
Evaluating the Performance of Pub/Sub
Platforms for Tactical Information Management

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

Jeff Parsons
j.parsons@vanderbilt.edu

Ming Xiong
xiongm@isis.vanderbilt.edu

James Edmondson
jedmondson@gmail.com

Hieu Nguyen
hieu.t.nguyen@vanderbilt.edu

Olabode Ajiboye
olabode.ajiboye@vanderbilt.edu

July 11, 2006

Research Sponsored by AFRL/IF, NSF, & Vanderbilt University

mailto:d.schmidt@vanderbilt.edu
mailto:.parsons@vanderbilt.edu
mailto:.parsons@vanderbilt.edu
mailto:d.schmidt@vanderbilt.edu

2

Demands on Tactical Information Systems
Key problem space challenges

• Large-scale, network-centric,
dynamic, systems of systems

• Simultaneous QoS demands
with insufficient resources

• e.g., wireless with
intermittent connectivity

• Highly diverse & complex
problem domains

Key solution space challenges

• Enormous accidental & inherent
complexities

• Continuous technology evolution
refresh, & change

• Highly heterogeneous platform,
language, & tool environments

Resources

U
til

ity

Desired
Utility
Curve “Working

Range”

“Softer” Requirements

U
til

ity

Resources

Utility
“Curve”

“Broken” “Works”

“Harder” Requirements

3

Promising Approach:
The OMG Data Distribution Service (DDS)

Application

Application

Application

Application

Application‘Global’ Data Store

read

read

read

write

write

write write

Provides flexibility, power & modular structure by decoupling:

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

• Time – async, disconnected, time-sensitive,
scalable, & reliable data distribution at
multiple layers

• Platform – same as CORBA middleware

• Location – anonymous
pub/sub

• Redundancy – any number of
readers & writers

4

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R

Overview of the Data Distribution Service (DDS)

Tactical
Network & RTOS

DDS Pub/Sub
Using Proposed

RT Info to Cockpit &
Track Processing

• A highly efficient OMG pub/sub standard
• Fewer layers, less overhead
• RTPS over UDP will recognize QoS

Real-Time Publish
Subscribe (RTPS)

Protocol

5

Data
Reader

R

Data
Writer

R

Publisher Subscriber

Topic

R
NEW TOPIC

NEW

SUBSCRIBER

Overview of the Data Distribution Service (DDS)
• A highly efficient OMG pub/sub standard

• Fewer layers, less overhead
• RTPS over UDP will recognize QoS

• DDS provides meta-events for
detecting dynamic changes

NEW

PUBLISHER

6

• A highly efficient OMG pub/sub standard
• Fewer layers, less overhead
• RTPS over UDP will recognize QoS

• DDS provides meta-events for
detecting dynamic changes

• DDS provides policies for
specifying many QoS
requirements of tactical
information management
systems, e.g.,

• Establish contracts that
precisely specify a wide
variety of QoS
policies at multiple system
layers

Data
Reader

R

Data
Writer

R

Publisher Subscriber

S1

S2

S3

S4

S5

S6

S7

S6 S5 S4 S3 S2 S1

Topic

R

S7 S7X

HISTORY

RELIABILITY
COHERENCY

RESOURCE LIMITS

LATENCY

Overview of the Data Distribution Service (DDS)

7

Overview of DDS Implementation Architectures
• Decentralized

Architecture
–embedded threads to

handle communication,
reliability, QoS etc

node nodeNetworkNetwork

8

Overview of DDS Implementation Architectures
• Decentralized

Architecture
–embedded threads to

handle communication,
reliability, QoS etc

• Federated Architecture
–a separate daemon

process to handle
communication,
reliability, QoS, etc.

node nodeNetworkNetwork

node

NetworkNetworkdaemon

node

daemon

9

node

Overview of DDS Implementation Architectures
• Decentralized

Architecture
–embedded threads to

handle communication,
reliability, QoS etc

• Federated Architecture
–a separate daemon

process to handle
communication,
reliability, QoS, etc.

• Centralized
Architecture

–one single daemon
process for domain

node nodeNetworkNetwork

node

NetworkNetworkdaemon

node node

NetworkNetwork

daemon

node

daemon

10

DDS1 (Decentralized Architecture)

Pros: Self-contained communication end-points, needs no extra daemons
Cons: User process more complex, e.g., must handle config details (efficient discovery, multicast)

Participant

comm/
aux threads NetworkNetwork

User process

Node (computer)

Participant

comm/
aux threads

User process

Node (computer)

11

DDS2 (Federated Architecture)

Pros: Less complexity in user process & potentially more scalable to large # of subscribers
Cons: Additional configuration/failure point; overhead of inter-process communication

Participant

aux threads

NetworkNetwork

User process

Node (computer)

comm threads
Daemon process

Participant

aux threads
User process

Node (computer)

comm threads
Daemon process

12

DDS3 (Centralized Architecture)

Pros: Easy daemon setup
Cons: Single point of failure; scalability problems

Participant

comm threads
User process

Node (computer)

Aux + comm
threads

Daemon process

Participant

comm threads
User process

Node (computer)

NetworkNetwork

Node (computer)

data

contro
lcontrol

13

Architectural Features Comparison Table

QoS Description DDS1 DDS2 DDS3

Notification
Mechanism

Blocking or Non-
blocking data receiving

Listener-Based/
Wait-Based

Listener-Based/
Wait-Based Listener-Based

Transport

Controls whether to use
network
multicast/broadcast/unica
st addresses when
sending data samples to
DataSenders

Unicast/
Multicast

Broadcast /
Multicast

Unicast
+

transport
framework

Higher-level
DDS Protocol

On-the-wire
communication model

RTPS Like
protocol

RTPS Like
protocol N/A

Lower-level
Transport

Underlying
communication transport

Shared Memory/
UDPv4

Shared Memory/
UDPv4

Simple TCP/
Simple UDP

14

QoS Policies Comparison Table (partial)
QoS Description DDS1 DDS2 DDS3

DURABILITY

Controls how long
published samples are
stored by the
middleware for late-
joining data readers

VOLATILE
TRANSIENT-LOCAL

VOLATILE
TRANSIENT-

LOCAL
TRANSIENT
PERSISTENT

VOLATILE

HISTORY

Sets number of
samples that DDS will
store locally for data
writers & data readers

KEEP_LAST
KEEP_ALL

KEEP_LAST
KEEP_ALL

KEEP_LAST
KEEP_ALL

RELIABILITY

Whether data
published by a data
writer will be reliably
delivered by DDS to
matching data readers

BEST_EFFORT
RELIABLE

BEST_EFFORT
RELIABLE

BEST_EFFORT(UDP)
RELIABLE(TCP)

RESOURCE_LIMITS

Controls memory
resources that DDS
allocates & uses for
data writer or data
reader

initial_instance(exte
nsion)
initial_samples(exte
nsion)
max_instances
max_samples
max_samples_per_i
nstance

max_instances
max_samples

max_samples_pe
r_instance

max_instances
max_samples
max_samples_per_i
nstance

15

Evaluation Focus
• Compare performance of C++

implementations of DDS to:
• Other pub/sub middleware

• CORBA Notification Service
• SOAP
• Java Messaging Service

DDS? JMS? SOAP?

Notification Service?Application
Application

16

Evaluation Focus
• Compare performance of C++

implementations of DDS to:
• Other pub/sub middleware

• CORBA Notification Service
• SOAP
• Java Messaging Service

• Each other

DDS? JMS? SOAP?

Notification Service?Application
Application

DDS1? DDS2?

DDS3?Application
Application

17

Evaluation Focus
• Compare performance of C++

implementations of DDS to:
• Other pub/sub middleware

• CORBA Notification Service
• SOAP
• Java Messaging Service

• Each other

• Compare DDS portability &
configuration details

DDS? JMS? SOAP?

Notification Service?Application
Application

DDS1? DDS2?

DDS3?Application
Application

DDS
Application

DDS1

DDS2

DDS3

?

?

?

18

Evaluation Focus
• Compare performance of C++

implementations of DDS to:
• Other pub/sub middleware

• CORBA Notification Service
• SOAP
• Java Messaging Service

• Each other

• Compare DDS portability &
configuration details

• Compare performance of
subscriber notification mechanisms

• Listener vs. wait-set

DDS? JMS? SOAP?

Notification Service?Application
Application

DDS1? DDS2?

DDS3?Application
Application

DDS
Application

DDS1

DDS2

DDS3

?

?

?

DDS
Subscriber

Listener

Wait-set ?

?

19wiki.isis.vanderbilt.edu/support/isislab.htm has more information on ISISlab

Overview of ISISlab Testbed

Platform configuration for experiments

• OS: Linux version 2.6.14-1.1637_FC4smp

• Compiler: g++ (GCC) 3.2.3 20030502

• CPU: Intel(R) Xeon(TM) CPU 2.80GHz w/ 1GB
ram

• DDS: Latest C++ versions from 3 vendors

20

• Challenge – Measuring latency & throughput accurately without depending
on synchronized clocks

• Solution
– Latency – Add ack message, use publisher clock to time round trip
–Throughput – Remove sample when read, use subscriber clock only

Benchmarking Challenges

21

• Challenge – Measuring latency & throughput accurately without depending
on synchronized clocks

• Solution
– Latency – Add ack message, use publisher clock to time round trip
–Throughput – Remove sample when read, use subscriber clock only

• Challenge – Managing many tests, payload sizes, nodes, executables
• Solution – Automate tests with scripts & config files

Benchmarking Challenges

22

• Challenge – Measuring latency & throughput accurately without depending
on synchronized clocks

• Solution
– Latency – Add ack message, use publisher clock to time round trip
–Throughput – Remove sample when read, use subscriber clock only

• Challenge – Managing many tests, payload sizes, nodes, executables
• Solution – Automate tests with scripts & config files
• Challenge – Calculating with an exact # of samples in spite of packet loss
• Solution – Have publisher ‘oversend’, use counter on subscriber

Benchmarking Challenges

23

• Challenge – Measuring latency & throughput accurately without depending
on synchronized clocks

• Solution
– Latency – Add ack message, use publisher clock to time round trip
–Throughput – Remove sample when read, use subscriber clock only

• Challenge – Managing many tests, payload sizes, nodes, executables
• Solution – Automate tests with scripts & config files
• Challenge – Calculating with an exact # of samples in spite of packet loss
• Solution – Have publisher ‘oversend’, use counter on subscriber
• Challenge – Ensuring benchmarks are made over ‘steady state’
• Solution – Send ‘primer’ samples before ‘stats’ samples in each run

–Bounds on # of primer & stats samples
• Lower bound – further increase doesn’t change results
• Upper bound – run of all payload sizes takes too long to finish

Benchmarking Challenges

24

const short MAX_MSG_LENGTH =

16384;

struct PubMessage {

long seqnum;

sequence<octet,MAX_MSG_LENGTH>

data;

};

struct AckMessage {

long seqnum;

};

DDS Latency And Jitter
Latency & jitter on same

node

Tested seq. of bytes

Seq. lengths in powers
of 2 to upper bound

Ack message of 4
bytes

Latency & jitter on
different nodes

Process 1
Blade 0

Process 2
Blade 0

Process 1
Blade 0

Process 1
Blade 1

25

1-to-1 Single Node Latency

0

50

100

150

200

250

300

350

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

26

0

50

100

150

200

250

300

350

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

1-to-1 Single Node Latency

DDS3 is slower – UDP
loopback instead of

shared memory

DDS1 and DDS2 perform
better due to shared memory

transports

27

1-to-1 Single Node Jitter

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

28

1-to-1 Single Node Jitter

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

For larger payloads,
DDS3’s lack of shared

memory takes a toll

Even with shared memory vs
loopback, jitter is well-paced

for smaller payloads

29

1-to-1 Multiple Node Latency

0
100
200
300
400

500
600
700
800

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

30

1-to-1 Multiple Node Latency

0
100
200
300
400
500
600
700
800

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

DDS2’s federated
architecture incurs extra

context switching,
synchronization and data

copying

31

1-to-1 Multiple Node Jitter

0
2
4
6
8

10
12
14
16
18

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

32

1-to-1 Multiple Node Jitter

0
2
4
6
8

10
12
14
16
18

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

The extra overhead of
DDS2’s federated

architecture is evident in
the jitter as well

Federated arch. is designed for scalabilty, low CPU usage, not low latency

33

Scaling Up DDS Subscribers

Publisher oversends to ensure
sufficient received samples

Byte sequences
Seq. lengths in powers

of 2 (4 – 16384)

4, 8, & 12 subscribers
each on different blades

100 primer samples
10,000 stats samples

Blade 0

Blade N

Blade …

Blade 2

Blade 1

All following graphs plot median + “box-n-whiskers” (50%ile-min-max)

• The past 8 slides showed latency/jitter results for 1-to-1 tests
• We now show throughput results for 1-to-N tests

34

Scaling Up Subscribers – DDS1 Unicast

4 Subscribers 8 Subscribers 12 Subscribers

Performance increases linearly
for smaller payloads

Performance levels off
for larger payloads • subscriber uses listener

• no daemon (app spawns thread)
• KEEP_LAST (depth = 1)

35

Scaling Up Subscribers – DDS1 Multicast

4 Subscribers 8 Subscribers 12 Subscribers

Performance increases more
irregularly with # of subscribers

Performance levels off
less than for unicast • subscriber uses listener

• no daemon (library per node)
• KEEP_LAST (depth = 1)

36

Scaling Up Subscribers – DDS1 1 to 4

Unicast Multicast

Throughput greater for multicast
over almost all payloads

Performance levels off
less for multicast • subscriber uses listener

• no daemon (app spawns thread)
• KEEP_LAST (depth = 1)

37

Scaling Up Subscribers – DDS1 1 to 8

Unicast Multicast

Greater difference than for 4
subscribers

Performance levels off
less for multicast • subscriber uses listener

• no daemon (app spawns thread)
• KEEP_LAST (depth = 1)

38

Scaling Up Subscribers – DDS1 1 to 12

Unicast Multicast

Greater difference than for 4 or 8
subscribers

Difference most pronounced
with large payloads

• subscriber uses listener
• no daemon (app spawns thread)
• KEEP_LAST (depth = 1)

39

Scaling Up Subscribers – DDS2 Broadcast

4 Subscribers 8 Subscribers 12 Subscribers

Less throughput reduction with
subscriber scaling than with DDS1

Performance continues to
increase for larger payloads

• subscriber uses listener
• daemon per network interface
• KEEP_LAST (depth = 1)

40

Scaling Up Subscribers – DDS2 Multicast

4 Subscribers 8 Subscribers 12 Subscribers

Lines are slightly closer than for
DDS2 broadcast

• subscriber uses listener
• daemon per network interface
• KEEP_LAST (depth = 1)

41

Scaling Up Subscribers – DDS2 1 to 4

Broadcast Multicast

Multicast performs better for all
payload sizes

• subscriber uses listener
• daemon per network interface
• KEEP_LAST (depth = 1)

42

Scaling Up Subscribers – DDS2 1 to 8

Broadcast Multicast

Performance gap slightly less than
with 4 subscribers

• subscriber uses listener
• daemon per network interface
• KEEP_LAST (depth = 1)

43

Scaling Up Subscribers – DDS2 1 to 12

Broadcast Multicast

Broadcast/multicast difference
greatest for 12 subscribers

• subscriber uses listener
• daemon per network interface
• KEEP_LAST (depth = 1)

44

Scaling Up Subscribers – DDS3 Unicast

4 Subscribers 8 Subscribers 12 Subscribers

Throughput decreases dramatically with
8 subscribers, less with 12

Performance levels off for
larger payloads

• subscriber uses listener
• centralized daemon
• KEEP_ALL

45

Impl Comparison: 4 Subscribers Multicast

DDS1 DDS2

DDS1 faster for all but the very
smallest & largest payloads

• subscriber uses listener
• KEEP_LAST (depth = 1)

Multicast not supported by DDS3

46

Impl Comparison: 8 Subscribers Multicast

DDS1 DDS2

Slightly more performance
difference for 8 subscribers

• subscriber uses listener
• KEEP_LAST (depth = 1)

Multicast not supported by DDS3

47

Impl Comparison: 12 Subscribers Multicast

DDS1 DDS2

Slightly less separation in
performance with 12 subscribers

• subscriber uses listener
• KEEP_LAST (depth = 1)

Multicast not supported by DDS3

48

Impl Comparison: 4 Subscribers Unicast

DDS1 DDS3

DDS1 significantly faster except
for largest payloads

• subscriber uses listener
• KEEP_ALL

Unicast not supported by DDS2

49

Impl Comparison: 8 Subscribers Unicast

DDS1 DDS3

Performance differences slightly
less than with 4 subscribers

• subscriber uses listener
• KEEP_ALL

Unicast not supported by DDS2

50

Impl Comparison: 12 Subscribers Unicast

DDS1 DDS3

Performance differences slightly
less than with 8 subscribers

• subscriber uses listener
• KEEP_ALL

Unicast not supported by DDS2

51

Overview of DDS Listener vs. Waitset
Subscriber Application

Waitset
Condition

Condition

Condition

DDS

Data Reader

wait()

take_w_condition()

Data Reader

Subscriber Application

DDS

Listener

on_data_available()

Key characteristics
• No application blocking
• DDS thread executes application code

Key characteristics
• Application blocking
• Application has full control over priority, etc.

52

Comparing Listener vs Waitset Throughput

Publisher oversends to ensure
sufficient received samples

Byte sequences
Seq. lengths in powers

of 2 (4 – 16384)

4 subscribers on
different blades

100 primer samples
10,000 stats samples

Blade 0

Blade 4

Blade 3

Blade 2

Blade 1

53

Impl Comparison: Listener vs. Waitset

DDS1 – listener outperforms waitset &
DDS2 (except for large payloads)

• multicast
• 4 subscribers
• KEEP_LAST (depth = 1)

No consistent difference between
DDS2 listener & waitset

DDS1 Listener DDS1 Waitset DDS2 Listener DDS2 Waitset

54

DDS Application Challenges
• Scaling up number of subscribers

• Data type registration race
condition (DDS3)

• Setting proprietary ‘participant
index’ QoS (DDS1)

DDS

data type A

data type A

data type A

55

DDS Application Challenges
• Scaling up number of subscribers

• Data type registration race
condition (DDS3)

• Setting proprietary ‘participant
index’ QoS (DDS1)

• Getting a sufficient transport buffer
size

DDS

data type A

data type A

data type A

Publisher Subscriber

DDS

TransportX

56

DDS Application Challenges
• Scaling up number of subscribers

• Data type registration race
condition (DDS3)

• Setting proprietary ‘participant
index’ QoS (DDS1)

• Getting a sufficient transport buffer
size

• QoS policy interaction
• HISTORY vs RESOURCE

LIMITS
• KEEP_ALL => DEPTH =

<INFINITE>
• no compatibility check with

RESOURCE LIMITS
• KEEP_LAST => DEPTH = n

• can be incompatible with
RESOURCE LIMITS value

DDS

data type A

data type A

data type A

Publisher Subscriber

DDS

TransportX
DDS

Subscriber Subscriber

KEEP_ALL

MAX_SAMPLES = 5 MAX_SAMPLES = 5

KEEP_LAST = 10

X

57

Portability Challenges
DDS1 DDS2 DDS3

DomainParticipant
Factory compliant compliant proprietary

function

Register Data
Types static method member

method
member
method

Key Declaration //@key
single

#pragma
pair of
#pragma

Required App. IDs publisher &
subscriber none publisher

Spec Operations extra argument
(newer spec) compliant compliant

Required App.
Transport Config code-based none file-based or

code-based

58

Portability Challenges
DDS1 DDS2 DDS3

DomainParticipant
Factory compliant compliant proprietary

function

Register Data
Types static method member

method
member
method

Key Declaration //@key
single

#pragma
pair of
#pragma

Required App. IDs publisher &
subscriber none publisher

Spec Operations extra argument
(newer spec) compliant compliant

Required App.
Transport Config code-based none file-based or

code-based

DomainParticipantFactory::get_instance();

TheParticipantFactoryWithArgs(argc, argv);

59

Portability Challenges
DDS1 DDS2 DDS3

DomainParticipant
Factory compliant compliant proprietary

function

Register Data
Types static method member

method
member
method

Key Declaration //@key
single

#pragma
pair of
#pragma

Required App. IDs publisher &
subscriber none publisher

Spec Operations extra argument
(newer spec) compliant compliant

Required App.
Transport Config code-based none file-based or

code-based

DataType::register_type(participant, name);

DataType identifier;
identifier.register_type(participant, name);

60

Portability Challenges
DDS1 DDS2 DDS3

DomainParticipant
Factory compliant compliant proprietary

function

Register Data
Types static method member

method
member
method

Key Declaration //@key
single

#pragma
pair of
#pragma

Required App. IDs publisher &
subscriber none publisher

Spec Operations extra argument
(newer spec) compliant compliant

Required App.
Transport Config code-based none file-based or

code-based

create_publisher(QoS_list,
listener);

create_publisher(QoS_list,
listener,
DDS_StatusKind);

61

Portability Challenges
DDS1 DDS2 DDS3

DomainParticipant
Factory compliant compliant proprietary

function

Register Data
Types static method member

method
member
method

Key Declaration //@key
single

#pragma
pair of
#pragma

Required App. IDs publisher &
subscriber none publisher

Spec Operations extra argument
(newer spec) compliant compliant

Required App.
Transport Config code-based none file-based or

code-based

struct Info {
long id; //@key
string msg;

};

#pragma keylist Info id

#pragma DCPS_DATA_TYPE “Info”
#pragma DCPS_DATA_KEY “id”

62

Lessons Learned - Pros
• DDS implementations are

optimized for different use cases &
design spaces

– Low latency for collocated
publishers and subscribers

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

63

Lessons Learned - Pros
• DDS implementations are

optimized for different use cases &
design spaces

– Low latency for collocated
publishers and subscribers

– Low latency for remote
publishers and subscribers 0

100
200
300
400

500
600
700
800

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

64

Lessons Learned - Pros
• DDS implementations are

optimized for different use cases &
design spaces

– Low latency for collocated
publishers and subscribers

– Low latency for remote
publishers and subscribers

– Scalability of the number of
subscribers

0
100
200
300
400

500
600
700
800

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 L

at
en

cy
 (i

n
us

)

DDS1
DDS2
DDS3

0

2

4

6

8

10

12

14

4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Data Sizes (in bytes)

R
ou

nd
 T

rip
 J

itt
er

 (i
n

us
)

DDS1
DDS2
DDS3

65

• Can’t yet make “apples-to-apples” DDS test
parameters comparison for all impls

• No common transport protocol
• DDS1 uses RTPS on top of UDP

(RTPS support planned this winter for
DDS2)

• DDS3 uses raw TCP or UDP
• Centralized/Federated/Decentralized

Architectures
• Broadcast can be a two-edged sword (router

overload!)

• DDS applications not yet
portable “out-of-the-box”

• New, rapidly evolving spec
• Vendors use proprietary

techniques to fill gaps,
optimize

• Clearly a need for
portability wrapper facades,
a la ACE or IONA’s POA
utils

• Lots of tuning & tweaking of
policies & options are required
to optimize performance

Lessons Learned - Cons

66

• Can’t yet make “apples-to-apples” DDS test
parameters comparison for all impls

• No common transport protocol
• DDS1 uses RTPS on top of UDP

(RTPS support planned this winter for
DDS2)

• DDS3 uses raw TCP or UDP
• Centralized/Federated/Decentralized

Architectures
• Broadcast can be a two-edged sword (router

overload!)

• DDS applications not yet
portable “out-of-the-box”

• New, rapidly evolving spec
• Vendors use proprietary

techniques to fill gaps,
optimize

• Clearly a need for
portability wrapper facades,
a la ACE or IONA’s POA
utils

• Lots of tuning & tweaking of
policies & options are required
to optimize performance

Lessons Learned - Cons

67

Future Work - Pub/Sub Metrics
• Tailor benchmarks to explore key

classes of tactical applications
• e.g., command & control,

targeting, route planning
• Devise generators that can emulate

various workloads & use cases
• Include wider range of QoS &

configuration, e.g.:
• Durability
• Reliable vs best effort
• Interaction of durability, reliability

and history depth
• Complementing of transport

priority & latency budget (urgency)

• Measure migrating processing to
source

• Measure discovery time for various
entities

• e.g., subscribers, publishers, &
topics

• Find scenarios that distinguish
performance of QoS policies &
features, e.g.:

• Listener vs waitset
• Collocated applications
• Very large # of subscribers &

payload sizes

68

Future Work - Pub/Sub Metrics
• Tailor benchmarks to explore key

classes of tactical applications
• e.g., command & control,

targeting, route planning
• Devise generators that can emulate

various workloads & use cases
• Include wider range of QoS &

configuration, e.g.:
• Durability
• Reliable vs best effort
• Interaction of durability, reliability

and history depth
• Map to classes of tactical

applications

• Measure migrating processing to
source

• Measure discovery time for various
entities

• e.g., subscribers, publishers, &
topics

• Find scenarios that distinguish
performance of QoS policies &
features, e.g.:

• Listener vs waitset
• Collocated applications
• Very large # of subscribers &

payload sizes

69

Future Work - Benchmarking Framework
• Larger, more complex

automated tests
• More nodes
• More publishers,

subscribers per test, per
node

• Variety of data sizes,
types

• Multiple topics per test
• Dynamic tests

• Late-joining
subscribers

• Changing QoS
values

• Alternate throughput measurement strategies
• Fixed # of samples – measure elapsed

time
• Fixed time window – measure # of

samples
• Controlled publish rate

• Generic testing framework
• Common test code
• Wrapper facades to factor out portability

issues
• Include other pub/sub platforms

• WS Notification
• ICE pub/sub
• Java impls of DDS

DDS benchmarking framework is open-source & available on request

70

Future Work - Benchmarking Framework
• Larger, more complex

automated tests
• More nodes
• More publishers,

subscribers per test, per
node

• Variety of data sizes,
types

• Multiple topics per test
• Dynamic tests

• Late-joining
subscribers

• Changing QoS
values

• Alternate throughput measurement strategies
• Fixed # of samples – measure elapsed

time
• Fixed time window – measure # of

samples
• Controlled publish rate

• Generic testing framework
• Common test code
• Wrapper facades to factor out portability

issues
• Include other pub/sub platforms

• WS Notification
• ICE pub/sub
• Java impls of DDS

DDS benchmarking framework is open-source & available on request

71

Concluding Remarks
• Next-generation QoS-enabled information

management for tactical applications requires
innovations & advances in tools & platforms

• Emerging COTS standards address some, but
not all, hard issues!

• These benchmarks are a snapshot of an
ongoing process

• Keep track of our benchmarking work at
www.dre.vanderbilt.edu/DDS

• Latest version of these slides at

DDS_RTWS06.pdf in the above directory

Thanks to OCI, PrismTech, & RTI for providing their DDS
implementations & for helping with the benchmark process

R&D

http://www.dre.vanderbilt.edu/DDS

	Evaluating the Performance of Pub/Sub Platforms for Tactical Information Management
	Demands on Tactical Information Systems
	Promising Approach:�The OMG Data Distribution Service (DDS)
	Overview of DDS Implementation Architectures
	Overview of DDS Implementation Architectures
	Overview of DDS Implementation Architectures
	DDS1 (Decentralized Architecture)
	DDS2 (Federated Architecture)
	DDS3 (Centralized Architecture)
	Architectural Features Comparison Table
	QoS Policies Comparison Table (partial)
	Evaluation Focus
	Evaluation Focus
	Evaluation Focus
	Evaluation Focus
	Overview of ISISlab Testbed
	Benchmarking Challenges
	Benchmarking Challenges
	Benchmarking Challenges
	Benchmarking Challenges
	1-to-1 Single Node Latency
	1-to-1 Single Node Latency
	1-to-1 Single Node Jitter
	1-to-1 Single Node Jitter
	1-to-1 Multiple Node Latency
	1-to-1 Multiple Node Latency
	1-to-1 Multiple Node Jitter
	1-to-1 Multiple Node Jitter
	Scaling Up Subscribers – DDS1 Unicast
	Scaling Up Subscribers – DDS1 Multicast
	Scaling Up Subscribers – DDS1 1 to 4
	Scaling Up Subscribers – DDS1 1 to 8
	Scaling Up Subscribers – DDS1 1 to 12
	Scaling Up Subscribers – DDS2 Broadcast
	Scaling Up Subscribers – DDS2 Multicast
	Scaling Up Subscribers – DDS2 1 to 4
	Scaling Up Subscribers – DDS2 1 to 8
	Scaling Up Subscribers – DDS2 1 to 12
	Scaling Up Subscribers – DDS3 Unicast
	Impl Comparison: 4 Subscribers Multicast
	Impl Comparison: 8 Subscribers Multicast
	Impl Comparison: 12 Subscribers Multicast
	Impl Comparison: 4 Subscribers Unicast
	Impl Comparison: 8 Subscribers Unicast
	Impl Comparison: 12 Subscribers Unicast
	Overview of DDS Listener vs. Waitset
	Impl Comparison: Listener vs. Waitset
	DDS Application Challenges
	DDS Application Challenges
	DDS Application Challenges
	Portability Challenges
	Portability Challenges
	Portability Challenges
	Portability Challenges
	Portability Challenges
	Lessons Learned - Pros
	Lessons Learned - Pros
	Lessons Learned - Pros
	Lessons Learned - Cons
	Lessons Learned - Cons
	Future Work - Pub/Sub Metrics
	Future Work - Pub/Sub Metrics
	Future Work - Benchmarking Framework
	Future Work - Benchmarking Framework
	Concluding Remarks

