nesting level == 1. The nesting
// level is incremented every time the thread
// acquires the mutex recursively.

private:
void set_nesting_level (int d);
void set_thread_id (thread_t t);

Thread_Mutex nesting_mutex_;
// Guards the state of the nesting level
// and thread id.

Condition<Thread_Mutex> lock_available_;
// This is the condition variable that actually
// suspends other waiting threads until the
// mutex is available.

int nesting_level_;
// Current nesting level of the recursion.

thread_t owner_id_;
// Current owner of the lock.

};

The following code illustrates the implementation of the
methods in theRecursive Thread Mutex class:

Recursive_Thread_Mutex::Recursive_Thread_Mutex
(const char *name, void *arg)
: nesting_level_ (0),

owner_id_ (0),
nesting_mutex (name, arg),
lock_available_ (nesting_mutex_, name, arg)

{
}

// Acquire a recursive lock (will increment
// the nesting level and not deadlock if
// owner of lock calls method more than once).

int
Recursive_Thread_Mutex::acquire (void) const
{

thread_t t_id = Thread::self ();

Thread_Mutex_Guard mon (nesting_mutex_);

// If there’s no contention, just
// grab the lock immediately.
if (nesting_level_ == 0)

{
set_thread_id (t_id);
nesting_level_ = 1;

}
// If we already own the lock,
// then increment the nesting level
// and proceed.
else if (t_id == owner_id_)

nesting_level_++;
else

{
// Wait until the nesting level has dropped to
// zero, at which point we can acquire the lock.
while (nesting_level_ > 0)

lock_available_.wait ();

set_thread_id (t_id);
nesting_level_ = 1;

}

return 0;
}

// Releases a recursive lock.

int
Recursive_Thread_Mutex::release (void) const
{

thread_t t_id = Thread::self ();

// Automatically acquire mutex.
Thread_Mutex_Guard mon (nesting_mutex_);

nesting_level_--;
if (nesting_level_ == 0)

// Inform waiters that the lock is free.
lock_available_.signal ();

return 0;
}

The following is an example of
Recursive Thread Mutex based on a variation of the
Atomic Op COUNTERpresented in Section 4. In the ex-
ample,Atomic Op is called by multiple recursive function
calls within a single thread:

// Counter is a recursive lock.
typedef Atomic_Op<Recursive_Thread_Mutex>

COUNTER;
// Keep track of the recursion depth.
static COUNTER recursion_depth;

int factorial (int n)
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{
if (n <= 1) {

cout << "recursion depth = "
<< recursion_depth << endl;

return n;
}
else {

// First call acquires lock, subsequent
// calls increment nesting level.
recursion_depth++;
return factorial (n - 1) * n;

}
}

The use of aRecursive Thread Mutex prevents dead-
lock from occurring when therecursion depth counter
is incremented. Although this illustrates recursive lock be-
havior, it is not a very convincing example. A program
executingfactorial in multiple threads would produce
unpredictable results sincerecursion depth is a global
various that would be modified serially by multiple threads
of control! A more appropriate (and less expensive) locking
strategy in this case would use the Thread-Specific Storage
pattern [29] described in Section 5.6.4.

5.1.5 The Null Mutex Class

The Null Mutex class provides a zero-overhead imple-
mentation of the general locking interface shared by the other
C++ wrappers for threading and synchronization. The inter-
face and trivial implementation forNull Mutex is shown
below:

class Null_Mutex
{
public:

Null_Mutex (void) {}
˜Null_Mutex (void) {}
int remove (void) { return 0; }

int acquire (void) const { return 0; }
int try_acquire (void) const { return 0; }
int release (void) const { return 0; }

};

As shown in the code above, theNull Mutex class im-
plements theacquire andrelease methods as “no-op”
inline functions that are removed completely by a compiler
optimizer. Section 6 illustrates the use of theNull Mutex .

5.1.6 The Token Class

This class provides a more general-purpose synchronization
mechanism thanMutexes . For example, it implements “re-
cursive mutex” semantics, where a thread that owns the token
can reacquire it without deadlocking. In addition, threads
that are blocked awaiting aToken are serviced in strict
FIFO order as other threads release the token. In contrast,
Mutexes don’t strictly enforce an acquisition order.

The interface for theToken class is shown below:

class Token
{
public:

// Initialization and termination.
Token (const char *name = 0, void * = 0);
˜Token (void);

// Acquire the token, sleeping until it is
// obtained or until <timeout> expires.
// If some other thread currently holds
// the token then <sleep_hook> is called
// before our thread goes to sleep.

int acquire (void (*sleep_hook)(void *),
void *arg = 0,
Time_Value *timeout = 0);

// This behaves just like the previous
// <acquire> method, except that it
// invokes the virtual function called
// <sleep_hook> that can be overridden
// by a subclass of Token.
int acquire (Time_Value *timeout = 0);

// This should be overridden by a subclass
// to define the appropriate behavior before
// <acquire> goes to sleep. By default,
// this is a no-op...
virtual void sleep_hook (void);

// An optimized method that efficiently
// reacquires the token if no other threads
// are waiting. This is useful for if you
// don’t want to degrad the quality of
// service if there are other threads
// waiting to get the token.
int renew (int requeue_position = 0,

Time_Value *timeout = 0);

// Become interface-compliant with other
// lock mechanisms (implements a
// non-blocking <acquire>).
int tryacquire (void);

// Shuts down the Token instance.
int remove (void);

// Relinquish the token. If there are any
// waiters then the next one in line gets it.
int release (void);

// Return the number of threads that are
// currently waiting to get the token.
int waiters (void);

// Return the id of the current thread that
// owns the token.
thread_t current_owner (void);

};

5.2 The ACE Guards Class Category

5.2.1 The Guard Classes

Compared with the C-level mutex APIs, theMutex wrapper
described in Section 5.1.1 provides an elegant interface for
synchronizing multiple threads of control. However,Mutex
is potentially error-prone since it is possible to forget to call
therelease method (shown in Section 3.7). This may oc-
cur either due to programmer negligence or due to the occur-
rence of C++ exceptions.

Therefore, to improve application robustness, the ACE
synchronization facilities leverage off the semantics of C++
class constructors and destructors to ensure thatMutex
locks will be automatically acquired and released. ACE pro-
vides a family of classes calledGuard , Write Guard , and
Read Guard that ensure a lock is automatically acquired
and released upon entry and exit to a block of C++ code,
respectively.
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TheGuard class is the most basic guard mechanism and
is defined as follows:

template <class LOCK>
class Guard
{
public:

// Implicitly and automatically acquire (or try
// to acquire) the lock.
Guard (LOCK &l, int block = 1): lock_ (&l)

{
result_ = block

? acquire () : tryacquire ();
}

// Implicitly release the lock.
˜Guard (void) {

if (result_ != -1)
lock_.release ();

}

// 1 if locked, 0 if can’t acquire lock
// (errno will contain the reason for this).
int locked (void) {

return result_ != -1;
}

// Explicitly release the lock.
int remove (void) {

return lock_->remove ();
}

// Explicitly acquire the lock.
int acquire (void) {

return lock_->acquire ();
}

// Conditionally acquire the lock (i.e., won’t block).
int tryacquire (void) {

return lock_->tryacquire ();
}

// Explicitly release the lock.
int release (void) {

return lock_->release ();
}

private:
// Pointer to the LOCK we’re guarding.
LOCK *lock_;

// Tracks if acquired the lock or failed.
int result_;

};

An object of theGuard class defines a “block” of code over
which a lock is acquired and then released automatically
when the block is exited. Note that this mechanism will work
for theMutex , RWMutex , andSemaphore synchroniza-
tion wrappers. This illustrates another benefit of using C++
wrappers: they promote interface conformance by adapt-
ing gratuitously incompatible interfaces (such as Solaris 2.x
semaphores and mutexes).

By default, theGuard class constructor shown above will
block until the lock is acquired. There are cases where
non-blockingacquire calls are necessary (e.g., to pre-
vent deadlock). Therefore, the ACEGuard constructor
can be given a second parameter that instructs it to use
the lock’s try acquire method rather thanacquire .
Callers may then useGuard ’s locked method to test atom-
ically whether the lock was actually acquired or not.

The Read Guard andWrite Guard classes have the
same interface as theGuard class. However, their
acquire methods read locks and write locks, respectively.

5.2.2 The ThreadControl Class

The Thread Control class is used in conjunction with
theThread Manager class to automate the graceful termi-
nation and cleanup of a thread’s activities within its originat-
ing function. For example,Thread Control ’s construc-
tor stores state information. This information automatically
removes the thread from an associatedThread Manager
when the function used to invoke the thread originally termi-
nates. This technique works correctly regardless of (1) which
path through the function is executed and (2) whether excep-
tions are thrown. In this respect, theThread Control
class behaves like theGuard utility class presented in Sec-
tion 5.2.1.

The interface for theThread Control class is pre-
sented below:

class Thread_Control
{
public:

// Initialize the thread control object.
// If INSERT != 0, then register the thread
// with the Thread_Manager.
Thread_Control (Thread_Manager *, int add = 0);

// Implicitly kill the thread on exit and
// remove it from its associated Thread_Manager.
˜Thread_Control (void);

// Explicitly kill the thread on exit and
// remove it from its associated Thread_Manager.
void *exit (void *status);

// Set the exit status (and return status).
void *set_status (void *status);

// Get the current exit status.
void *get_status (void);

};

5.3 The ACE Conditions Class Category

5.3.1 The Condition Class

TheCondition class is used to block on a change in the
state of a condition expression involving shared data. It en-
capsulates the Solaris threads and POSIX pthreadscond t
synchronization variable. TheCondition class interface
is presented below:

template <class MUTEX>
class Condition
{
public:

// Initialize the condition variable.
Condition (const MUTEX &m,

int type = USYNC_THREAD,
void *arg = 0);

// Implicitly destroy the condition variable.
˜Condition (void);

// Explicitly destroy the condition variable.
int remove (void);

// Block on condition, or until absolute
// time-of-day has elapsed. If abstime
// == 0 use blocking wait().
int wait (Time_Value *abstime = 0) const;

// Signal one waiting thread.
int signal (void) const;

20



// Signal *all* waiting threads.
int broadcast (void) const;

private:
cond_t cond_;
// Reference to mutex lock.
const MUTEX &mutex_;

};

Note that Win32 does not provide a condition variable ab-
straction. Therefore, the ACE threading library implements
this using other ACE components such as semaphores and
mutexes.

5.3.2 The Null Condition Class

TheNull Condition class is a zero-cost implementation
of theCondition interface described above. It’s methods
are all implemented as no-ops. This is useful for cases where
mutual exclusion is simply not needed (e.g.,a particular pro-
gram or service willalwaysrun in a single thread of con-
trol and/or will not contend with other threads for access to
shared resources). The reason for havingNull* classes is to
allow applications to parameterize the type of synchroniza-
tion they requirewithoutrequiring changes to the application
code. TheNull Condition class interface is presented
below:

template <class MUTEX>
class Null_Condition
{
public:

Null_Condition (const MUTEX &m,
int type = 0,
void *arg = 0) {}

˜Null_Condition (void) {}
int remove (void) { return 0; }
int wait (Time_Value *abstime = 0) const {

errno = ETIME; return -1;
}
int signal (void) const {

errno = ETIME; return -1;
}
int broadcast (void) const {

errno = ETIME; return -1;
}

};

The Null Condition class is identical in spirit to the
Null Mutex class described in Section 5.1.5.

5.4 The ACE Thread Managers Class Cate-
gory

5.4.1 The ThreadManager Class

TheThread Manager class contains a set of mechanisms
to manage groups of threads that collaborate to implement
collective actions. For example, theThread Manager
class provides mechanisms (such assuspend all and
resume all ) that allow any number of participating
threads to be suspended and resumed atomically. The
Thread Manager class also shields applications from
many incompatibilities between different flavors of multi-
threading mechanisms (such as Solaris, POSIX, and Win32
threads).

The interface of theThread Manager class is illus-
trated below:

class Thread_Manager
{
public:

// Initialize the thread manager.
Thread_Manager (int size);

// Implicitly destroy thread manager.
˜Thread_Manager (void);

// Initialize the manager with room
// for SIZE threads.
int open (int size = DEFAULT_SIZE);

// Release all resources.
int close (void);

// Create a new thread.
int spawn (THR_FUNC,

long, thread_t * = 0,
void *stack = 0,
size_t stack_size = 0);

// Create N new threads.
int spawn_n (int n, THR_FUNC,

void *args, long flags);

// Clean up when a thread exits.
void *exit (void *status);

// Blocks until there are no
// more threads running.
void wait (void);

// Resume all stopped threads.
int resume_all (void);

// Suspend all threads.
int suspend_all (void);

// Send signum to all stopped threads.
int kill_all (int signal);

private:
// ...

};

5.4.2 The ThreadSpawn Class

The Thread Spawn class provides a standard utility that
manages the creation of threads to handle requests from
clients concurrently. This class behaves as a ”thread fac-
tory”, accepting connections from clients and spawning
threads ”on-demand” to run the service specified by a user-
supplied service handler (SVCHANDLER).

The interface for theThread Spawn class is presented
below:

template <class SVC_HANDLER,
class PEER_ACCEPTOR,
class PEER_ADDR>

class Thread_Spawn
: public Acceptor <SVC_HANDLER,

PEER_ACCEPTOR,
PEER_ADDR>

{
public:

// = Initialization methods.
Thread_Spawn (Thread_Manager *tm,

Reactor *);
virtual int open (const PEER_ADDR &sia,

Reactor *);
protected:

virtual int handle_input (int fd);
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// Template method that accepts connection
// and spawns a thread.

virtual int handle_close (int fd, Reactor_Mask);
// Called when this factory is closed down.

virtual SVC_HANDLER *make_svc_handler (void);
// Factory method that creates an appropriate
// SVC_HANDLER *.

virtual int thr_flags (void);
// Returns the flags used to spawn a thread.

};

Note how this classes inherits from the ACEAcceptor
class, which is a generic factory for passively connecting
clients and creating service handlers [30].

5.5 The ACE Active Objects Class Category

5.5.1 The Task Class

TheTask class is the central mechanism in ACE for creat-
ing user-definedactive objects[16] andpassive objectsthat
process application messages. An ACETask can perform
the following activities:

� Can be dynamically linked;

� Can serve as an endpoint for I/O operations;

� Can be associated with multiple threads of control (ı.e.,
become a so-called “active object”);

� Can store messages in a queue for subsequent process-
ing;

� Can execute user-defined services.

TheTask abstract class defines an interface that is inher-
ited and implemented by derived classes in order to provide
application-specific functionality. It is an abstract class since
its interface defines the pure virtual methods (open , close ,
put , andsvc ) described below. DefiningTask as an ab-
stract class enhances reuse by decoupling the application-
independent components provided by theStream class cat-
egory from the application-specific subclasses that inherit
from and use these components. Likewise, the use of pure
virtual methods allows the C++ compiler to ensure that a
subclass ofTask honors its obligation to provide the fol-
lowing functionality:

� Initialization and Termination Methods– Subclasses
derived fromTask must implementopen andclose
methods that perform application-specificTask initial-
ization and termination activities. These activities typ-
ically allocate and free resources such as connection
control blocks, I/O handles, and synchronization locks.

Tasks can be defined and used either together with
Modules or separately. When used withModules
they are stored in pairs: oneTask subclass handles
read-side processing for messages sent upstream to its
Module layer and the other handles write-side process-
ing messages send downstream to itsModule layer.

Theopen andclose methods of aModule ’s write-
side and read-sideTask subclasses are invoked auto-
matically by theASX framework when theModule is
inserted or removed from a Stream, respectively.

� Application-Specific Processing Methods– In addition
to open andclose , subclasses ofTask must also de-
fine theput and svc methods. These methods per-
form application-specific processing functionality on
messages. For example, when messages arrive at the
head or the tail of a Stream, they are escorted through
a series of inter-connectedTasks as a result of invok-
ing theput and/orsvc method of eachTask in the
Stream.

A put method is invoked when aTask at one layer
in a Stream passes a message to an adjacentTask in
another layer. Theput method runssynchronously
with respect to its caller,i.e., it borrows the thread of
control from theTask that originally invoked itsput
method. This thread of control typically originate either
“upstream” from an application process, “downstream”
from a pool of threads that handle I/O device interrupts
[31], or internal to the Stream from an event dispatch-
ing mechanism (such as a timer-driven callout queue
used to trigger retransmissions in a connection-oriented
transport protocolModule ).

If an ACE Task executes as apassive object(i.e., it
always borrows the thread of control from the caller),
then theTask::put method is the entry point into the
Task and serves as the context in whichTask exe-
cutes its behavior. In contrast, if an ACETask exe-
cutes as anactive objectthe Task::svc method is
used to perform application-specific processingasyn-
chronouslywith respect to otherTask s. Unlikeput ,
the svc method is not directly invoked from an adja-
centTask . Instead, it is invoked by a separate thread
associated with itsTask . This thread provides an ex-
ecution context and thread of control for theTask ’s
svc method. This method runs an event loop that con-
tinuously waits for messages to arrive on theTask ’s
Message Queue (see next bullet).

Within the implementation of aput or svc method,
a message may be forwarded to an adjacentTask in
the Stream via theput next Task utility method.
Put next calls theput method of the nextTask
residing in an adjacent layer. This invocation ofput
may borrow the thread of control from the caller and
handle the message immediately (i.e., the synchronous
processing approach illustrated in Figure 4 (1)). Con-
versely, theput method may enqueue the message and
defer handling to itssvc method that is executing in a
separate thread of control (i.e., the asynchronous pro-
cessing approach illustrated in Figure 4 (2)). As dis-
cussed in [1], the particular processing approach that
is selected has a significant impact on performance and
ease of programming.
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Figure 4: Alternative Methods for Invokingput andsvc Methods

� Message Queueing Mechanisms– In addition to the
open , close , put , and svc pure virtual method
interfaces, eachTask also contains aMessage
Queue. A Message Queue is a standard component
in ACE that is used pass information betweenTasks .
Moreover, when aTask executes as an active object, its
Message Queue is used to buffer a sequence of data
messages and control messages for subsequent process-
ing in thesvc method. As messages arrive, thesvc
method dequeues the messages and performs theTask
subclass’s application-specific processing tasks.

Two types of messages may appear on aMessage
Queue: simple and composite. A simple message con-
tains a singleMessage Block and a composite mes-
sage contains multipleMessage Block s linked to-
gether. Composite messages generally consist of acon-
trol block followed by one or moredata blocks. A
control block contains bookkeeping information (such
as destination addresses and length fields), whereas
data blocks contain the actual contents of a message.
The overhead of passingMessage Block s between
Task s is minimized by passing pointers to messages
rather than copying data.

Message Queues contain a pair of high and low wa-
ter mark variables that are used to implement layer-
to-layer flow control between adjacentModules in a
Stream. The high water mark indicates the amount of
bytes of messages theMessage Queue is willing to
buffer before it becomes flow controlled. The low wa-
ter mark indicates the level at which a previously flow
controlledTask is no longer considered to be full.

The interface of theTask class is provided below:

template <class SYNCH>
class Task : public Service_Object
{
public:

// Initialization/termination methods.
Task (Thread_Manager *thr_mgr = 0,

Message_Queue<SYNCH> *mp = 0);
virtual int open (void *flags = 0) = 0;
virtual int close (u_long = 0) = 0;

// Transfer msg into the queue to handle

// immediate processing.
virtual int put (Message_Block *,

Time_Value *tv = 0) = 0;

// Run by a daemon thread to handle
// deferred processing.
virtual int svc (void) = 0;

protected:
// Turn the task into an active object..
int activate (long flags);

// Routine that runs the service routine
// as a daemon thread.
static void *svc_run (Task<SYNCH> *);

// Tests whether a message can be enqueue
// without blocking.
int can_put (Message_Block *);

// Insert message into the message list.
int putq (Message_Block *, Time_Value * = 0);

// Extract the first message from the list.
int getq (Message_Block *&, Time_Value * = 0);

// Return a message to the queue.
int ungetq (Message_Block *,

Time_Value * = 0);

// Transfer message to the adjacent Task
// in a Stream.
int put_next (Message_Block *,

Time_Value * = 0);

// Turn the message back around.
int reply (Message_Block *,

Time_Value * = 0);

// Task utility routines to identify names.
const char *name (void) const;
Task<SYNCH> *sibling (void);
Module<SYNCH> *module (void) const;

// Check if queue is a reader.
int is_reader (void);
// Check if queue is a writer.
int is_writer (void);

// Special routines corresponding to
// certain message types.
int flush (u_long flag);

// Manipulate watermarks.
void water_marks (IO_Cntl_Msg::IO_Cntl_Cmds,

size_t);
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5.6 Miscellaneous ACE Concurrency Classes

5.6.1 The Thread Class Utility

TheThread class utility encapsulates the Solaris, POSIX,
and Win32 family of thread creation, termination, and man-
agement routines within C++ wrappers. This class provides
a common interface that is mapped onto Solaris threads,
POSIX Pthreads, Win32 threads.

The interface of theThread class is provided below:

typedef void *(*THR_FUNC)(void *);

class Thread
{
public:

// Spawn N new threads, which execute
// "func" with argument "arg".
static int spawn_n (size_t n, THR_FUNC func,

void *arg, long flags,
void *stack = 0,
size_t stack_size = 0);

// Spawn a new thread, which executes
// "func" with argument "arg".
static int spawn (THR_FUNC,

void *arg, long,
thread_t * = 0,
void *stack = 0,
size_t stack_size = 0,
hthread_t *t_handle = 0);

// Wait for one or more threads to exit.
static int join (hthread_t, hthread_t *,

void **);

// Suspend the execution of a thread.
static int suspend (hthread_t);

// Continue the execution of a
// previously suspended thread.
static int resume (hthread_t);

// Send signal signum to the thread.
static int kill (thread_t, int signum);

// Return the unique ID of the thread.
static thread_t self (void);

// Yield the thread to another.
static void yield (void);

// Exit current thread, returning "status".
static void exit (void *status);

// Set LWP concurrency level of the process.
static int setconcurrency (int new_level);

// Get LWP concurrency level of the process.
static int getconcurrency (void);

static int sigsetmask (int how,
const sigset_t *set,
sigset_t *oset = 0);

// Change and/or examine calling thread’s
// signal mask.

static int keycreate (thread_key_t *keyp,
void (*)(void *value));

// Allocates a <keyp> that is used to
// identify data that is specific to each
// thread in the process. The key is global
// to all threads in the process.

static int setspecific (thread_key_t key,
void *value);

// Bind value to the thread-specific data
// key, <key>, for the calling thread.

static int getspecific (thread_key_t key,

void **valuep);
// Stores the current value bound to <key>
// for the calling thread into the location
// pointed to by <valuep>.

};

5.6.2 The AtomicOp Class

TheAtomic Opclass transparently parameterizes synchro-
nization into basic arithmetic operations.

template <class LOCK, class TYPE>
class Atomic_Op
{
public:

// Initialize count_ to 0.
Atomic_Op (void);

// Initialize count_ to c.
Atomic_Op (TYPE c);

// Atomically increment count_.
TYPE operator++ (void);

// Atomically increment count_ by inc.
TYPE operator+= (const TYPE inc);

// Atomically decrement count_.
TYPE operator-- (void);

// Atomically decrement count_ by dec.
TYPE operator-= (const TYPE dec);

// Atomically compare count_ with rhs.
TYPE operator== (const TYPE rhs);

// Atomically check if count_ >= rhs.
TYPE operator>= (const TYPE rhs);

// Atomically check if count_ > rhs.
TYPE operator> (const TYPE rhs);

// Atomically check if count_ <= rhs.
TYPE operator<= (const TYPE rhs);

// Atomically check if count_ < rhs.
TYPE operator< (const TYPE rhs);

// Atomically assign rhs to count_.
void operator= (const TYPE rhs);

// Atomically return count_.
operator TYPE ();

private:
LOCK lock_;
TYPE count_;

};

5.6.3 The Barrier Class

The Barrier class implements “barrier synchronization,”
which is particularly useful for many types of parallel sci-
entific applications. This class allowscount number of
threads to synchronize their completion (so-called “barrier
synchronization”). The implementation uses a “sub-barrier
generation numbering” scheme to avoid overhead and to en-
sure that all threads exit the barrier correct.

class Barrier
{
public:

// Initialize the barrier to
// synchronize count threads.
Barrier (u_int count,

int type = USYNC_THREAD,
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void *arg = 0);

// Block the caller until all count threads
// have called wait() and then allow all
// the caller threads to continue in parallel.
int wait (void);

};

5.6.4 The TSS Class

The TSS class allows objects that are “physically” thread-
specific (i.e., private to a thread) to be accessed as though
they were “logically” global to a program. The underlying
“thread specific storage” pattern this class is based upon is
described in [29].

The following is the public interface of the ACETSS
class:

template <class TYPE>
class TSS
{
public:

// If caller passes a non-NULL ts_obj *
// this is used to initialize the
// thread-specific value. Thus, calls
// to operator->() will return this value.
TSS (TYPE *ts_obj = 0);

// Get the thread-specific object for the key
// associated with this object. Returns 0
// if the data has never been initialized,
// otherwise returns a pointer to the data.
TYPE *ts_object (void);

// Use a "smart pointer" to obtain the
// thread-specific object associated with
// the key.
TYPE *operator-> ();

};

6 Using the ACE OO Thread Encap-
sulation Library

This section presents several examples that illustrate the use
of the key features in the ACE threading library. Refer back
to the interfaces described in Section 5 to determine the be-
havior of the ACE concurrency components.

6.1 A Map Manager for Message Demulti-
plexing

Often, selecting a mutual exclusion mechanism with the ap-
propriate semantics depends on the context in which a class
is being used. The following example illustrates the interface
and implementation of a “map manager” component in the
general ACE toolkit [32]. This component is typically used
in a network server to map external identifiers (such as port
numbers or connection ids) onto internal identifiers (such as
pointers to queues where messages are stored when outgo-
ing links to a satellite become flow controlled). A portion of
theMap Manager interface and implementation are shown
below:

template <class EXT_ID,
class INT_ID,

class LOCK>
class Map_Manager
{
public:

// Associate EXT_ID with the INT_ID.
int bind (EXT_ID ext_id,

const INT_ID *int_id)
{

Write_Guard<LOCK> monitor (lock_);
// ...

}

// Break any association of EXT_ID.
int unbind (EXT_ID ext_id)
{

Write_Guard<LOCK> monitor (lock_);
// ...

}

// Locate INT_ID associated with EXT_ID and
// pass out parameter via INT_ID.
// If found return 0, else -1.
int find (EXT_ID ext_id, INT_ID &int_id)
{

Read_Guard<LOCK> monitor (lock_);

if (locate_entry (ext_id, int_id)
// ext_id is successfully located.
return 0;

else
return -1;

}

private:
LOCK lock_;
// ...

};

One advantage of this approach is that thelock will be re-
leased regardless of which execution path exits a method.
For example,lock is released properly if either arm of
the if/else statement returns from thefind method.
In addition, this “constructor/destructor as resource acqui-
sition/release” idiom also properly releases thelock if an
exception is raised during processing in the definition of the
locateEntry helper method. This is useful since the C++
exception handling mechanism is designed to call all neces-
sary destructors upon exit from a block in which an exception
is thrown. Note that had we written the definition offind
using explicit calls to acquire and release thelock , i.e.:

int find (EXT_ID ext_id, INT_ID &int_id)
{

lock_.acquire ();

if (locateEntry (ext_id, int_id)
{

// ext_id is successfully located.
lock_.release ();
return 0;

}
else
{

lock_.release ();
return -1;

}
}

the find method logic have been more contorted and less
space efficient. In addition, there is no guarantee that
lock would be released if an exception was thrown in the
locateEntry method.

The type ofLOCKthat theMap Manager template class
is instantiated with depends upon the particular structure of
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parallelism in the program code when it is used. For exam-
ple, in some situations it is useful to declare:

typedef Map_Manager <Addr, TCB, Mutex>
MAP_MANAGER;

and have all calls tofind , bind , andunbind automati-
cally serialized. In other situations, it is useful to turn off
synchronization without touching any existing library code
by using theNull Mutex class:

typedef Map_Manager <Addr, TCB, Null_Mutex>
MAP_MANAGER;

In yet another situation, it may be the case that calls tofind
arefar more frequent thanbind or unbind . In this case, it
may make sense to use theRWMutex readers/writer lock:

typedef Map_Manager <Addr, TCB, RW_Mutex>
MAP_MANAGER;

Through the use of C++ wrappers and templates, we can
create a highly-portable, platform-independent mutual ex-
clusion class interface that does not impose arbitrary syntac-
tic constraints on our use of different synchronization mech-
anisms. By using templates to parameterize the type of lock-
ing, little or no application code must change to accommo-
date new synchronization semantics. As always, however,
the selection of an appropriate synchronization mechanism
should be guided by thorough profiling and empirical mea-
surements.

6.2 A Thread-safe Message Queueing Mecha-
nism

This example illustrates the use of the ACECondition
wrapper 5.1.1 and the ACEMutex wrapper 5.3.1. The
code is extracted from theMessage Queue class, which
is contained in theTask class described in Section 5.5.1.
A Message Queue can parameterized by the type of syn-
chronization policy needed to achieve the desired level of
concurrency control. By default, the level of concurrency
control is “thread-safe,” as defined by theMTSynch class
in the ACESynch.h file:

class MT_Synch
{
public:

typedef Condition<Mutex> CONDITION;
typedef Mutex MUTEX;

};

If MTSynch is used to instantiateMessage Queue, all
public methods will be thread-safe, with the corresponding
overhead that implies. In contrast, if theNull Synch class
is used to instantiateMessage Queue, all public methods
will not be thread-safe, and there will be no additional over-
head.Null Synch is also defined inSynch.h , as follows:

class Null_Synch
{
public:

typedef Null_Condition<Null_Mutex> CONDITION;
typedef Null_Mutex MUTEX;

};

An example use ofMessage Queue appeared in
the run svc function at the beginning of Section 3.5.
Message Queue is modeled after the message queueing
and buffer management facilities provided by System V
STREAMS [33] and BSD UNIX [34].

An ACE Message Queue is composed of one or more
Message Blocks that are linked together byprev and
next pointers. In addition, aMessage Block may also
be linked to a chain of otherMessage Blocks . This struc-
ture enables efficient manipulation of arbitrarily-large mes-
sageswithoutincurring a great deal of memory copying over-
head.

// The contents of a message are represented
// internally by a Message_Block.

class Message_Block
{
public:

Message_Block (size_t size,
Message_Type type = MB_DATA,
Message_Block *cont = 0,
char *data = 0);

// ...
};

A Message Queue is a thread-safe queueing facility for
messages. Note the use of the C++ “traits” idiom to com-
bine both theCondition andMutex types into a single
template parameter.

template <class SYNCH = MT_Synch>
class Message_Queue
{
public:

// Default high and low water marks.
enum
{

// 0 is the low water mark.
DEFAULT_LWM = 0,
// 1 K is the high water mark.
DEFAULT_HWM = 4096,
// Message queue was active
// before activate() or deactivate().
WAS_ACTIVE = 1,
// Message queue was inactive
// before activate() or deactivate().
WAS_INACTIVE = 2

};

// Initialize a Message_Queue.
Message_Queue (size_t hwm = DEFAULT_HWM,

size_t lwm = DEFAULT_LWM);

// Destroy a Message_Queue.
˜Message_Queue (void);

/* Checks if queue is full/empty. */
int is_full (void) const;
int is_empty (void) const;

// Enqueue and dequeue a Message_Block *.
int enqueue_tail (Message_Block *new_item,

Time_Value *tv = 0);
int enqueue_head (Message_Block *new_item,

Time_Value *tv = 0);
int dequeue_head (Message_Block *&first_item,

Time_Value *tv = 0);

// Deactivate the queue and wakeup all threads
// waiting on the queue so they can continue.
int deactivate (void);

// Reactivate the queue so that threads can
// enqueue and dequeue messages again.
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int activate (void);

private:
// Routines that actually do the enqueueing
// and dequeueing (assumes locks are held).
int enqueue_tail_i (Message_Block *);
int enqueue_head_i (Message_Block *);
int enqueue_head_i (Message_Block *&);

// Check the boundary conditions.
int is_empty_i (void) const;
int is_full_i (void) const;

// Implement activate() and deactivate()
// methods (assumes locks are held).
int deactivate_i (void);
int activate_i (void);

// Pointer to head of Message_Block list.
Message_Block *head_;
// Pointer to tail of Message_Block list.
Message_Block *tail_;
// Lowest number before unblocking occurs.
int low_water_mark_;
// Greatest number of bytes before blocking.
int high_water_mark_;
// Current number of bytes in the queue.
int cur_bytes_;
// Current number of messages in the queue.
int cur_count_;
// Indicates that the queue is inactive.
int deactivated_;

// C++ wrapper synchronization primitives
// for controlling concurrent access.
SYNCH::MUTEX lock_;
SYNCH::CONDITION notempty_;
SYNCH::CONDITION notfull_;

};

The implementation of theMessage Queue class is
shown below. The constructor ofMessage Queue create
an empty message list and initializes theCondition ob-
jects. Note that theMutex lock is automatically created
by its default constructor.

template <class SYNCH>
Message_Queue::Message_Queue (size_t hwm,

size_t lwm)
: notfull_ (lock_),

notempty_ (lock_)
{

// ...
}

The following methods check if queue is “empty” (i.e.,
contains no messages) or “full” (i.e., contains more than
high water mark bytes in it). Note how these methods,
like the others below, utilize a pattern whereby public meth-
ods acquire locks and private methods assume that locks are
held.

template <class SYNCH> int
Message_Queue<SYNCH>::is_empty_i (void) const
{

return cur_bytes_ <= 0 && cur_count_ <= 0;
}

template <class SYNCH> int
Message_Queue<SYNCH>::is_full_i (void) const
{

return cur_bytes_ > high_water_mark_;
}

template <class SYNCH> int
Message_Queue<SYNCH>::is_empty (void) const

{
Guard<SYNCH::MUTEX> monitor (lock_);
return is_empty_i ();

}

template <class SYNCH> int
Message_Queue<SYNCH>::is_full (void) const
{

Guard<SYNCH::MUTEX> monitor (lock_);
return full ();

}

The following methods are used to activate and deacti-
vate aMessage Queue. The deactivate method de-
activates the queue and awakens all threads waiting on the
queue so they can continue. No messages are removed from
the queue. Any other operations called until the queue is
activated again will immediately return -1 witherrno ==
ESHUTDOWN. It returnsWASINACTIVE if queue was in-
active before the call andWASACTIVE if queue was active
before the call. This information allows the caller to detect
changes in state.

template <class SYNCH> int
Message_Queue<SYNCH>::deactivate (void)
{

Guard<SYNCH::MUTEX> m (lock_);
return deactivate_i ();

}

template <class SYNCH> int
Message_Queue<SYNCH>::deactivate_i (void)
{

int current_status = deactivated_
? WAS_INACTIVE : WAS_ACTIVE;

// Wake up all the waiters.
notempty_.broadcast ();
notfull_.broadcast ();

deactivated_ = 1;
return current_status;

}

The activate method reactivates the queue so that
threads can enqueue and dequeue messages again. It returns
WASINACTIVE if queue was inactive before the call and
WASACTIVE if queue was active before the call.

template <class SYNCH> int
Message_Queue<SYNCH>::activate (void)
{

Guard<SYNCH::MUTEX> m (lock_);
return activate_i ();

}

template <class SYNCH> int
Message_Queue<SYNCH>::activate_i (void)
{

int current_status =
deactivated_ ? WAS_INACTIVE : WAS_ACTIVE;

deactivated_ = 0;
return current_status;

}

The enqueue head method inserts a new item at the
front of the queue. As with the other enqueue and dequeue
methods, if thetv parameter isNULL, the caller will block
until action is possible. Otherwise, the caller else will block
waiting for amount of time in*tv . A blocked call re-
turns, however, when the queue is closed, when a signal oc-
curs, or if the time specified intv elapses anderrno ==
EWOULDBLOCK.
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template <class SYNCH> int
Message_Queue<SYNCH>::enqueue_head

(Message_Block *new_item, Time_Value *tv)
{

Guard<SYNCH::MUTEX> monitor (lock_);

if (deactivated_) {
errno = ESHUTDOWN;
return -1;

}

// Wait while the queue is full.

while (is_full_i ()) {
// Release the lock_ and wait for
// timeout, signal, or space becoming
// available in the list.
if (notfull_.wait (tv) == -1) {

if (errno == ETIME)
errno = EWOULDBLOCK;

return -1;
}
if (deactivated_) {

errno = ESHUTDOWN;
return -1;

}
}

// Actually enqueue the message at the
// head of the list.
enqueue_head_i (new_item);

// Tell any blocked threads that the
// queue has a new item!
notempty_.signal ();
return 0;

}

Note how this method only signals thenotempty condi-
tion object when the queue was previously empty. This op-
timization improves performance by reducing the amount of
context switching caused by unnecessary signaling. The two
other enqueue and dequeue methods perform similar opti-
mizations.

Theenqueue tail method inserts new item at the end
of the queue. It returns the number of items on the queue.

template <class SYNCH> int
Message_Queue<SYNCH>::enqueue_tail

(Message_Block *new_item, Time_Value *tv)
{

Guard<SYNCH::MUTEX> monitor (lock_);

if (deactivated_) {
errno = ESHUTDOWN;
return -1;

}
// Wait while the queue is full.

while (is_full_i ()) {
// Release the lock_ and wait for
// timeout, signal, or space becoming
// available in the list.
if (notfull_.wait (tv) == -1) {

if (errno == ETIME)
errno = EWOULDBLOCK;

return -1;
}
if (deactivated_) {

errno = ESHUTDOWN;
return -1;

}
}

// Actually enqueue the message at
// the end of the list.
enqueue_tail_i (new_item);

// Tell any blocked threads that

// the queue has a new item!
notempty_.signal ();
return 0;

}

The dequeue head method removes the front item on
the queue and passes it back to the caller. This method re-
turns a count of the number of items still on the queue.

template <class SYNCH> int
Message_Queue<SYNCH>::dequeue_head

(Message_Block *&first_item, Time_Value *tv)
{

Guard<SYNCH::MUTEX> monitor (lock);

// Wait while the queue is empty.

while (is_empty_i ()) {
// Release the lock_ and wait for
// timeout, signal, or a new message
// being placed in the list.

if (notempty_.wait (tv) == -1) {
if (errno == ETIME)

errno = EWOULDBLOCK;
return -1;

}
if (deactivated_) {

errno = ESHUTDOWN;
return -1;

}
}

// Actually dequeue the first message.
dequeue_head_i (first_item);

// Tell any blocked threads that
// the queue is no longer full.
notfull_.signal ();
return 0;

}

The following code illustrates an ACE implementa-
tion of the classic “bounded buffer” program using a
Message Queue. The program uses two threads to con-
currently copy stdin to stdout. Figure 5 illustrates the
relations between the ACE components that run concur-
rently. The producer thread reads data from the stdin stream,
creates a message, and then queues the message in the
Message Queue. The consumer thread dequeues the mes-
sage and writes it to stdout. To save space, most of the error
checking has been omitted.

#include "Message_Queue.h"
#include "Thread_Manager.h"

typedef Message_Queue<MT_Synch> MT_Message_Queue;

// Global thread manager.
static Thread_Manager thr_mgr;

The producer reads data fromstdin into a message
and queue the message for the consumer. ANULLpointer is
enqueued when there is no more data to read. This pointer is
used to inform the consumer when to exit.

static void *
producer (MT_Message_Queue *msg_queue)
{

// Insert thread into thr_mgr.
Thread_Control tc (&thr_mgr);
char buf[BUFSIZ];

for (int n; ; ) {
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// Allocate a new message.
Message_Block *mb

= new Message_Block (BUFSIZ);

n = read (0, mb->rd_ptr (), mb->size ());
if (n <= 0) {

// Shutdown message to the other
// thread and exit.
mb->length (0);
msg_queue->enqueue_tail (mb);

}

// Send the message to the other thread.
else {

mb->wr_ptr (n);
msg_queue->enqueue_tail (mb);

}
}

// The destructor of Thread_Control removes
// the exiting thread from the
// Thread_Manager automatically.
return 0;

}

The consumer dequeues a message from
the Message Queue, writes the message to thestderr
stream, and deletes the message. Theproducer sends a
NULLpointer to informs theconsumer to stop reading and
exit.

static void *consumer
(MT_Message_Queue *msg_queue)

{
Message_Block *mb = 0;
// Insert thread into thr_mgr.
Thread_Control tc (&thr_mgr);
int result = 0;

// Keep looping, reading a message out
// of the queue, until we timeout or get a
// message with a length == 0, which signals
// us to quit.

for (;;)
{

result = msg_queue->dequeue_head (mb);

if (result == -1)
return -1;

int length = mb->length ();

if (length > 0)
::write (1, mb->rd_ptr (), length);

delete mb;

if (length == 0)
break;

}

// The destructor of Thread_Control removes
// the exiting thread from the
// Thread_Manager automatically.
return 0;

}

The main function spawns off two threads that run the
producer and consumer functions to copystdin to
stdout in parallel.

int main (int argc, char *argv[])
{

// Use the thread-safe instantiation
// of Message_Queue.
Message_Queue msg_queue;

thr_mgr.spawn (THR_FUNC (producer),
(void *) &msg_queue,
THR_NEW_LWP | THR_DETACHED);

thr_mgr.spawn (THR_FUNC (consumer),
(void *) &msg_queue,
THR_NEW_LWP | THR_DETACHED);

// Wait for producer/consumer threads to exit.
thr_mgr.wait ();
return 0;

}

6.3 A Concurrent Network Database Server

The following example illustrates a concurrent network
database server developed using the ACE thread manage-
ment components. Client requests trigger the server to
lookup “employees” by their unique numerical ID. If there
is a match, the name is returned to the client.

Each client request to the server is run in parallel. This ex-
ample illustrates the use of theThread Manager and the
Thread Control classes. In addition, it also illustrates
the use of the ACE C++ wrapper classes for sockets [35].

The code shown below is intentionally simplified for this
example and does not represent how a highly robust and ef-
ficient implementation would be developed. For example, a
production implementation would place an upper-bound on
the number of spawned bound threads to avoid consuming
large amounts of kernel resources. In addition, a produc-
tion implementation would clearly use a more sophisticated
database scheme.

#include "SOCK_Acceptor.h"
#include "Thread_Manager.h"

// Per-process thread manager.
Thread_Manager thr_mgr;

// Function called when a new thread is created.
// This function is passed a connected client
// SOCK_Stream, which it uses to receive a
// database lookup request from a client.
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static void *
lookup_name (ACE_HANDLE handle)
{

// Local thread control object.
Thread_Control tc (&thr_mgr);

enum {
// Maximum line we’ll read from a client.
MAXLINE = 255,
// Maximum size of employee name.
EMPNAMELEN = 512

};

// Simple read-only database.
static struct {

int emp_id;
const char emp_name[EMPNAMELEN];

} emp_db[] =
{

123, "John Wayne Bobbit",
124, "Cindy Crawford",
125, "O. J. Simpson",
126, "Bill Clinton",
127, "Rush Limbaugh",
128, "Michael Jackson",
129, "George Burns",
0, ""

};

SOCK_Stream new_stream;
char recvline[MAXLINE];
char sendline[MAXLINE];

new_stream.set_handle (handle);

ssize_t n = new_stream.recv (recvline, MAXLINE);
int emp_id = atoi (recvline);
int found = 0;

for (int index = 0;
found == 0 && emp_db[index].emp_id;
index++)

if (emp_id == emp_db[index].emp_id) {
found = 1;
n = sprintf (sendline, "%s",

emp_db[index].emp_name);
}

if (found == 0)
n = sprintf (sendline, "%s", "ERROR");

new_stream.send_n (sendline, n + 1);
new_stream.close ();

// The destructor of Thread_Control removes the
// exiting thread from the Thread_Manager
// automatically.
return 0;

}

// Default port number.
static const int default_port = 5000;

int
main (int argc, char *argv[])
{

// Port number of server.
u_short port = argc > 1

? atoi (argv[1]) : default_port;

// Internet address of server.
INET_Addr addr (port);

// Passive-mode listener object.
SOCK_Acceptor server (addr);

SOCK_Stream new_stream;

// Wait for a connection from a client
// (this illustrates a concurrent server).

for (;;) {
// Accept a connection from a client.
server.accept (new_stream);

// Spawn off a thread-per client request.
thr_mgr.spawn (THR_FUNC (lookup_name),

(void *) new_stream.get_handle (),
THR_BOUND | THR_DETACHED);

}
// NOTREACHED
return 0;

}

7 Concluding Remarks

This paper motivates and describes the object-oriented
thread encapsulation class library provided in ACE. The
ACE thread class library provides several benefits to devel-
opers:

� Improve the consistency of programming style by en-
abling developers to use C++ and OO throughout their
concurrent applications.

� Reduce the amount of obtrusive changes to make ap-
plications thread-safe. For example, utility classes in
the library (such asAtomic Op, Mutex , RWMutex ,
Semaphore , andCondition ) improve the portabil-
ity and reusability of the underlying OS-specific con-
currency mechanisms.

� Eliminate or minimize the potential for subtle synchro-
nization errors. Several of the ACE thread library
classes (such asGuard andThread Control ) en-
sure that resources (such as locks and library data struc-
tures) are allocated and released properly, even if ex-
ceptions occur.

� Enhance abstraction and modularitywithout compro-
mising performance. Using C++ language features
(such as inline functions and templates) ensures that
the additional functionality provided by the ACE OO
thread library does not reduce efficiency significantly.

The ACE OO thread encapsulation library has been used
on a number of commercial projects. These products in-
clude the Ericsson EOS family of telecommunication switch
monitoring applications, Bellcore ATM switch management
software, the network management subsystem and core in-
frastructure subsystem of the Motorola Iridium global per-
sonal communications system, and enterprise-wide elec-
tronic medical imaging systems at Kodak and Siemens.
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