
Key Considerations for a Resilient and Autonomous Deployment and Configuration
Infrastructure for Cyber-Physical Systems

Subhav Pradhan, William Otte, Abhishek Dubey, Aniruddha Gokhale and Gabor Karsai
Institute for Software Integrated Systems

Dept. of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37212, USA

Email: {pradhasm,wotte,dabhishe,gokhale,gabor}@isis.vanderbilt.edu

Abstract—Multi-module Cyber-Physical Systems (CPSs),
such as satellite clusters, swarms of Unmanned Aerial Vehicles
(UAV), and fleets of Unmanned Underwater Vehicles (UUV)
are examples of managed distributed real-time systems where
mission-critical applications, such as sensor fusion or coordi-
nated flight control, are hosted. These systems are dynamic
and reconfigurable, and provide a “CPS cluster-as-a-service”
for mission-specific scientific applications that can benefit from
the elasticity of the cluster membership and heterogeneity of
the cluster members. The distributed and remote nature of
these systems often necessitates the use of Deployment and Con-
figuration (D&C) services to manage the lifecycle of software
applications. Fluctuating resources, volatile cluster member-
ship and changing environmental conditions require resilient
D&C services. However, the dynamic nature of the system often
precludes human intervention during the D&C activities, which
motivates the need for a self-adaptive D&C infrastructure
that supports autonomous resilience. Such an infrastructure
must have the ability to adapt existing applications on-the-fly
in order to provide application resilience and must itself be
able to adapt to account for changes in the system as well as
tolerate failures. This paper makes two contributions towards
addressing these needed. First, we identify the key challenges
in achieving such a self-adaptive D&C infrastructure. Second,
we present our ideas on resolving these challenges and realizing
a self-adaptive D&C infrastructure.

Keywords-self-adaptation, resilience, deployment and config-
uration, cyber-physical.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are a class of distributed,
real-time and embedded systems that tightly integrate the
cyber dimension with the physical dimension wherein the
physical system and its constraints control the way the cyber
infrastructure operates and in turn the latter controls the
physical objects. Fractionated spacecraft, swarms of Un-
manned Aerial Vehicles (UAVs) and fleets of Unmanned Un-
derwater Vehicles (UUVs), represent a new class of highly
dynamic, cluster-based, distributed CPSs, which represents
the target domain of our work presented in this paper. These
systems often operate in unwieldy environments where (1)
resources are very limited, (2) the dynamic nature of the
system results in ever-changing cluster properties, such as
membership, (3) failures and fluctuation in resource avail-
abilities is common, and (4) human intervention to address

these problems is rarely feasible. Owing to these traits, these
systems must be resilient to failures and other anomalies.

A resilient system can adapt to both internal and external
anomalies by modifying its normal behavior while still
remaining functional. Since human intervention is extremely
limited in case of the dynamic distributed systems we
consider, resilience should be autonomic. Consequently, the
system should be self-adaptive [1] for which it requires an
adaptation engine capable of maintaining and recovering the
system’s functionality by (1) adapting applications hosted
on the system, and (2) adapting itself as well as other
services provided by the system. This paper describes the
key considerations in engineering such autonomic resilient
systems.

Specifically, we focus on describing how the deployment
and configuration capabilities (D&C) of a CPS can be made
self-adaptive to realize resilient CPS. A D&C infrastructure
is responsible for managing an application’s lifecycle within
a system, which includes initial deployment and configu-
ration of the application as well as run-time modifications
including mitigation and recovery from various kinds of
failures. However, since the D&C infrastructure can also
incur faults, it itself should be resilient to failures through
self adaptation. These requirements have been identified in
our previous work [2], however, to our knowledge existing
D&C infrastructures do not yet support these requirements.
Even though some solutions address the requirement for a
D&C infrastructure that is capable of application adaptation
via hot deployment [3], these solutions are not self-adaptive.

Following are the primary contributions of this paper:
• We identify the key challenges in achieving a self-

adaptive D&C infrastructure for highly dynamic CPSs,
and

• We briefly describe a self-adaptive D&C infrastructure
that addresses the above-mentioned challenges.

The remainder of this paper is organized as follows:
Section II presents previous work related to this paper and
explains why our approach is different; Section III describes
the problem at hand alluding to the system model and the
key challenges in realizing a self-adaptive D&C infrastruc-
ture; Section IV presents a brief architectural description



of a self-adaptive D&C infrastructure capable of handling
aforementioned challenges; and finally, Section V provides
concluding remarks and alludes to future work.

II. RELATED WORK

Our work presented in this paper is related to the
field of self-adaptive software systems for which a re-
search roadmap has been well-documented in [4]. As high-
lighted in this roadmap, we implement all the steps in the
collect/analyze/decide/act loop.

In this section we compare our work with existing efforts
in the area of distributed software deployment, configuration,
and adaptivity. These existing efforts can be differentiated
into two perspectives. The first being the existing research
done in achieving D&C infrastructure for component-based
application; and the second being the variety of work done
in the field of dynamic reconfiguration of component-based
applications.

A. Deployment and Configuration Infrastructure

Deployment and configuration of component-based soft-
ware is a well-researched field with existing works primarily
focusing on D&C infrastructure for grid computing and
Distributed Real-time Embedded (DRE) systems. Both De-
ployWare [5] and GoDIET [6] are general-purpose deploy-
ment frameworks targeted towards deploying large-scale, hi-
erarchically composed, Fractal [7] component model-based
applications in a grid environment. However, both of these
deployment frameworks lack autonomous resilience since
neither of them supports application adaptation nor self-
adaptation.

The Object Management Group (OMG) has standardized
the Deployment and Configuration (D&C) specification [8].
Our prior work on the Deployment And Configuration
Engine (DAnCE) [9], [10] describes a concrete realization
of the OMG D&C specification for the Lightweight CORBA
Component Model (LwCCM) [11]. LE-DAnCE [10] and F6
DeploymentManager [12] are some of our other previous
works that extends the OMG’s D&C specification. LE-
DAnCE deploys and configures components based on the
Lightweight CORBA Component Model [11] whereas the
F6 Deployment Manager does the same for components
based on F6-COM component model [13]. The F6 Deploy-
ment Manager, in particular, focuses on the deployment of
real-time component-based applications in highly dynamic
DRE systems, such as fractionated spacecraft. However,
similar to the work mentioned above, these infrastructures
also lack support for application adaptation and D&C in-
frastructure adaptation.

B. Dynamic Re-configuration

A significant amount of research has been conducted in
the field of dynamic reconfiguration for component-based
applications. In [14], the authors present a tool called Planit

for deployment and reconfiguration of component-based ap-
plications. Planit uses AI-based planner, to be more specific
- temporal planner, to come up with application deployment
plan for both - initial deployment, and subsequent dynamic
reconfigurations. Planit is based on a sense-plan-act model
for fault detection, diagnosis and reconfiguration to recover
from run-time application failures. Both these approaches
are capable of hot deployment, that is, they both support
dynamic reconfiguration; and therefore support application
adaptation. However, neither of them supports a resilient
adaptation engine.

Our prior work on the MADARA knowledge and rea-
soning engine [15] has focused on dynamic reconfiguration
of DRE applications in a cloud environment. This work
focuses on optimizing initial deployment and subsequent
reconfiguration of distributed applications using different
pluggable heuristics. Here, MADARA itself is used as an
adaptation engine, however, it does not focus on resilience
and therefore does not support self-adaptability.

Similarly, results presented in [16]–[19] all support ap-
plication adaptation but not resilience of the adaptation
engine itself. In [17], the authors present a self-managing
solution which is component-based and non-intrusive since
it decouples application specifics from autonomic specific
software artifacts. It supports self-optimization and self-
healing. Another work presented in [18], supports dynamic
reconfiguration of applications based on J2EE components.
In [19], the authors present a framework that supports
multiple extensible reconfiguration algorithms for run-time
adaptation of component-based applications.

Finally, in [20], the authors present a middleware that
supports deployment of ubiquitous application components
that are based on Fractal component model, in dynamic
network. This work also supports autonomic deployment and
therefore run-time application adaptation, but does not focus
on resilience of the adaptation engine.

III. PROBLEM DESCRIPTION AND CHALLENGES

This section describes the problem at hand by first pre-
senting the target system model and then the problem of
self-adaptation in context of the D&C infrastructure. Finally,
we pose the key considerations in engineering resilient self-
adaptive D&C for CPS.

A. CPS System Model

The work described in this paper assumes a distributed
CPS consisting of multiple interconnected computing nodes
that host distributed applications. For example, we consider
a distributed system of fractionated spacecraft [12] that hosts
mission-critical component-based applications with mixed
criticality levels and security requirements. Fractionated
spacecraft represents a highly dynamic CPS because it is a
distributed system composed of nodes (individual satellites)



that can join and leave a cluster at any time resulting in
volatile group membership characteristics.

A distributed application in our system model is a graph
of software components that are partitioned into processes1

and hosted within a “component” server. This graph is then
mapped to interconnected computing nodes. The interaction
relationships between the components are defined using
established interaction patterns such as (a) synchronous and
asynchronous remote method invocation, and (b) group-
based publish-subscribe communication.

To deploy distributed component-based applications2 onto
a target environment, the system needs to provide a soft-
ware deployment service. A Deployment and Configuration
(D&C) infrastructure serves this purpose; it is responsi-
ble for instantiating application components on individual
nodes, configuring their interactions, and then managing
their lifecycle. The D&C infrastructure should be viewed
as a distributed system composed of multiple deployment
entities, called Deployment Managers (DM), with one DM
residing on each node.

B. Problem Statement

Since we are considering a highly dynamic CPS that oper-
ates in resource-constrained environments and has severely
limited availability for human intervention via remote ac-
cess,3 we require that the software deployment service be
able to adapt itself when faced with failures. In other words,
it should be self-adaptive and therefore support autonomous
resilience.

For the prescribed system and fault model, the D&C
infrastructure should be capable of self-adaptation to tolerate
the infrastructure failures and to manage application failures.
Conceptually, a self-adaptive infrastructure can be modeled
as a feedback control loop that observes the system state
and compensates for disturbances in the system to achieve
a desired behavior, as shown in Figure 1.

Controller System

Desired behavior

Control commands
(Actuation)

Observed behavior
(Sensing)

Disturbances (Faults)

Figure 1. Self-adaptive System as a Control System

To find similarities with the traditional self-adaptive loop
and the system under discussion, consider that a failure in the

1Components hosted within a process are located within the same address
space

2Although we use the component model described in [11], our work
is not constrained by this choice and can be applied to other component
models as well

3For instance, a satellite cluster may be in range of a ground station for
only 10 minutes during every 90 minute orbit

infrastructure can be considered a disturbance. This failure
can be detected by behavior such as ‘node is responding to
pings (indicating there is no infrastructure failure) or not’.
Once the failure has been detected, the loss of the func-
tionality needs to be restored by facilitating reconfiguration,
e.g. re-allocating components to a functioning node, etc. The
presence of the controller and its actuation ability enables
the self-adaptive property needed of an autonomous resilient
system.

In the system discussed in the paper, a disturbance could
be an infrastructure fault or an application fault. Observed
behavior could be ’node is responding to pings’ (indicat-
ing there is no infrastructure failure), or ’application is
functioning’ (indicating there is no application failure). The
controller logic can simply detect if the opposite of the above
behaviors is observed (i.e. ’node is not responding to pings’
or ’application stopped responding’).

The actuation commands include the necessary actions to
facilitate reconfiguration, e.g. re-allocating components to a
functioning node, etc. The presence of the controller and its
actuation ability enables the self-adaptive property needed
of an autonomous resilient system.

C. Key Considerations and Challenges

To correctly provide self-adaptive D&C services to a CPS
cluster, the D&C infrastructure must resolve a number of
challenges; these challenges are described below:

1) Challenge 1: Distributed Group Membership: Recall
that the CPS domain illustrates a highly dynamic environ-
ment in terms of resources that are available for application
deployment: nodes may leave unexpectedly as a result of a
failure or as part of a planned or unplanned partitioning
of the cluster, and nodes may also join the cluster as
they recover from faults or are brought online. To provide
resilient behavior, the DMs in the cluster must be aware
of changes in group membership, i.e., they must be able to
detect when one of their peers has left the group (either as
a result of a fault or planned partitioning) and when new
peers join the cluster.

2) Challenge 2: Leader Election: As faults occur in
CPSs, a resilient system must make definitive decisions
about the nature of that fault and the best course of action
necessary to mitigate and recover from that fault. Since
CPS clusters often operate in mission- or safety-critical
environments where delayed reaction to faults can severely
compromise the safety of the cluster, such decisions must
be made in a timely manner. In order to accommodate this
requirement, the system should always have a cluster leader
that will be responsible for making decisions and performing
other tasks that impact the entire cluster.4 However, a node
that hosts the DM acting as the cluster leader can fail at

4Achieving a consensus-based agreement for each adaptation decision
would likely be inefficient and violate the real-time constraints of the
cluster.



any time; in this scenario, the remaining DMs in the system
should decide among themselves regarding the identity of
the new cluster leader. This process needs to be facilitated
by a leader election algorithm.

3) Challenge 3: Proper Sequencing of Deployment: Ap-
plications in CPS may be composed of several cooperating
components with complex internal dependencies that are
distributed across several nodes. Deployment of such an
application requires that deployment activities across several
nodes proceed in a synchronized manner. For example,
connections between two dependent components cannot be
established until both components have been successfully in-
stantiated. Depending on the application, some might require
stronger sequencing semantics whereby all components of
the application need to be activated simultaneously.

4) Challenge 4: D&C State Preservation: Nodes in a
CPS may fail at any time and for any reason; a D&C
infrastructure capable of supporting such a cluster must
be able to reconstitute those portions of the distributed
application that were deployed on the failed node. Sup-
porting self-adaptation requires the D&C infrastructure to
keep track of the global system state, which consists of
(1) component-to-application mapping, (3) component-to-
implementation mapping,5 (2) component-to-node mapping,
(3) inter-component connection information, (4) component
state information, and (5) the current group membership
information. Such state preservation is particularly important
for a newly elected cluster leader.

IV. SELF-ADAPTIVE D&C INFRASTRUCTURE

Figure 2 shows the overall approach of our solution.
Infrastructure failures are detected using the Group Mem-
bership Monitor (GMM) described in Section IV-A. Appli-
cation failure detection is outside the scope of this paper,
however, we refer readers to our earlier work [21] in this
area. The controller is in fact a collection of deployment
managers working together as an adaptation engine to restore
functionality when failures are detected. Specific actuation
commands are redeployment actions taken by the deploy-
ment managers.

We discuss the specifics of this adaption engine next de-
scribing how our approach is addressing the key challenges
highlighted in Section III-C.

A. An Architecture for Self-adaptive D&C

Figure 3 presents the architecture of our self-adaptive
D&C infrastructure. Each node consists of a single De-
ployment Manager (DM). A collection of these DMs forms
the overall D&C infrastructure. Our approach supports dis-
tributed, peer-to-peer application deployment, where each
node controls its local deployment process.

5A component could possibly have more than one implementation
available.

Network 
Failure

Node 
Failure

Process 
Failure

Component 
Failure

GroupMembership 
Monitor

Adaptation Engine
(Deployment 

Manager)

Infrastructure Failure
(Primary Failure)

Application 
Failure

Managed System

Failure Propagation

Failure Detection

Detection Forwarding

Failure Mitigation

Figure 2. Anomaly Detection and Handling for Self-adaptive D&C.

Each DM, if required, spawns one or more Component
Servers (CSs). These CSs are processes that are responsible
for managing lifecycle of application components. Note that
our approach does not follow a centralized coordinator for
deployment actions; rather the DMs are independent and use
a publish/subscribe middleware to communicate with each
other.

DM

CS

DM

CS

spawns spawns

Distributed Data Space
(Pub/Sub m/w)

Application

……

Sender
(Client)

Receiver
(Server)

GMM GMM

Deployment 
Manager

Component Server

Group Membership 
Monitor

Node 1 Node n

Figure 3. Self-adaptive D&C architecture

In our architecture, we use GMM for two reasons: (1)
maintaining up-to-date group membership information, and
(2) detecting failures via a periodic heartbeat monitoring
mechanism. The failure detection aspect of GMM relies
on two important parameters – heartbeat period and fail-
ure monitoring period. These parameters are configurable.
Configuring the heartbeat period allows us to control how
often each DM assert their liveliness, whereas configuring
the failure monitoring period allows us to control how often



each DM triggers their fault monitoring mechanism and what
is the worst case latency when a missed heartbeat will be
detected.

For a given failure monitoring period, lower heartbeat
period results in higher network traffic but lower failure
detection latency, whereas higher heartbeat period results in
lower network traffic but higher failure detection latency.
Tuning these parameters appropriately can also enable the
architecture to tolerate intermittent failures where a few
heartbeats are only missed for a few cycles and are estab-
lished later. This can be done by making the fault monitoring
window much larger compared to the heartbeat period.

Handling intermittent failures is out of scope for this
paper, however, the above-mentioned tunable parameters can
be configured to provide a rudimentary support for handling
intermittent failures. For example, a setting of low heartbeat
period and comparatively higher failure monitoring period
results in a larger monitoring window and therefore can
arguably reduce occurrence of intermittent failures. Setting
these values will depend on the system and the environment
in which it is deployed.

Figure 4 shows an event diagram demonstrating a three
node deployment process of our new D&C infrastructure.
As seen from the figure, an application deployment is
initiated by submitting a global deployment plan to one
of the three DMs in the system. This global deployment
plan contains information about different components (and
their implementation) that make up an application. It also
contains information about how different components should
be connected. Once this global deployment plan is received
by a DM, that particular DM becomes the deployment
leader 6 for that particular deployment plan. Two different
global deployment plans can be deployed by two different
deployment leaders since we do not require a centralized
coordinator in our approach.

Deployment and configuration in our scheme is a multi-
staged approach. Table I lists the different D&C stages in our
approach. The INITIAL stage is where a deployment plan
gets submitted to a DM and ACTIVATED stage is where the
application components in the deployment plan is active. In
the rest of this section, we describe how information in this
table is used in our solution to address the key challenges.

B. Addressing Self-adaptive D&C Challenges
We now discuss how our architecture resolves the key

challenges identified in Section III-C.
1) Resolving Challenge 1: Distributed Group Member-

ship: To support distributed group membership, our solution
requires a mechanism that allows detection of joining mem-
bers and leaving members. To that end our solution uses

6A deployment leader is only responsible for initiating the deployment
process for a given deployment plan by analyzing the plan and allocating
deployment actions to other DMs in the system. The deployment leader is
not responsible for other cluster-wide operations such as failure mitigation;
these cluster-wide operations are handled by a cluster leader.

DM3

DM2
CREATE 

COMPONENTS

CREATE 
COMPONENTS

CREATE 
COMPONENTS

DM1

CONNECT 
COMPONENTS

CONNECT 
COMPONENTS

CONNECT 
COMPONENTS

Publish_Provided_Service

Deployment 
Plan

Load_Plan

Publish_Plan (2, P2)

Publish_Plan (3, P3)

Deployment Manager
Component Actions

Starting State

Finishing State

Activating State

Global Deployment Plan Worst Case Deployment Time

Actual Deployment Time

Component(s) deployed by 
DM1 requires service(s) 
provided by component(s) 
deployed in DM2 

Barrier 
Synchronization

Figure 4. A Three-node Deployment and Configuration Setup

a discovery mechanism to detect the former and a failure
detection mechanism to detect the latter described below.

Discovery Mechanism: Since our solution approach re-
lies on an underlying pub/sub middleware, the discovery
of nodes joining the cluster leverages existing discovery
services provided by the pub/sub middleware. To that end
we have used OpenDDS (http://www.opendds.org) – an open
source pub/sub middleware that implements OMG’s Data
Distribution Service (DDS) specification [22]. To be more
specific, we use the Real-Time Publish Subscribe (RTPS)
peer-to-peer discovery mechanism supported by OpenDDS.

Group 
Membership 

Monitor
DM3 DM1

NodeFail(2)
NodeFail(2)

Publish_Plan(3,P2)

Deploy(P2)

LeaderCheck
LeaderCheck

Figure 5. Failure Detection Mechanisms

Failure Detection Mechanism (Figure 5): To detect
the loss of existing members, we need a failure detection
mechanism that detects different kinds of failures. In our
architecture this functionality is provided by the GMM. The
GMM residing on each node uses a simple heartbeat-based
protocol to detect DM (process) failure. Recall that any node
failure, including the ones caused due to network failure,
results in the failure of its DM. This means that our failure
detection service uses the same mechanism to detect all three



Table I
D&C STAGES

Stage Description
INITIAL (1) Global deployment plan is provided to one of the DMs.

(2) DM that is provided with a global deployment plan becomes the leader DM and loads that deployment plan
and stores it in a binary format.

PREPARING (1) Plan loaded in previous stage is split into node-specific plans and published to the distributed data space
using pub/sub middleware.

(2) Node-specific plans published above are received by respective DMs, which in turn further split the node-
specific plans into component server (CS)-specific plans.

STARTING (1) CS-specific plans created in previous stage are used to create CSs (if required) and components.

(2) For components that provide service via a facet, the DM will publish its connection information so that other
components that require this service can connect to it using their receptacle. This connection however is not
established in this stage.

(3) In this stage, barrier synchronization is performed to make sure that no individual DMs can advance to the
next stage before all of the DMs have reached this point.

FINISHING (1) Components created in the previous stage are connected (if required). In order for this to happen, the
components that require a service use connection information provided in the previous state to make facet-
receptacle connections.

ACTIVATING (1) Synchronization stage to make sure all components are created and connected (if required) before activation.
ACTIVATED (1) Stage where a deployment plan is activated by activating all the related components.

(2) At this point all application components are running.
TEARDOWN (1) De-activation stage.

different classes of infrastructure failures.

2) Resolving Challenge 2: Leader Election: Leader elec-
tion is required in order to tolerate cluster leader failure.
We do this by implementing a rank based leader election
algorithm. Each DM is assigned a unique numeric rank
value and this information is published by each DM as part
of its heartbeat. Initially the DM with the least rank will
be picked as the cluster leader. If the cluster leader fails,
each of the other DMs in the cluster will check their group
membership table and determine if it is the new leader.
Since, we associate unique rank with each DM, only one
DM will be elected as the new leader.

3) Resolving Challenge 3: Proper Sequencing of De-
ployment: Our D&C infrastructure implements deployment
synchronization using a distributed barrier synchronization
algorithm. This mechanism is specifically used during the
STARTING stage of the D&C process to make sure that
all DMs are in the STARTING stage before any of them
can advance to the FINISHING stage. This synchronization
is performed to ensure that all connection information of
all the components that provide a service is published to
the distributed data space before components that require
a service try to establish a connection. We realize that this
might be too strong of a requirement and therefore we intend
to further relax this requirement by making sure that only
components that require a service wait for synchronization.

In addition, our current solution also uses barrier syn-
chronization in the ACTIVATING stage to make sure all
DMs advance to the ACTIVATED stage simultaneously.

This particular synchronization ensures the simultaneous
activation of a distributed application. However, it is entirely
possible that an application does not care about simultaneous
activation and therefore does not require this synchroniza-
tion.

4) Resolving Challenge 4: D&C State Preservation: In
our current implementation, for a single deployment plan,
only the DM that is provided with this deployment plan, i.e.
the deployment leader, stores the plan and all other DMs that
participate in the deployment of that plan only know about
node-specific sub-plans provided to them by the deployment
leader. This means that our current implementation is not
robust enough to handle deployment leader failures.

Our future work is seeking to design an efficient mecha-
nism using which all of the DMs in the system store every
single deployment plan provided to different deployment
leaders such that we have enough redundancy to handle
deployment leader failures. In addition to storing redundant
deployment plans across all the DMs, we also need to
efficiently store different components’ state information.
This will also be part of our future work.

We are currently working on a more dynamic approach by
allowing each and every DM to follow a distributed check-
pointing mechanism in order to simultaneously checkpoint
and store their state such that in case of any failure they
can either themselves rollback to their previously known
good state or if that is not possible then the lead DM can
use a failed DM’s state information to restart the DM and
advance it to its previously known good state. To achieve



this, we foresee using an approach which will include
the durability QoS option of DDS pub/sub or implement
something similar, which will allow persistent storage of
DM states across different nodes.

V. CONCLUSIONS AND FUTURE WORK

This paper described a self-adaptive Deployment and
Configuration (D&C) infrastructure for highly dynamic CPS.
The nature of CPS and the infeasibility of human interven-
tion calls for autonomous resilience in such systems. The
D&C infrastructure is the right artifact to architect such a
solution because of the increasing trend towards component-
based CPS. To that end we showed an approach that uses a
decentralized approach to self-adaptive D&C.

The work presented in this paper incurs a few limi-
tations: (1) the failure detection mechanism presented in
Section IV-B1 is not robust enough to handle byzantine
failures where a failure might be wrongly reported by some
of the members of a group. In order to handle this scenario,
we will extend the existing failure detection mechanism by
using Paxos [23] as a mechanism to achieve distributed
consensus before taking any failure mitigation actions; (2) as
mentioned in Section IV-B4, our current implementation for
DM state preservation is sufficient but not ideal. However,
achieving our ideal goal requires significant amount of
additional work and hence forms the contours of our future
work; and (3) empirically validating the architecture on a
number of large-scale CPS will also be a focus of our future
work.

Source code for all of our work presented in this paper
can be made available upon request.

ACKNOWLEDGMENT

This work was supported by the DARPA System F6 Pro-
gram under contract NNA11AC08C and USAF/AFRL under
Cooperative Agreement FA8750-13-2-0050. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of DARPA or USAF/AFRL.

REFERENCES

[1] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Transactions on Au-
tonomous and Adaptive Systems (TAAS), vol. 4, no. 2, p. 14,
2009.

[2] S. Pradhan, A. Gokhale, W. Otte, and G. Karsai, “Real-
time Fault-tolerant Deployment and Configuration Framework
for Cyber Physical Systems,” in Proceedings of the Work-
in-Progress Session at the 33rd IEEE Real-time Systems
Symposium (RTSS ’12). San Juan, Puerto Rico, USA: IEEE,
Dec. 2012.

[3] Y. D. Liu and S. F. Smith, “A formal framework for compo-
nent deployment,” in ACM SIGPLAN Notices, vol. 41, no. 10.
ACM, 2006, pp. 325–344.

[4] B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee,
J. Andersson, B. Becker, N. Bencomo, Y. Brun, B. Cukic
et al., Software engineering for self-adaptive systems: A
research roadmap. Springer, 2009.

[5] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the
grid with deployware,” in Cluster Computing and the Grid,
2008. CCGRID’08. 8th IEEE International Symposium on.
IEEE, 2008, pp. 177–184.

[6] E. Caron, P. K. Chouhan, H. Dail et al., “Godiet: a deploy-
ment tool for distributed middleware on grid’5000,” 2006.

[7] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani, “The fractal component model and its support in
java,” Software: Practice and Experience, vol. 36, no. 11-12,
pp. 1257–1284, 2006.

[8] OMG, “Deployment and Configuration Final Adopted
Specification.” [Online]. Available: http://www.omg.org/
members/cgi-bin/doc?ptc/03-07-08.pdf

[9] W. R. Otte, D. C. Schmidt, and A. Gokhale, “Towards
an Adaptive Deployment and Configuration Framework for
Component-based Distributed Systems,” in Proceedings of the
9th Workshop on Adaptive and Reflective Middleware (ARM
’10), Bengarulu, India, Nov. 2010.

[10] W. Otte, A. Gokhale, and D. Schmidt, “Predictable deploy-
ment in component-based enterprise distributed real-time and
embedded systems,” in Proceedings of the 14th international
ACM Sigsoft symposium on Component based software engi-
neering. ACM, 2011, pp. 21–30.

[11] Light Weight CORBA Component Model Revised Submission,
OMG Document realtime/03-05-05 ed., Object Management
Group, May 2003.

[12] A. Dubey, W. Emfinger, A. Gokhale, G. Karsai, W. Otte,
J. Parsons, C. Szabo, A. Coglio, E. Smith, and P. Bose, “A
Software Platform for Fractionated Spacecraft,” in Proceed-
ings of the IEEE Aerospace Conference, 2012. Big Sky, MT,
USA: IEEE, Mar. 2012, pp. 1–20.

[13] W. R. Otte, A. Dubey, S. Pradhan, P. Patil, A. Gokhale,
G. Karsai, and J. Willemsen, “F6COM: A Component Model
for Resource-Constrained and Dynamic Space-Based Com-
puting Environment,” in Proceedings of the 16th IEEE Inter-
national Symposium on Object-oriented Real-time Distributed
Computing (ISORC ’13), Paderborn, Germany, Jun. 2013.

[14] N. Arshad, D. Heimbigner, and A. L. Wolf, “Deployment
and dynamic reconfiguration planning for distributed software
systems,” in Tools with Artificial Intelligence, 2003. Proceed-
ings. 15th IEEE International Conference on. IEEE, 2003,
pp. 39–46.

[15] J. Edmondson, A. Gokhale, and D. Schmidt, “Approximation
techniques for maintaining real-time deployments informed
by user-provided dataflows within a cloud,” Reliable Dis-
tributed Systems, IEEE Symposium on, vol. 0, pp. 372–377,
2012.



[16] N. Shankaran, J. Balasubramanian, D. Schmidt, G. Biswas,
P. Lardieri, E. Mulholland, and T. Damiano, “A framework
for (re) deploying components in distributed real-time and
embedded systems,” in Proceedings of the 2006 ACM sym-
posium on Applied computing. ACM, 2006, pp. 737–738.

[17] S. S. Andrade and R. J. de Araújo Macêdo, “A non-intrusive
component-based approach for deploying unanticipated self-
management behaviour,” in Software Engineering for Adap-
tive and Self-Managing Systems, 2009. SEAMS’09. ICSE
Workshop on. IEEE, 2009, pp. 152–161.

[18] A. Akkerman, A. Totok, and V. Karamcheti, Infrastructure
for automatic dynamic deployment of J2EE applications in
distributed environments. Springer, 2005.

[19] J. Hillman and I. Warren, “An open framework for dynamic
reconfiguration,” in Proceedings of the 26th International

Conference on Software Engineering. IEEE Computer
Society, 2004, pp. 594–603.

[20] D. Hoareau and Y. Mahéo, “Middleware support for the
deployment of ubiquitous software components,” Personal
and ubiquitous computing, vol. 12, no. 2, pp. 167–178, 2008.

[21] N. Mahadevan, A. Dubey, and G. Karsai, “Application of
software health management techniques,” in Proceedings of
the 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. ACM, 2011, pp. 1–10.

[22] Data Distribution Service for Real-time Systems Specification,
1.0 ed., Object Management Group, Mar. 2003.

[23] L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 32,
no. 4, pp. 18–25, 2001.


