
A Taxonomy of Artificial Intelligence Approaches for Adaptive
Distributed Real-time Embedded Systems

Jeremy Davis, Joe Hoffert, Erik Vanlandingham
Department of Computer Science

Indiana Wesleyan University
Marion, IN 46952

Email: jeremydavis519@gmail.com, joe.hoffert@indwes.edu, vanlandingham1138@gmail.com

Abstract—Distributed real-time embedded (DRE) software systems
such as are used to manage critical large-scale infrastructure are
important systems to target for increased functionality and resiliency.
DRE systems that can adapt to changes in the environment and/or
changes in available resources are more robust to unexpected changes
and extend both the systems’ utility and lifespan. Artificial intelligence
techniques are used for adaptation of software systems in general.
However, they must meet certain requirements to be appropriate for
use with DRE systems.

Any artificial intelligence (AI) technique used in an adaptive DRE
system should produce consistent results across a distributed system,
operate in bounded time, make decisions autonomously, and grace-
fully handle and learn from previously unencountered environments.
This paper surveys a variety of AI techniques, providing a brief
overview of each method, evaluating how each technique fits the
requirements of an adaptive DRE system, and recognizing the gaps in
each technique’s ability to meet all of these requirements. Our results
show that there is not one single AI technique in our survey that is
a perfect fit for adaptive DRE systems, although some techniques
address more of these requirements than others.

I. INTRODUCTION

Distributed real-time embedded (DRE) software systems are
used to manage critical large-scale infrastructure across a wide
range of platforms and domains. Such systems include air traffic
management, regional and national power grids, shipboard com-
puting environments for military platforms, and disaster recovery
operations [11]. The importance of these systems motivates the
need for flexibility so that the systems can respond appropriately
in situations not previously planned. However, traditionally these
types of systems have been developed for rigidly controlled
environments and resource allocations determined a priori.

DRE systems that can adapt to changes in the environment
and/or changes in available resources are more robust to unex-
pected changes and extend both the usefulness of the systems
and their lifespans. One approach to provide adaptability for DRE
systems is to incorporate artificial intelligence (AI) techniques
that can respond to changes in the environment and in resource
allocation. The benefits of this adaptability are two-fold: (1)
managing expected environment and resource changes can be
simplified and (2) appropriate responses can be generated for
unexpected changes.

Many AI techniques have been developed over the past several
decades. However, not all of these techniques are equally appro-
priate for use with adaptive DRE systems. Some AI techniques
do not address critical properties that DRE systems must have in
order to provide the functionality needed.

This paper provides insight into adaptive DRE systems in the
following ways. (1) It provides an enumeration and description
of critical properties of adaptive DRE systems. (2) It surveys and
briefly describes common AI techniques. (3) It taxonomizes the
AI techniques based on the critical properties of adaptive DRE

systems. (4) It provides gap analysis of the AI techniques to
explore where additional research is needed when incorporating
AI techniques into adaptive DRE sytems.

II. MOTIVATING EXAMPLE - POWER GRID STABILITY IN
UNEXPECTED CIRCUMSTANCES

Software control of regional and national power grids — re-
ferred to as smart grids [18][22] — is increasing in popularity
due to the complexity of grid management and the flexibility
and responsiveness that software systems provide. In particular,
adaptive DRE systems support smart grids well because of (1)
the distributed nature of disseminating power, (2) the timeliness
requirements of addressing changes in the system, and (3) the em-
bedded nature of a widely diverse system which precludes regular
direct human control and intervention. This section describes the
motivating example of an electrical smart grid that is controlled by
adaptive DRE software. This example is useful when evaluating
various AI techniques for use with an adaptive DRE system.

In 2003, 50 million people lost power in the northeast U.S.
and southeast Canada [15]. The problem can be traced back to
a single power line that went down in northern Ohio. When a
power line goes down the demand for power is re-routed through
other lines. The transformers and the power lines themselves can
be overloaded so that they shut down. Power lines can soften due
to the heat of the high current since additional power is being
re-routed through them. Once one power line or transformer is
shut down the needed power is re-routed yet again and there can
be a cascading shutdown effect. Without timely intervention and
flexible response to the initial overload conditions, widespread loss
of power can occur causing inconvenience, damage, and even loss
of life.

Power grid service is critical to the healthy functioning of
regional and national infrastructure. Loss of power can mean loss
of life both directly (e.g., medical systems used to maintain patient
health) and indirectly (e.g., traffic light outages resulting in deaths
from crashes). Moreover, loss of power can be very costly for
businesses and services that rely upon that power [3].

While disruptions can occur in the environment (e.g., substation
outages due to inclement weather) and in the system itself (e.g.,
upgrades and maintenance) adapting to changes and maintaining
acceptable service is crucial for modern day power grids. Power
grid systems leverage the properties of adaptive DRE systems
to manage changes in the environment and/or the system. These
adaptive DRE properties are enumerated as follows:

Adaptive changes should be consistent across the distributed
power grid. Otherwise the power grid will be in an inconsistent
and potentially unstable state. An inconsistent view of the system
can cause unneeded and potentially dangerous local changes. An

unnecessary shutdown in one part of the grid could cascade
throughout the entire grid with catastrophic consequences.

Adaptive changes should be done in a bounded amount of time.
Otherwise the adaptation that is carried out will be too late to
be effective. An appropriate change that is implemented too late
becomes an inappropriate change when timeliness is important.
Untimely changes could worsen the status of the power grid
by creating instability and initiating changes that are no longer
appropriate because the overall state of the grid has changed.

Adaptive changes should be made without human input. Oth-
erwise the changes might not occur in a timely manner. Some
adaptive changes need to occur faster than humans can react (e.g.,
shutting down a substation before it is overloaded). In addition,
human interaction can introduce human error and worsen the
state of the power grid. Moreover, the size, complexity, and wide
geographical deployment of the grid makes human intervention
infeasible.

Adaptive changes should be robust to unforeseen perturba-
tions. Otherwise, undesirable performance or behavior might result
from these perturbations. Circumstances that weren’t previously
predicted can occur with a system as large and complex as a
power grid and any adaptive change should gracefully handle these
circumstances even if these circumstances have not been accounted
for a priori.

Adaptation should incorporate unforeseen perturbations into an
overall strategy. The power grid’s resiliency will be lessened if it
can not learn from previous changes. So that the power grid will be
more resilient, it should incorporate any unforeseen circumstances
into its adaptation strategy. Once the initially unforeseen circum-
stances are handled the power grid should adapt to anticipate these
circumstances should they arise again. Therefore, the next time
these circumstances are encountered the grid can better respond.

III. TAXONOMY FOR ADAPTIVE DRE SYSTEMS

This section presents the taxonomy for adaptive DRE systems.
For any approach used in providing adaptation for a DRE system
the following areas should be considered.

1) Distributed. The adaptive approach used should support a
distributed environment. One tactic for supporting the dis-
tributed property is to provide deterministic behavior. This
behavior can then be consistently replicated on all the com-
putational nodes or machines utilized in this system. With
this approach the behavior for any one computational node is
known a priori and will be the same across all nodes.

2) Real-time. The adaptive approach used should support real-
time timeliness requirements. At a minimum any approach
used for adaptation should provide bounded-time complexity
(i.e., the worst-case time is known a priori). This timeliness
property allows for the analysis and design of the system such
that allocation and deployment of resources will meet the
needed timeliness requirements. Ideally, the time complexity
will be constant time to ease analysis and development.

3) Embedded. The adaptive approach used should support an
embedded environment. An embedded computer system is
developed in such a way that the user is not consciously aware
that they are interacting with a computer system. It presents
an interface that is familiar and common for the domain of
the user. For example, an embedded computer system can
be used in a vending machine that dispenses drinks. The
user interfaces with the machine by inserting money and
making a selection by pushing buttons. The computer system

decides if the appropriate money has been deposited as well
as determining if the selection is valid (including checking
that a normally valid selection is still available).

Embedded computer systems are typically constrained in
the resources available (e.g., memory, computational power)
since the system must conform to particular space and foot-
print requirements which limit space for the computational
resources. Embedded computer systems also typically cannot
rely on expert human intervention. The user interacting with
the system will generally not be a computer system expert.
Therefore, the computer system needs to be autonomous in
its execution and decision-making.

4) Robust to new inputs. Adaptive DRE systems need to
be robust in handling inputs that have not been previously
encountered. A critical property for adaptive DRE systems
is gracefully handling unexpected situations. The adaptive
approach used should be able to provide reasonable output
in these cases even if the output is less than ideal.

5) Autodidactic. The adaptive approach used should support
being updated with new information as it becomes available.
As the adaptive DRE system runs it will encounter new infor-
mation relevant to its adaptation. For example, if a system is
designed to adapt to a new environment configuration, there
will be environment configurations the adaptive approach has
not encountered previously.

The adaptive approach should handle any new information
appropriately (as referenced in the previous property) but
additionally should leverage this new information to prepare
for additional new configurations. For example, supervised
machine learning approaches should use this new information
as additional training data. Moreover, when the learning ap-
proach is leveraging the new information as part of its training
data the other relevant properties (i.e., distributed, real-time,
embedded, and robust) must continue to be supported.

IV. AI APPROACHES

This section provides a brief overview of various AI approaches
considered, highlighting distinguishing aspects of each approach.
This overview is leveraged in Section V where the paper tax-
onomizes the approaches based on the categories described in
Section III.
• Reinforcement Learning. Reinforcement learning [12][19]

is an approach where general, broad-based negative and positive
reinforcement is used to guide learning. For example, a program
or agent developed to learn strategies for winning a game would
receive feedback when the game was won (i.e., positive rein-
forcement) or lost (i.e., negative reinforcement). From this general
reinforcement, the program would develop strategies to determine
what moves to make and not make. These strategies are generally
developed based on states and actions from and to those states.
Several designs are used for developing strategies including:

1) a utility-based agent: which learns a utility function on the
different states and uses this function to select an action that
maximizes the expected outcome;

2) a Q-learning agent: which learns a utility function on the
different actions (a.k.a. Q-function) and selects the action
with the highest utility; and

3) a reflex agent: which learns a policy mapping directly from
states to actions.

Each of these designs provides advantages and disadvantages.
For example, a utility-based agent must be aware of the envi-

ronment and the related states because it needs to know which
states the actions will lead to. On the other hand, a Q-learning
agent can compare expected utilities for available choices without
knowing the outcomes. However, Q-learning agents cannot look
ahead, which can restrict the ability to learn.
• Expert Systems. Expert systems [19] are used to leverage

knowledge from domain experts. An expert system can be thought
of as a surrogate for human experts. This approach is motivated
by the lack of expert availability and coordination concerns (e.g.,
logistics of gathering all relevant experts in one place at one
time). Experts are solicited for general rules that they use to
make decisions within a particular domain (e.g., medical diagnosis,
network configuration). These rules are entered and supported by
the expert system along with inferences that can be made between
the rules and the domain information available.

An early example of using expert systems is found in the
DENDRAL program [2]. This program was developed to infer
molecular structure from the results of a mass spectrometer. DEN-
DRAL leveraged the knowledge of analytical chemists to shrink
the intractable search space to a manageable size. The success of
DENDRAL initiated the practice of mapping a general form to an
efficient special form [6] encapsulated in expert systems.
• Decision Trees. A decision tree utilizes the tree data structure

containing vertices and edges (a.k.a. branches). Non-leaf vertices
correspond to decisions made regarding attributes in the solution
space. Leaf vertices result in a classification made based on the
attributes. A decision tree is typically a binary tree where the two
branches leaving a node correspond to the presence or absence
respectively of the attribute for that vertex.

Each node references the attribute that yields the greatest
divide between the data samples being classified [19]. This design
produces the shortest and smallest tree possible while maintaining
accuracy by looking for features that best split the data as
completely as possible. Non-binary attributes (i.e., attributes with
more than two possible values) can be referenced in more than one
node based on the value of the attribute. For example, one node
could split the data samples based on the value of an attribute being
less than 10. Another node could split the data samples based on
the same attribute being greater than 100. A leaf node determines
the classification for the input data.
• Random Decision Forests. Random Decision Forests are

a composition of Decision Trees where attributes are randomly
selected to generate a variety of Decision Trees. The randomness
of attribute selection results in different classifications and the mul-
titude of trees provides a more generalized coverage of attributes
as opposed to any single Decision Tree. After the forest is created,
each tree will give a classification for the input data. The forest will
select the most common classification returned by the composition
of trees [14]. For the remainder of this paper we have Random
Decision Forests subsume the AI technique of Decision Trees since
they are more generalized w.r.t. adaptive DRE systems.

There are several strategies to introduce randomness in a Ran-
dom Forest. One strategy is to select random best-split charac-
teristics attributes from the input data [1]. The second method
strategy is to randomly select which best-split features the tree
will split on [5]. A third method randomly selects subsets of the
input data to achieve 100% accuracy in classification on training
data and increased accuracy in classification of unknown data [9].
Lin and Yongho [14] also mention a fourth method called Extreme
Randomness which combines the randomness in attribute selection
and in splitting features.

At
tr

ib
ut

e
1

Attribute 2

Key:
 example in classification grouping A
 example in classification grouping B
 linear classifier C1
 linear classifier C2

new example

Fig. 1. Support Vector Machine Example

• Support Vector Machines. Support Vector machines (SVMs)
are designed to find the greatest equal divide between classification
axes for groups of input data. The SVM uses training data to build
a model of data classification and obtain the greatest divide [10].
The training values are flagged with a classification schema so that
when new data points are entered the SVM will use the separation
to determine which schema-classification is appropriate for the
new point. Finding the greatest separation will result in increased
accuracy in classification for unknown input data.

Fig. 1 shows group 1 (denoted by filled circles), group 2
(denoted by open circles), and an unknown input in gray. The
circles in black are training examples, and the solid line is the
greatest separation between the groups that the SVM will use
to classify to which group the new entry belongs. An SVM
would select the solid line for classification, which maximizes the
likelihood of appropriate classification for any new data. When
new data becomes available (as denoted by the gray circle) this
SVM classifies the gray circle into group 2. The dashed line
represents a possible classification that accurately separates the
existing data but does not perform as well with new data.
• Artificial Neural Networks. Artificial Neural Networks

(ANNs) are based on a biological model of the human brain. An
ANN has the useful ability to find patterns in empirical data to
generalize its behavior to similar, but not previously encountered,
data [16]. Each node in the network, called a neuron, outputs a
nonlinear transformation of a weighted sum of its inputs — that is,
f (
∑

wixi) for some function f (known as the activation function),
inputs xi, and associated weights wi.

These neurons are typically arranged in discrete layers, namely
the input layer, zero or more hidden layers, and the output layer.
Nodes in the input layer receive data from the environment, and
nodes in the output layer produce the network’s learned response to
the given input. The hidden layers lie between the input and output
layers and are “hidden” in that their states cannot be known based
on the input and output alone. In general, each layer produces
input for the neurons in the next layer, although some networks’
structures (called recurrent) [16] send some output from one layer
to an earlier layer or to nodes in the same layer.
• Bayesian Networks. A Bayesian Network (BN) is a structured

representation of the attributes of a system and their interconnected
probabilities which represent the system as a coherent whole [4].
The network establishes this structure by linking its nodes together
in a directed acyclic graph of causal relationships, where for nodes
A and B, A → B means, roughly, that the value of node A is one
cause of the value of node B. This structure can then be used
to infer the most likely state of any given node given the state
of any or all of the other nodes in the network. For instance,
if A represents contact with a diseased person and B represents
contraction of the disease, then A causes B, and there is some

Fig. 2. Bayesian Network Example

probability, written as Pr(B | A), that, given that A occurs, B also
occurs. This probability is stored in the Bayesian Network in the
data structure for node B, and the probability of A occurring in
the first place, Pr(A), is stored in node A.

Figure 2 provides an example BN where each variable can be
either true or false. In general, it is possible for a node to have
any number of possible states. Node C’s probability table contains
four rows with the understanding that the four probabilities that C
is false are easily calculable from the probabilities that C is true.
Likewise, node D’s probability table is also listed based on the
value of node C.

Because it is generally easier for a BN to learn the best
values for its probability tables than to learn an appropriate
network topology, it is common to assume some canonical network
structure when learning BNs from data, such as the particularly
common naı̈ve Bayes [4]. In a naı̈ve BN, there is one node C,
typically referred to as the class variable, and one or more nodes
Ai, referred to as attributes, such that C → Ai. This structure, and
the slightly more complex tree-augmented naı̈ve Bayes, perform
surprisingly well for classification problems in general [7][17].

V. CLASSIFICATION OF AI APPROACHES

This section classifies or “taxonomizes” AI approaches based on
the needs of adaptive DRE systems as outlined in section III and as
summarized in Table V. In particular, each AI approach surveyed
is classified on the 5 properties needed for adaptive DRE systems,
namely (1) supporting a distributed environment, (2) supporting
real-time requirements, (3) supporting an embedded environment,
(4) robustly handling new data, and (5) incorporating new data into
the approach as it becomes available while the system is running.
• Artificial Neural Networks. An ANN is generally a good

fit for an adaptive DRE system, but it suffers from difficulty with
learning over time.

Distributed. After training, an ANN’s output is deterministic
as it depends only on the input, the network’s static structure,
the weights that have been learned, and the neurons’ activation
functions. Thus, identical ANNs distributed across a DRE system
will all reach the same conclusion given the same input.

Real-time. An ANN is ideal for a real-time system because the
time it takes to process any set of input data is bounded by the
number of connections between the neurons, and that number is
known at compile-time. As a result, the computation time of a
given ANN is constant.

Embedded. Because an ANN maps each set of inputs directly
to a set of actionable outputs, even for inputs that it has not
yet encountered, it is ideal for making decisions without human
intervention.

Robust to new inputs. Regardless of the training set, an ANN
can produce output for every input set. Moreover, it interpolates
between the training outputs when used on inputs outside of the

training set, which can improve accuracy if the output values can
be placed in a meaningful order (e.g. low, medium, and high).
In general, an ANN can be used reliably on both known and
previously unencountered inputs for a classification given a set of
attributes, such as the attributes that determine the communication
protocol that should be used to maintain a given quality of
service [10].

Autodidactic. Unfortunately, an ANN does not easily learn from
experience. The correct output must be known before the ANN
can learn, which implies either a more accurate AI technique
employed alongside the ANN, human intervention, or a problem
whose solution becomes obvious in retrospect. Then the ANN
must be trained on the previous data set in addition to the new
information that it is to learn. This training may conceivably
be done on a separate processor in order to preserve the real-
time requirement for using the network, but the time required
for training is unbounded. The training is, however, deterministic,
which is amenable for adaptivity in a distributed system.
• Bayesian Networks. The general definition of a BN offers

few guarantees about its timeliness or how it can learn over time.
If a network changes its structure over time (e.g., for the purpose
of learning), then the time required for evaluating the network is
potentially unbounded. The rest of this section assumes a static
structure to guarantee the possibility of real-time operation with
the trade-off of potentially losing accuracy.

Distributed. A BN, although it deals with probabilities, is
deterministic because it deterministically calculates results. Any
Bayesian Network provides the same conclusion given the same
probabilities and network structure.

Real-time. Every prediction by a BN can be bounded by the
product of the number of nodes in the network, the number of
possible states for each node, and the number of connections be-
tween them. An explicit bounded-time mathematical formula can
calculate any probability in the network, using every connection
and every possible state of a node no more than once.

Embedded. Since a BN is used to determine the most likely
value of a node given all available information, it can make
decisions with high accuracy without human intervention, as
embedded software systems require.

Robust to new inputs. A BN deals directly with probabilities,
so it can be guaranteed to produce for any question the most
likely answer given everything that it has learned. However, the
conclusion of a Bayesian Network with discrete values for its
nodes — which are typically used for the purposes of timely
computation and ease of understanding — can be skewed by its
lack of support for interpolation. For instance, if a BN is designed
to classify a risk as either low or high, then it will never indicate
any level of risk between those two extremes.

Autodidactic. Some BNs can learn at run-time easily and in
constant time by storing frequency counts rather than probabilities.
In that case, each node contains a frequency for each of its possible
states, and each connection holds a frequency for every combina-
tion of the states of its endpoints. Increasing each frequency by
the associated event’s new probability of having just happened (1
or 0 if the node’s current state is known) will move the initial
probability of every state of a node toward that new probability.
The proof is fairly simple but beyond the scope of this paper.
Learning thus runs in bounded time, is deterministic, and needs
no human intervention.
• Expert Systems. While expert systems support some of the

properties for adaptive DRE systems, multiple factors make expert

AI Method Distributed Real-Time Embedded Robust Autodidactic
Artificial Neural Network 3 3 3 3 7

Bayesian Network (dynamic structure) 3 7 3 7 7
Bayesian Network (static structure) 3 3 3 7 3

Expert System 3 7 7 7 3
Reinforcement Learning 3 7 3 7 7

Random Forest 3 3 3 3 7
Support Vector Machine 3 3 3 3 7

TABLE I
SUMMARY OF AI TECHNIQUES

systems less than ideal approaches in these contexts.
Distributed. Expert systems are appropriate for use in distributed

environments since the results of using an expert system are deter-
ministic. Expert systems with identical facts, rules, and inference
engines can be deployed on computing nodes in the distributed
system so that all nodes will generate the same advice.

Real-time. Expert systems typically utilize facts, rules, and an
inference engine to provide solutions to problems based on the
knowledge of human experts. The inference engine uses the facts
and rules to infer knowledge which can also create new facts and
initiate the use of additional rules. The inference engines creates
this lattice or web of information that interconnects rules and facts
and changes dynamically.

However, the selection of relevant rules and facts within the
inference engine depends upon the problem being addressed. Some
rules and facts will not apply for particular problems. Accordingly,
searching the rules and facts in general is not optimized for a
specific problem and the time complexity — while not strictly
unbounded — is intractable in practice [21].

Embedded. Expert systems are typically used for decision sup-
port and provide guidance for human operators rather than being
autonomous and implementing the advice given. This property
makes expert systems not well suited for embedded environments.

Robust to new inputs. Expert systems do not support interpo-
lation or extrapolation of results. Inferences are made from the
facts and the rules. However, unless adaptation decisions involve
specific facts and rules an expert system will not be able to provide
suitable guidance. Therefore, an expert system is not robust to
handling inputs not previously encountered.

Autodidactic. Since expert systems are based on facts and
rules they are amenable to adding new facts and rules as they
become available. Adding a rule or fact for the inference engine
is straightforward (e.g., stating a fact for a Prolog knowledge base)
and can be done in constant time. The inference engine will utilize
any new fact or rule as soon as it has been added. However, the
addition of new rules, if the number of new rules is unbounded,
leads to truly unbounded time complexity in the generation of
inferences.
• Reinforcement Learning. While reinforcement learning has

good properties in general of exploring a solution space, its
utilization of pseudo-randomness and probabilities makes it ill-
suited for adaptive DRE systems.

Distributed. Reinforcement learning can be distributed across
nodes in a distributed system. However, a key aspect of reinforce-
ment learning is the use of stochastic or probabilistic transitions.
To reach a consensus where pseudo-randomness is not consistent
across nodes would require a consensus protocol such as that
outlined in the Byzantine Generals Problem [13]. To address this
problem each node could use the same seed(s) to generate pseudo-

random values so that each node will make the same transitions
at the same time.

Real-time. Due to using probabilities in transition functions,
the time complexity of reinforcement learning is unbounded.
Potentially, there are cycles in the possible transitions so that
transitions could traverse cycles an unbounded number of times.
Therefore, reinforcement learning does not satisfy the bounded
timeliness property of DRE systems.

Embedded. When developing reinforcement learning, feedback
is needed to determine ultimate success or failure. However, after
reinforcement learning has been adequately trained, there is no
intervention needed and the reinforcement learning can be used
without human intervention.

Robust to new inputs. Reinforcement learning is designed to
determine a path (via transitions) from a start state to an end
goal. If the goal is changed (via new inputs) then reinforcement
learning will need to relearn its transitions. If the goal changes
then the reinforcement learning needs to change as well. Therefore,
reinforcement learning is not robust to new inputs.

Autodidactic. As noted previously, the learning time for rein-
forcement learning is unbounded. Therefore, reinforcement learn-
ing does not fulfill the autodidactic property for adaptive DRE
systems.
• Random Forests. Random Forests can be adapted to fulfill

most of the requirements of a DRE system.
Distributed. There are two possible ways of achieving deter-

minism in a Random Forest. While pseudo-randomness is used to
determine the trees in the forest, this pseudo-randomness can be
limited to each node in the distributed system. The same pseudo-
random value can be deterministically achieved using the same
seed on each node. Alternatively, if the pseudo-randomness is
non-deterministic (i.e., each node potentially uses a different seed)
across all nodes, then consensus needs to be reached across the
nodes using a protocol similar to the one outlined in the Byzantine
Generals Problem [13]. The latter solution provides unbounded
time complexity due to the potentially unbounded number of trees
and tree depth. Therefore, Random Forests should limit pseudo-
randomness to within a node and not across nodes.

Real-time. The timeliness of the Random Forest is dependent
on the average depth n of the trees and the number of trees
m in the forest, i.e., O(m log n) [14]. It is possible to bound
time complexity further with depth limitations, tree pruning, and
the complex method of feature splitting [8] to address timeliness
concerns. However, this bounding has implications for accuracy.

Embedded. Random Forests are decision making systems capa-
ble of reaching a classification without the interaction of a human,
fulfilling the requirement of embedded systems.

Robust to new inputs. A Random Forest’s ability to generalize
is determined by the number of trees in the forest. As the number

of trees increases, the generalization increases as long as each new
tree is sufficiently different from all the other trees in the forest [8].

Autodidactic. For a Random Forest to incorporate new data, new
classification trees of non-predetermined depth must be added to
the forest [14]. Time complexity will become unbounded without
depth limitations, limitations on the number of trees in the forest,
and tree pruning. If the forest is limited in either the number of
trees that can be added or the depth and breadth of each individual
tree (which is needed to address timeliness concerns), accuracy can
be lost. Therefore, Random Forests do not address the autodidactic
needs of adaptive DRE systems.
• Support Vector Machines (SVMs). SVMs are generally

useful for adaptive DRE systems. They are particularly useful for
processing inputs at run-time that have never been seen before,
which emphasizes their adaptability and accuracy under such
conditions [11].

Distributed. SVMs are ideal for distribution due to the deter-
ministic nature of their decision making process.

Real-time. Training of an SVM is unbounded. However, after
the initial training is completed SVMs classify in constant time.

Embedded. SVMs are decision making systems — their classi-
fications are done without the aid of human intervention allowing
them to be implemented in an embedded system.

Robust to new inputs. SVMs support classification for new
inputs. Moreover, in certain situations the accuracy of an SVM
w.r.t. new inputs has been shown to be better than other AI
methodologies such as ANNs [11].

Autodidactic. In order for an SVM to incorporate new classifi-
cations into the training set, the SVM has to be retrained. While
an SVM is robust to data not included in training, the accuracy of
an SVM is limited if it is not retrained with the new data. With
an unbounded time complexity for training, SVMs do not support
the autodidactic property.

VI. ANALYZING GAPS

Per analysis of the AI techniques for adaptive DRE systems,
no single technique fully addresses all five areas of concern.
Additionally, no AI technique that is described in this paper
sufficiently and necessarily addresses the autodidactic property of
adaptive DRE systems aside from Expert Systems, which have
several other deficiencies. Some of the techniques start to address
the autodidactic property if certain constraints are applied (e.g.,
restricting Bayesian Networks from dynamically modifying the
network topology). There are AI techniques that meet all but one
of the 5 adaptive DRE properties and are therefore good starting
points for further investigation. In general, additional research
of AI techniques is needed to better understand the challenges
and trade-offs and to address these deficiencies to fully support
adaptive DRE systems.

VII. CONCLUDING REMARKS

DRE systems are being used for control in many important
domains (e.g., power grid, shipboard computing environments,
manufacturing). Historically, these systems have been analyzed
a priori to provide for provisioning resources and determining
behavior. However, these systems can benefit from adaptation to
leverage resources more appropriately and to respond to environ-
ments or situations not encountered previously. AI approaches can
be used to enable this type of adaptation.

Many AI approaches have been developed over the years. Some
of these approaches are more amenable than others relative to the

properties and requirements of DRE systems. The work outlined
in this paper has furthered this research in the following ways. The
properties of DRE systems relative to adaptation have been clearly
enumerated and defined. Several AI approaches have been sum-
marized and taxonomized using the enumerated properties. Gap
analysis has been performed to show areas of further investigation.

The AI approaches included in this work are non-exhaustive.
In particular, there are hybrid approaches that include aspects
of multiple traditional AI approaches (e.g., neural networks and
expert systems [20]). However, the taxonomy developed can be
used to evaluate new or hybrid approaches for consideration with
adaptive DRE systems.

REFERENCES

[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, October 2001.
[2] B.G. Buchanan, G.L. Sutherland, and E.A. Feigenbaum. Heuristic dendral:

A program for generating explanatory hypotheses in organic chemistry. In
B. Meltzer, D. Michie, and R. Swann, editors, Machine Intelligence 4, pages
209–254. Edinburgh University Press, Edinburgh, 1969.

[3] Ming Chen. Adaptive Performance and Power Management in Distributed
Computing Systems. PhD thesis, University of Tennessee, Knoxville, August
2010.

[4] Adnan Darwiche. Bayesian networks. Commun. ACM, 53(12):80–90,
December 2010.

[5] Thomas G. Dietterich. An experimental comparison of three methods for con-
structing ensembles of decision trees: Bagging, boosting, and randomization.
Mach. Learn., 40(2):139–157, August 2000.

[6] E.A. Feigenbaum, B.G. Buchanan, and J. Lederberg. On generality and
problem solving: A case study using the dendral program. In B. Meltzer
and D. Michie, editors, Machine Intelligence 6, pages 160–190. Edinburgh
University Press, Edinburgh, 1971.

[7] Nir Friedman, Dan Geiger, and Moises Goldszmidt. Bayesian network
classifiers. Machine Learning, 29(2-3):131–163, 1997.

[8] Tin Kam Ho. Random decision forests. In Document Analysis and
Recognition, 1995., Proceedings of the Third International Conference on,
volume 1, pages 278–282. IEEE, 1995.

[9] Tin Kam Ho. The random subspace method for constructing decision forests.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(8):832–
844, Aug 1998.

[10] Joe Hoffert, Daniel Mack, and Douglas C. Schmidt. Integrating machine
learning techniques to adapt protocols for qos-enabled distributed real-
time and embedded publish/subscribe middleware. Network Protocols and
Algorithms, 2(3):37–69, 2010.

[11] Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale. Evaluating time-
liness and accuracy trade-offs of supervised machine learning for adapting
enterprise dre systems in dynamic environments. International Journal of
Computational Intelligence Systems, 4(5):806–816, 2011.

[12] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning in
robotics: A survey. International Journal of Robotics Research, 32(11):1238–
1274, September 2013.

[13] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[14] Yi Lin and Yongho Jeon. Random forests and adaptive nearest neighbors.
Journal of the American Statistical Association, 101(474):578–590, 2006.

[15] JR Minkel. The 2003 northeast blackout–five years later. Scientific American,
August 2008.

[16] Gloria Philips-Wren. Ai tools in decision making support systems: A
review. International Journal on Artificial Intelligence Tools, 21(2):124005–
1–124005–13, 2012.

[17] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[18] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers, and
Nicholas R. Jennings. Putting the ’smarts’ into the smart grid: A grand
challenge for artificial intelligence. Commun. ACM, 55(4):86–97, April 2012.

[19] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2010.

[20] S. Sahin, M. R. Tolun, and R. Hassanpour. Review: Hybrid expert systems:
A survey of current approaches and applications. Expert Syst. Appl.,
39(4):4609–4617, March 2012.

[21] Robert W. Sebesta. Concepts of Programming Languages. Pearson Higher
Education, Inc., Hoboken, NJ, USA, 11 edition, 2016.

[22] G.K. Venayagamoorthy. Potentials and promises of computational intelligence
for smart grids. In Power Energy Society General Meeting, 2009. PES ’09.
IEEE, pages 1–6, July 2009.

