
A Model-Driven Approach for Dependable Software Systems

Michael Jiang

Motorola Labs, Motorola, Schaumburg, IL 60196, USA

michael.jiang@motorola.com

Zhihui Yang

Mobile Device, Motorola, Libertyville, IL 60092, USA

zhihui.yang@motorola.com

Abstract

High dependability is a key requirement for many

types of systems, such as safety-critical systems,

telecommunication systems, and mission-critical

software systems. Although software components and

web services are proven technologies to tackle design

complexity, their reliability affects the reliability and

availability of the systems they are part of. The

composition of components and web services further

complicates the issue. For highly dependable systems,

the faults of components and web services have to be

minimized to achieve overall system dependability.

This paper describes a model-driven engineering

approach to improve the dependability of domain-

specific software systems built with component and

web service composition. In this framework, web

services and components are specified as model

elements and their dependability is enhanced by

generating both functional code and protective

mechanisms to reduce the impact of component and

service failures. The applicability of this approach is

demonstrated in our implementation and deployment

of mobile services.

Keywords: Dependability, availability, reliability,

Meta-model, web services, and software component.

1. Introduction

Various design methodologies and architectural

paradigms have been proposed to tackle the complexity

and reliability of large-scale software systems. Both

software components and web services are often used

to reduce design complexity. Software components and

web services serve as large building blocks and the

construction of large software systems is to integrate

and assemble these software building blocks. They

provide flexible and scaleable solutions for the design

and integration of complex systems and applications [1,

2, 3].

The construction of a software system with

component and web service composition brings new

challenges to the dependability of the system. Software

components, including commercial off-the-shelf

(COTS) components, offer various degrees of

reliability, depending on their functional complexity,

implementation, and deployment environment. Their

reliability may be unknown in design phase or vary

significantly depending on the platforms they run on.

The composition and interactions of components and

web services also contribute to the overall system

dependability and further complicate system analysis.

While some of the components may be hosted in the

same execution environment of their applications, the

deployment of web services is independent of their

consumers. Hence, the availability and reliability of a

web service is beyond the control of its client

applications. For systems that require high

dependability, the failures of components and services

must be handled to minimize their impacts to the

overall availability and reliability of the systems.

For clarification, the term dependability means both

system availability and reliability throughout this

paper. In some literatures, dependability may be used

as a collective term for reliability, availability,

maintenance, safety, and security.

This paper takes an integrated model-driven

engineering approach to model both the function and

dependability of software systems. In this modeling

framework, domain models are developed to capture

the logic of domain applications. Software components

and web services are represented as formal model

constructs to enable the specification of their

composition, interactions, and dependability. A model-

based development environment is developed for the

creation of domain-specific models and application

code is generated from the domain models. The

generated code implements both the functions of

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

domain applications and the handling of component

and web service failures to improve the overall system

dependability. Section 2 gives a brief overview of

modeling software components and web services.

Section 3 describes the domain-specific modeling

framework. Section 4 describes the application of the

modeling framework for building reliable mobile

services. Related work is described in section 5 and

conclusion is given in section 6.

2. Component and web service models with

dependability extensions

A component is a unit of software and is viewed as a

black box providing specific functions. Component-

based development takes the approach of integrating

and assembling these prefabricated components to

construct applications, as seen in many software

applications built with Enterprise JavaBeans (EJB),

Component Object Model (COM), Distributed

Component Object Model (DCOM), and CORBA

Component Model (CCM) [3].

A web service is a programmable interface

implemented and exposed by an application to other

applications via standardized web protocols. It is a

loosely coupled application or a software function

independent of underlying implementation languages,

transport protocols, and deployment platforms. The

interface and semantics of a web service are

represented by its WSDL (Web Services Description

Language) specification. It specifies the messages

exchanged for service invocation, deployment details

for locating the specified web service, and protocol

bindings for transport. Web services can be viewed as a

special type of software components with higher degree

of decoupling.

 We take a model-driven approach to integrate

components and web services and represent them as

model elements. Their functions and relationships with

other modeling or programming constructs are

specified at the model level. The modeling of

components and web services is further extended with

the specification of their dependability. Figure 1 shows

the representation of components and web services as

model elements and their associations with

dependability specification. Both components and web

services are specialization of class Service. Class

ServiceComponentRealization specifies the Artifacts

that provide concrete implementation for software

components. For web services, the WSDL specification

contains sufficient information for applications to

locate the service providers and invoke services from

the service providers.

Both components and web services are modeled and

validated based on their interfaces for composition.

Components and services are replaceable as long as

they are compatible at the interface level. OCL

constraints are also attached to the meta-models to

capture more syntactic and semantic information for

component composition, enabling stronger correctness

checking beyond the syntax checking and semantic

checking of the traditional component-based software

development [5, 6]. The integration rules and

constraints are enforced by the connectors linking

components and services. With the formal specification

of components and web services as model elements,

their functional specification and interactions can be

verified within the context of a domain model.

Class DependabilitySpec extends the specification

of components and web services to incorporate the

specification of component and service failures and the

strategies to handle these failures. Different types of

failures and their associated handling strategies are

described in Class ComponentDepSpec and

WSDepSpec. Failure types include both value-based

and exception-based types. For value-based failures,

the return values from the component and service

invocation indicate the types of failures. For example,

the return value of “-1” may be used to indicate a

specific failure of component invocation, similar to the

conventions used in some of the UNIX library calls.

Exception-based failure types represent the types of

exceptions declared in and thrown by components and

web services.

Specific failures of components and web services

and their handling strategies are specified in class

ComponentDepSpec and WsDepSpec respectively. The

following types of handlers are defined for

components: re-invoking the component service,

restarting the component, and ignoring component

failure. The failures of web services are handled in

similar fashion with the exception that there may be

multiple service providers for a particular web service. Fig.1. Modeling components and web services

WSFailureHandler ComponentFailureHandler ServiceComponentRealization

ComponentDepSpec

<<qos>>

0..n

0..1

+compFailHandler
0..n

0..1

ServiceComponent

<<dmComponent>>

1..n

1

+realizeSC
1..n

1
0..n 0..n

+compDepSpec

0..n 0..n

WSDepSpec

<<qos>>

0..n

0..1

+wsFailHandler
0..n

0..1

Webservice

<<ws>>

0..n0..n+wsDepSpec0..n0..n

Service

<<service>>

DependabilitySpec

<<qos>>
0..n

0..n

+depSpec

0..n

0..n

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

Class WsDepSpec defines a list of web service

providers and allows the invocation of a web service

from any available web service providers. In the event

of a web service failure, the list of web service

providers can be invoked sequentially until the

invocation succeeds or the list depletes. Class

DependabiltySpec also defines the strategies to control

how each of the failure handlers are triggered. For

example, the control mechanism may specify number

of component failures before a component will be

restarted. It may also specify how redundant web

services are invoked in the event of web service

failures.

One of the implications for such protection

mechanisms is that it requires the protected software

units to be stateless to ensure the failure handling is

transparent to the application logic. Since software

components and web services are generally defined to

be stateless, their failures can be handled by the above

protection mechanism without impacting the

application logic. For stateful software units, the failure

handling needs to be customized.

The modeling of components and web services

along with their dependability specification is to

automatically generate the protection mechanisms

based on the handling strategies declared in the

dependency specification. The dependability

specification of a component or a web service is

implemented by a delegation pattern with extension to

handle the failures of component and service

invocations. Invocations of components or web

services are delegated to their concrete

implementations and failures from invocations are

intercepted, interpreted, and handled according to the

strategies in the dependability specification.

3. Modeling framework for mobile services

This section describes the modeling of mobile

services and applications. The structures, behaviors,

configuration, and deployment of mobile services are

specified using Eclipse Modeling Framework and our

extensions to this modeling framework for the

modeling, integration, validation, and runtime support

of components and web services. A development

environment based on the domain meta-models is

developed for the specification of domain applications.

Code is generated from model specifications for both

the application logic and the failure protection

mechanisms to handle failures of components and web

services.

3.1. Mobility service models with

dependability specification

Developing a mobility service model involves the

specification of model constructs representing the

domain elements and their relationships. Some of the

key domain elements are the domain services,

messages, message handlers, and service processors.

Figure 2 shows a portion of the mobility service meta-

models for message-based services and the

dependability specification which components and web

services are associated with. Class MobilityService is

the generalization of all types of concrete mobile

services, such as message-based services

(MessagingService), location-based mobile services

(LocationService), and mobile web services

(MobilityWebService). Class MobilityService also

functions as a container for deployment configuration,

service processors, web services, and components

interacting with legacy systems.

Fig.2. Portion of the domain meta-models for mobile services

LocationService

BundledServices

Configuration Service

0..n

0..1

0..n

0..1

0..n 0..10..n 0..1

MobilityWebService

MMSServiceType

<<enumeration>>

SMSServiceType

<<enumeration>>

SMSMessageConfiguration

type : SMSServiceType
SMSMessageProcessor

<<dmComponent>>

1..n 0..1

+smsServiceConfig

1..n 0..1

DependabilitySpec

<<qos>>

FaultType

<<enumeration>>

MessageConfiguration MessagingService

0..n 0..1
+msgServiceConfig
0..n 0..1

MessageProcessor

<<dmComponent>>

0..n0..1

+msgProcessor

0..n0..1

DeploymentDescriptor

MobilityServiceConfiguration

0..n

0..1

+deployment 0..n

+serviceConfig

0..1

WSDepSpec

<<qos>>

MobilityService

0..n 0..1

+config

0..n 0..1

LogService

<<dmComponent>>

BillingService

<<dmComponent>>

WebService

<<ws>>

0..n

0..n

0..n

0..n

ServiceProcessor

<<dmComponent>>
0..n

1

+processor

0..n

1

0..n

0..n

+log

0..n

0..n

0..n

0..n

+billing
0..n

0..n

0..n

0..1

0..n

0..1

MMSMessageConfiguration

type : MMSServiceType
MMSMessageProcessor

<<dmComponent>>

0..n

0..1+mmsServiceType

0..n

0..1

MsgHandler

<<dmComponent>>

0..n0..n

+message

0..n0..n

ComponentDepSpec

<<qos>>

0..n
0..n

0..n
0..n

0..n

0..n

0..n

0..n

0..n0..n

+depSpec

0..n0..n

0..n

0..n0..n

0..n
+depSpec

+depSpec

+depSpec

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

 Class MobilityServiceConfiguration specifies the

various parameters and options to facilitate the

generation of deployment descriptors and the

packaging of applications for platform-specific

implementations. Class MessageConfiguration carries

deployment options specifically for message-based

applications and services. SMSMessageConfiguration

specifies options for SMS (Short Message Service)

messages, with service type described by enumeration

type “SMSServiceType”.

The integration of components is accomplished

through their interfaces discussed earlier. A component

can be connected with another if the required interface

type matches that of the provided interface. A

component is also replaceable with another component

if their interface types match, thus enabling reuse of

components across different applications and services.

The properties of components are used to specify

further details of component implementation for code

generation and application packaging.

Components and web services are associated with

class DependabilitySpec to specify their failures and

corresponding handling mechanisms. The

dependability specification for class ServiceProcessor,

LogService, and BillingService is specified by class

ComponentDepSpec. Class WSDepSpec is associated

web services for dependability specifications. As

discussed in previous section, the types of failures and

their associated handlers are captured by class

DependabilitySpec. The dependability specification

together with the functional specification of

components and web services provides complete

information to generate the protection code and

associate it with the invocation of components and web

services.

The explicit modeling of domain structures, rules,

and constraints in the domain meta-models also

facilitates the construction of tools for model-based

development discussed next.

3.2. Generating dependable applications

 The specification of a domain application and its

domain meta-models are interpreted to generate code

for the application. The code generated includes two

related packages: code for manipulating the domain

model and code for specific applications. The code for

model manipulation is produced by the Eclipse code

generation facility, including the generation of Java

packages, classes, methods, attributes, and references.

The Eclipse code generation facility is extended to

generate code specific to the domain application, create

deployment configuration, and integrate with

components and web services specified in the

application model.

The dependability specification dictates how

component failures are handled in the generated code.

Figure 3 illustrates the scheme of handling component

failures. A “Dependable Delegate” is generated to

handle all interactions with a component. The

“Dependable Delegate” defines all the interfaces

declared in the component. An invocation (such as

“invokeService()”) is passed to the delegate which in

turn routes it to the component to invoke the actual

service. Invocation results are returned to the invoking

application via the delegate. For the application, the

function of the inserted delegate is transparent and the

overhead is minimal since an invocation simply passes

through the delegate if the invocation is successful. If

the invocation fails, the “Dependable Delegate” will act

upon the failure based on the failure handling strategies

declared in the dependability specification. Actions

may include re-invoking the service, restarting the

component, or simply passing the failure along. The

handling of web service failures follows similar

scheme.

As an example to illustrate the generation of failure

handling code, the invocation of logging a call detail

record without failure handling,

billingComp.log(aCDR), is transformed to the

following code template to handle component failure:

if (depSpec.isValueErrType()) {

//call billing service to log call-detail-record (aCDR)

 result = billingCompProtector.log(aCDR);

 if (result == depSpec.getErrValue()) {

 // handle fault based on strategies

}

 return result;

}

if (depSpec.isExceptionErrType()) {

 try {

 //calling the billing service

 return billingCompProtector.log(aCDR);

 }

 catch (…) {

//handle specific fault based on strategies

}

ComponentApplication

InvokeService() InvokeService()

ReturnResult()ReturnResult()

Failure()

Component

Failure

Handler

Restart()

F
o
rw
a
rd
R
e
s
u
lt

R
e
-i
n
v
o
ke
()

Fig.3. Generated failure handler for components

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

catch (Exception anException) {

 // handle general fault based on strategies

}

}

Different types of failure handling strategies in the

DependabilitySpec are used to handle different types of

components and web services based on the strategy

specification. Web services, for instance, may require

the handling of connection time out. If the same web

service is deployed on two hosts, one of the handling

strategies is to pick one host to invoke the service first

and try the other one if the invocation fails. The failure

handling strategies are automatically translated into

implementation code and integrated with the

application code.

 We choose J2EE as the target platform for

deploying domain applications. To generate and

package code for an application, the code generation

facility first creates a J2EE enterprise application

project and populates the project structure with

skeleton code. The code generation facility then

interprets the application model and its model elements

to produce corresponding Java code and J2EE

deployment descriptors. The properties of receiving

SMS and MMS messages in the modeled message

component, for instance, are interpreted by the code

generation facility to produce code to invoke the

common utility services designed for receiving SMS

and MMS messages.

The generated code also provides interfaces and

extension points for the integration of customization

code to further extend the functionality of the generated

application. The generated application code,

customization code added through the extension points

defined in the generated code, and runtime libraries for

service components are packaged as standard J2EE

applications to be deployed on application servers. A

browser-based test client is also generated to facilitate

the validation of the generated application.

3.3. An environment for modeling domain

applications

We developed a set of tools for modeling domain

applications and generating application code. Although

the formal specifications of domain meta-models

provide complete information for constructing domain

applications, it is inconvenient for application

developers to model applications and services directly.

A model-driven approach is taken to build such a

model-based development environment.

Models are created for graphical definitions and tool

definitions. These models are combined with the

domain meta-models to serve as the foundation to build

the GUI-based development environment. A graphical

definition model defines the visual aspects of domain

models in the development environment. It defines the

graphical notations (icons, nodes, and connections)

commonly used for visual representation of domain

elements in the mobility service domain. A tool

definition model is also used to specify tool elements

(e.g. palette elements) for nodes and linkages for the

model editor.

Mappings are defined to bind the elements in the

domain model, graphical definition model, and the tool

model to constrain and guide the creation and

composition of model elements to build application

models. While the graphical definition and tooling

models provide visual aids to build application models,

the semantics for model construction is contained in the

domain meta-models. Mapping among the models is to

ensure the correctness of the application models

created in the development environment.

We extended the Eclipse Modeling Framework

(EMF) [7] and Graphical Modeling Framework (GMF)

[8] to implement the model-driven development

environment for mobile services. The design of the

development environment is entirely driven by the

domain meta-models. While the development

environment enables application developers to

construct application models using domain notations,

the application models are validated by using the

domain meta-models. For instance, the composition of

two components must have matching interface and the

implementation artifact must be supplied before

application code can be generated.

The mobile service creation framework is

implemented as a set of plug-ins in Eclipse, an

extensible open source development platform and

application frameworks. The domain modeling of

mobile services is based on the Eclipse Modeling

Framework and the design of the development

environment is based on the Eclipse Graphical

Modeling Framework). The Eclipse Web Tools

Platform (WTP) is used for generating J2EE projects

and packaging domain applications for deployment.

The packaged mobile applications and services are

deployed on standard-based J2EE Application Servers.

4. Building and deploying message-based

mobile services

The model-based component framework was

employed to develop and pilot a number of mobile

applications and services for several wireless service

providers. We collaborated with these wireless service

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

providers to provision the wireless networks to route

SMS and MMS messages and support the deployment

of mobile applications that are designed and generated

from our model-based component framework. Results

from the model specification, generation, and

deployment of mobile applications and services

showed substantial improvement in software

development productivity over our own code-centric

approach.

Figure 4 illustrates a message-based mobile

application that checks flight status and provides

weather information for mobile users. A mobile station

sends an SMS message with flight numbers and carrier

names to the service provider (predefined SMS code).

The application extracts the content from the message,

invokes the flight status web service, composes an

MMS message containing flight status with

advertisement, and sends the composed MSM message

back to the sender. The usage of the service is also

logged.

An instance of WSDepSpec (dependability

specification from web services) is created and

associated with FightStatusService web service.

Redundant web services (multiple web service hosts

offering the same service) are specified using this

instance and they are configured to be invoked in a

round-robin fashion. Similarly an instance of

ComponentDepSpec is associated with logging services

to ensure usages are recorded reliably.

5. Related work

The Generic Modeling Environment [9] provides a

configurable toolkit for specifying meta-models and

creating domain-specific modeling environments from

meta-models. The modeling paradigm defines the

family of models that can be created using the

generated modeling environment. Cadena [10]

describes an integrated environment for building and

modeling CORBA Component Model (CCM) in

software systems. It provides facilities for defining

component types using CCM IDL, assembling systems

from CCMcomponents, and verifying correctness

properties of models of CCM systems derived from

CCM IDL. The author in [11] describes a modeling

infrastructure for integrating different modeling

techniques and the transformation of models based on

meta-models. Its code generation produces

implementation skeletons and platform glue code for

developers to integrate with business logic. A domain-

specific modeling language is described in [12] to

specify component interface definitions, component

interactions, and component deployment. Authors in

[13] describes model-typed interfaces based on generic

interface parameters to facilitate the transfer of

complex structured data between components and

compatibility checks of model-typed interfaces at

assembly time.

Authors in [14] describe a source-to-source

compiler technique that applies source code

transformation rules to introduce code modification for

fault detection. Data and code duplication was

introduced to improve software dependability. Authors

in [15] introduce a multiple view modeling approach to

ensure component dependability. Component models

are specified with four modeling perspectives:

component interface, static behavior, dynamic

behavior, and interactions. Consistencies and

dependencies among the models are established and

maintained to achieve system dependability. In [16],

self healing mechanism is proposed to build reliable

systems based on connectors. Besides synchronizing

message communication between tasks in a component,

connectors are extended to support self healing by

detecting anomalies in anomalous objects,

reconfiguring objects in components, and repairing

anomalous objects detected.

The framework described in this paper takes the

integrated modeling of application domains,

components, web services, and their dependability. The

framework also automates the generation and

integration of both application code and a failure

protection code from the domain models. Compared to

previous approaches, the integrated framework

described in this paper allows the specification of

component and service dependability at the model level

independent of languages and platforms. Platform and

language specific code is generated from models to

implement both the functional and dependability

specifications.

Fig.4. A message-based mobile application model

Start

Flight

Status

Message

Send

MMS

Message

Y

Flight

Status

Service

Compose

MMS

Message

Valid

Message

N /*ignore*/

End

Log

Usage

Weather

Service

Message

Valid

Message

N /*ignore*/

Weather

Info

Service

WSDepSpec

Component

DepSpec

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

6. Conclusion

This paper describes a model-based approach for

the specification and generation of dependable mobile

applications and services. The key contributions of this

work are the integrated specification of functions and

dependability in domain-specific models, the automatic

generation of protection mechanisms to minimize

component and web service failures, and the generation

of applications from domain models to reduce coding

efforts. The pilots of this framework with applications

developers and service providers showed productivity

improvement in developing and deploying mobile

services. Legacy systems and wireless infrastructure

services are abstracted as model-level components in a

domain-specific modeling environment to automate

integration and validation. While most of the modeling

technologies generate skeleton code, this integrated

framework captures domain models and domain rules

to further automate the generation of applications.

Dependability specification is an integrated part of the

domain meta-models to generate domain applications

with improved availability and reliability. Compared to

our previous code-centric approach to developing

mobile applications and services, substantial

improvement on productivity and dependability was

achieved with the integrated framework and its

development environment.

Integrating components and web services into

model-driven development can be a very effective

solution to improve both software productivity and

quality. With the specification of component and

service dependability, further improvement on software

quality and reliability can be achieved. Besides the

application domain discussed in this paper, we believe

the approach can be effectively applied to other

domains for application development. One of the goals

for our future work is to extend this framework for the

specification of performance and real time

requirements.

7. References

[1] C. Szyperski, Component Software: Beyond Object-

Oriented Programming, Addison-Wesley / ACM Press,

2002.

[2] World Wide Web Consortium (W3C), Web Services,

http://www.w3.org/.

[3] J. Greenfield et al., Software Factories: Assembling

Applications with Patterns, Models, Frameworks and Tools,

John Wiley & Sons, 2004.

[4] Object Management Group, CORBA Component Model,

http://www.omg.org/technology/documents/formal/compone

nts.htm.

[5] T. Genßler and C. Zeidler, Rule-driven Component

Composition for Embedded Systems, 4th ICSE Workshop on

Component-Based Software Engineering: Component

Certification and System Prediction, May 2001.

[6] J. Dong, Model checking the composition of hypermedia

design components, Proceedings of the 2000 conference of

the Centre for Advanced Studies on Collaborative research,

2000.

[7] Eclipse Foundation, Eclipse Modeling Framework (EMF)

http://www.eclipse.org/emf/.

[8] Eclipse Foundation, Eclipse Graphical Modeling

Framework (GMF) http://www.eclipse.org/gmf/.

[9] Institute for Software Integrated Systems (ISIS), The

Generic Modeling Environment (GME),

http://www.isis.vanderbilt.edu/Projects/gme.

[10] J. Hatcliff, et al, Cadena: An Integrated Development,

Analysis, and Verification Environment for Component-

based Systems, Proceedings of the 25th International

Conference on Software Engineering (ICSE’03).

[11] O. Kath, An Open Modeling Infrastructure integrating

EDOC and CCM, Proceedings of the Seventh IEEE

International Enterprise Distributed Object Computing

Conference (EDOC’03).

[12] K. Balasubramanian, J. Balasubramanian, J. Parsons, A.

Gokhale, D. C. Schmidt, A Platform-Independent

Component Modeling Language for Distributed Real-time

and Embedded Systems, Journal of Computer and System

Sciences, volume 73, issue 2, 2007.

[13] G. Schmoelzer, E. Teiniker, C. Kreiner, M. Thonhauser,

Model-typed Component Interfaces, Proceedings of the 32nd

EUROMICRO Conference on Software Engineering and

Advanced Applications (EUROMICRO-SEAA'06).

[14] M. Rebaudengo, M.S. Reorda, M. Violante, M.

Torchiano, A Source-to-Source Compiler for Generating

Dependable Software, Proceedings of the First IEEE

International Workshop on Source Code Analysis and

Manipulation, 2001.

[15] R. Roshandel and N. Medvidovic, Multi-View Software

Component Modeling for Dependability, in Architecting

Dependable Systems II, Lecture Notes in Computer Science,

2004.

[16] M. E. Shin and D. Cooke, Connector-Based Self-

Healing Mechanism for Components of a Reliable System,

Workshop on Design and Evolution of Autonomic

Application Software, ICSE, 2005.

Seventh International Conference on Quality Software (QSIC 2007)
0-7695-3035-4/07 $25.00 © 2007

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 11, 2009 at 11:22 from IEEE Xplore. Restrictions apply.

