
A Taxonomy of Discovery Services and
Gap Analysis for Ultra-Large Scale Systems∗

Joe Hoffert, Shanshan Jiang, and Douglas C. Schmidt
Institute for Software Integrated Systems

Vanderbilt University
2015 Terrace Place
Nashville, TN 37212

{joseph.w.hoffert,shanshan.jiang,d.schmidt}@vanderbilt.edu

ABSTRACT
Timely discovery of services in ultra-large scale (ULS) sys-
tems plays a vital role in critical areas, such as national
power grids, homeland security, and health care. This paper
develops a taxonomy for classifying discovery services and
presents an overview of existing discovery service technolo-
gies. It then classifies these discovery services using the tax-
onomy and performs a gap analysis for discovery services
with respect to emerging ULS systems. Our results show
that while discovery services are fairly mature and broadly
applicable to today’s systems much R&D remains to support
emerging systems of ultra-large scale effectively.

Keywords
Discovery Services, Taxonomy, ULS Systems, Gap Analysis

1. INTRODUCTION
As distributed systems grow to encompass large numbers

of components that provide different types of services, it
becomes increasingly important to discover these services
in a scalable and dependable way. Discovery services are
part of many distributed computing technologies, such as
CORBA [11], Jini [16], Web Services [3], and Universal Plug
and Play [19]. This paper provides a taxonomy of various
discovery services, evaluates existing discovery services using
this taxonomy, and identifies gaps in the ability of current
discovery services to meet the needs of emerging ultra-large
scale (ULS) systems, such as the Global Information Grid
(GIG) [1].

ULS systems are an emerging area of research and de-
velopment [6]. They are characterized by such properties
as decentralization; inherently conflicting, unknowable, and
diverse requirements; continuous evolution and deployment;
heterogeneous, inconsistent, and changing elements; erosion
of the people/system boundary; normal failures; and new

∗This work is supported in part by the AFRL/IF Pollux
project and NSF TRUST.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE 2007, March 23-24, 2007, Winston-Salem, N. Carolina, USA
Copyright 2007 ACM 978-1-59593-629-5/07/0003 ...$5.00.

paradigms for acquisition and policy. Although these char-
acteristics are evident in today’s large-scale systems (such
as the Internet, air traffic management systems, and power
grid control systems), scale and inherent decentralized con-
trol will dominate in ULS systems.

As ULS systems continue to grow and mature the impor-
tance of discovery services that can handle the characteris-
tics of these systems increases dramatically. ULS systems
need to build upon existing legacy systems, which may not
support the latest discovery service technology. Moreover,
many discovery services have closed architectures that do
not support other types of discovery services, which is inad-
equate for ULS systems.

ULS systems also require a great deal of flexibility in ser-
vice discovery. For example, failures and disconnectivity
will be commonplace, so alternatives for services must be
located and negotiation of services must be conducted to
use available resources effectively and support safety- and
mission-critical systems. Quality of service (QoS) support
will also be essential for ULS systems since when a service
is found is often as critical as which service is found, i.e., a
less-than-ideal service found in a bounded amount of time
may be better than an ideal service that is located too late.
Research is therefore needed to understand the implications
of the many dimensions in which ULS systems need support
from discovery services.

The remainder of the paper is organized as follows: Sec-
tion 2 describes a taxonomy of different categories of dis-
covery service properties; Section 3 summarizes various dis-
covery service technologies and maps the surveyed discov-
ery services to the taxonomy categories in Section 2; Sec-
tion 4 performs a gap analysis of discovery services needed
for ULS systems running in mobile ad hoc networks; and
Section 5 presents concluding remarks that describe the re-
search needed to address the gaps described in Section 4.

2. A TAXONOMY OF DISCOVERY SER-
VICES

Discovery services can be used for many purposes and in
many contexts, such as powering up a laptop and looking
for a nearby printer, networking small wireless devices rel-
evant to a single person, finding music on the Internet, or
locating the closest emergency room in a disaster recovery
operation. This section presents a taxonomy that catego-
rizes the properties common between discovery services and
the properties that differentiate them so that existing discov-
ery services can be compared and contrasted meaningfully.

1

Table 1 outlines the categories in this taxonomy.

Categories Alternatives
Request granularity fine- vs. coarse-grained
Structure discovery richly vs. simply structured
Resource constraints constrained vs. unconstrained
Service lookup strategy named vs. property-based
Network scope and type LAN vs. WAN
Heterogeneity supported vs. not supported
Discovery QoS supported vs. not supported
Service negotiation supported vs. not supported

Table 1: Taxonomy of Discovery Service Categories

The categories in this taxonomy are described as follows:
• Request granularity. This category includes support

for fine-grained requests and coarse-grained requests. Fine-
grained discovery allows for very detailed requests, which
can include dynamic properties of the desired service it-
self. An example for this property would be discovering
the closest color laserjet printer with a certain DPI reso-
lution. Coarse-grained querying, in contrast, only allows
specification of general high-level capabilities, such as sim-
ply locating a printer. It has the disadvantage of decreased
flexibility compared to fine-grained queries, but the advan-
tage of easier development and use.

• Structure discovery. This category distinguishes be-
tween discovery of objects that are richly structured versus
discovery of objects that have a simple structure. Richly
structured objects can provide functionality that users can
access programmatically via an API. An example is object
references returned by distributed computing middleware,
such as CORBA or Java Remote Method Invocation (RMI).
Supporting the discovery of richly structured objects sim-
plifies the development of distributed applications. This
functionality can increase the overhead and complexity of
a discovery service, however, since it must manage informa-
tion about the kinds of objects it supports, as well as how
it presents these objects so users can interact with them
appropriately.

Conversely, simple structured objects, such as text or bit-
mapped graphical images, are homogeneous and provide lit-
tle or no functionality themselves, which greatly limits user
manipulation of these objects. These limits are not a con-
cern, however, for certain types of applications, such as a
web browser on a PDA. The advantage of simple structured
objects is that they can be supported easily and the dis-
covery service itself need know little or nothing about the
objects themselves.

• Resource constraints. This category differentiates
discovery services based on the typical resources that users
of the service will have. Some discovery services are de-
signed for highly resource constrained platforms, whereas
others are not. Examples of resource constrained nodes in-
clude PDAs, cell phones, and remote sensors, as opposed
to relatively resource-rich nodes, such as laptops, desktops,
and servers. Whether a user is resource constrained and/or
is deployed in an environment that is resource constrained
affects the development of the discovery service since the dis-
covery service will, in part, need to participate in the same
environment or otherwise be constrained itself.

For instance, if memory is at a premium then coarse-
grained queries might only be supported since fine-grained

queries imply the use of some type of database. At the very
least, fine-grained queries must be highly optimized for a
particular environment and would not provide much flexi-
bility in the types of services they support. These optimiza-
tions, in turn, limit the flexibility of queries supported.

• Service lookup strategy. Another differentiation be-
tween discovery services involves how users identify the ser-
vice they want to discover. Some discovery services use
names to identify services, which is analogous to the “White
Pages” where telephone numbers are indexed according to
people or businesses names. This type of discovery can be
implemented efficiently by using the name as a key to quickly
locate the appropriate service. For example, a laptop could
lookup a printer by its name.

Other discovery services offer property-based service lookup
akin to the “Yellow Pages” that are indexed by properties
rather than names. In this case, users need not know the
name of a particular service, but instead provide particu-
lar properties. For example, a laptop could also look up a
printer by its properties, such as a color printer with 600
DPI and more than 200 sheets in its paper tray.

Name-based lookup is generally more efficient than property-
based lookup. It is also more limited, however, since desired
properties of the retrieved service can only be implied by
some means outside of the discovery service itself. Moreover,
the requester of a named service must be “bootstrapped” in
some fashion so that it somehow knows the name.

• Network scope and type. Some discovery services
are designed for local area networks (LANs). In this case,
custom network protocols can be used to communicate be-
tween users and the discovery service. For example, a dis-
covery protocol developed atop hardware multicast is often
an efficient way to locate services on a LAN.

Other discovery services are designed for wide area net-
works (WANs). In this case, more sophisticated protocols
must be used to locate services globally, which requires larger,
more complex global addresses and more state to keep track
of efficient routes through large network topologies. For ex-
ample, a WAN-based discovery service may need to develop
spanning trees to minimize hops through the WAN. While
discovery services developed for WANs will necessarily be
more complex to handle a wide array of concerns, they can
scale to a broader scope.

• Degree of heterogeneity. Some discovery services
support heterogeneous discovery service technologies and
bridge the differences between them. For instance, the client
could issue a request with one discovery service technology
(e.g., the CORBA Trading Service) and the discovery ser-
vice would be able to retrieve an appropriate service that
registered itself with a different discovery service technology
(e.g., UDDI).

Some discovery services are designed to work with just one
technology. For example, Jini is designed to work with Java
RMI and leverages its ability to download bytecode from a
service provider into the requesting client. The advantage
of such a homogeneous design is that a discovery service can
be optimized to take advantage of particular characteristics
of that technology.

• Discovery QoS. Most discovery services provide clients
with“best effort” strategies that provide no assurance when
a service will be discovered and provided to clients. A dis-
covery service that supports QoS, in contrast, could specify
service level agreements for the services it provides. For ex-

2

ample, a discovery service client could designate that if a
requested service was not located within a specified amount
of time the “not-found” status would be returned.

• Service negotiation. A client of a service typically
requests a particular service and the discovery service either
returns (a reference to) that service or no service at all (e.g.,
via the “not-found” status). A discovery service that sup-
ports negotiation of services could interact with the client
to determine alternatives to the initial request should that
request not be available.

The categories presented above extend earlier work by
Vanthournout et al. [20], whose taxonomy helps system de-
velopers choose a discovery service appropriate for their ap-
plications. This paper, however, considers some discovery
services different from theirs, including some that are still
being researched (such as the Service Discovery Broker En-
gine [7] that provides a bridge between disparate discovery
service technologies). We also enumerate different taxonomy
categories that we use to classify discovery services, includ-
ing service negotiation and QoS support for discovery, and
evaluate discovery services in light of the requirements man-
ifested by ULS systems, as discussed in Section 4.

3. DISCOVERY SERVICES OVERVIEW AND
CLASSIFICATION

This section describes the discovery services that we sur-
veyed and taxonomizes these services based on the categories
presented in Section 2. We first briefly describe the discov-
ery services we considered for this paper.

• CORBA Naming Service. The CORBA Naming
Service [12] supports discovery of objects that implement
various services keyed by names, akin to the “White Pages.”
After a reference to an object is obtained, operations on the
object can be invoked to access the designated services.

• CORBA Trading Service. The CORBA Trading
Service [10] supports discovery of objects that implement
various services based upon various static or dynamic prop-
erties, akin to the “Yellow Pages.” As with the CORBA
Naming Service, a reference to an object is obtained and
operations can be invoked on the discovered object.

• Jini Lookup Service. The Jini Lookup Service [17]
provides a federated way for Java clients to discover services
using Java RMI. The Java client makes a request to the Jini
Lookup Service and specifies an interface. The lookup ser-
vice then returns a Java object matching the interface or a
proxy for a non-Java service. Since this discovery service is
based on Java RMI a requested object (including its byte-
code and state) can be downloaded to the client. Jini’s use
of Java RMI enables optimizations (such as caching of ob-
jects) and flexibility (such as downloading smart proxies to
the client). It can also have undesirable side effects, however,
such as increased latency and jitter when first transferring
the object.

• Data Distribution Service (DDS) discovery ser-
vices. The Real Time Innovation (RTI) DDS and PrismTech
OpenSplice implementations of the OMG DDS [13] specifi-
cation provide highly configurable QoS parameters for anony-
mous real-time publish/subscribe. These DDS implementa-
tions also provide peer-to-peer discovery services whereby
topics (which provide a unique identifier for particular data
items within the global data space) can be discovered by
entities that are interested in those topics (i.e., data writers

and data readers which respectively write and read data).
Discovery occurs in two steps: (1) the domain participants
(which include the local entities that are grouped by a com-
mon domain or communication enclave) send out messages
to discover each other using best-effort communication and
(2) the domain participants exchange information about their
data writers and data readers using reliable communication.

• Simple Service Discovery Protocol (SSDP). SSDP
[19] is used by UPnP to allow controllers (a.k.a. control
points) to find devices and learn about device capabilities.
When devices first join a network they send out short mes-
sages advertising themselves that are multicast to a well-
known address and port. The control points listen at this
address and port and receive the synopsis of the device’s
capabilities. More detailed information can be retrieved via
a URL that is supplied. Likewise, when a control point first
joins the network it sends out messages that include a target
or pattern used to match devices or services.

• Service Location Protocol (SLP). SLP [18] is a ser-
vice discovery protocol that allows computers and other de-
vices to find services in a LAN without prior configuration.
SLP has been designed to scale from small, unmanaged net-
works to large enterprise networks. In SLP, a user agent,
which is a software entity looking for appropriate services,
emits a request message to query the types of services avail-
able. This message can be unicast or multicast and may be
received by either a service agent or a directory agent. The
service agent is the software entity that knows the location of
one or more services and can therefore reply to the request.
A dialog can occur between the user agent and the service
agent if a service agent knows the location of a desired ser-
vice. The optional directory agent is used as a centralized
repository for the location of services, which can enhance
performance since a user agent can unicast messages to a
known directory agent to request a service as opposed to
multicasting requests when no directory agent is available
or known.

•Bluetooth Service Discovery Protocol (SDP). Blue-
tooth [2] supports the interconnection of a broad selection of
wireless devices (e.g., mobile phones, computers, and PDAs)
using short-range wireless connections. The Bluetooth SDP
creates boot up connections for devices via the Logical Link
Control and Adaptation Protocol (L2CAP) layer and is con-
sidered orthogonal to the discovery protocol. Users can
then send request messages either to a particular device
(if it is known) or to the unknown devices in the piconet
(which is the short-range, ad-hoc network automatically cre-
ated, modified, and deleted as devices enter and leave radio
range). These request messages can relay various types of
requests (i.e., listing of available services, query for a par-
ticular service with or without specific attributes).

• Universal Description, Discovery, and Integra-
tion (UDDI). UDDI [9] is a platform-independent, XML-
based registry for businesses to list themselves and their ser-
vices on the Internet. At its inception the targeted industry
was business-to-business (B2B) service delivery. UDDI cre-
ates various service description templates and registers them
in the UDDI Business Registry (UBR). Businesses then in-
stantiate and fill in applicable templates with the services
they support. These service descriptions are registered with
the UBR, which gives each service and business registra-
tion a unique ID. Users can query the registry to discover
desired services. As part of registration, businesses store in-

3

Discovery
Service

Request
Granularity

Structured
Discovery?

Resource
Constrained?

Named
Service
Lookup?

Network
Scope

Heterogeneity? Discovery
QoS?

Service
Negotiation?

Options Fine Coarse Yes No Yes No Yes No LAN WAN Yes No Yes No Yes No
CORBA
Naming Service X X X X X X X X

CORBA
Trading Service X X X X X X X X

Jini Lookup
Service X X X X X X X X

Surveyed DDS
Implementations X1 X X X X X X X2 X

SSDP X X X X X X X X

SLP X X X X X X X X

Bluetooth SDP X X X X X X X X

UDDI X X X X X X X X

JXTA X X X X X X X X

Gnutella X X X X X X X X

Napster X X X X X X X X

1 The DDS implementations surveyed provide coarse-grained request granularity when discovering participants and fine-grained
granularity when discovering data readers and data writers.
2 The DDS implementations surveyed provide limited quality of service support for discovery by specifying metatraffic transport
priorities and restricting nodes that are able to connect.

Figure 1: Classification of Discovery Services

formation about themselves in the “White Pages,” informa-
tion about their category of business in the “Yellow Pages,”
and information about how other businesses should conduct
business with them in the “Green Pages.” UBRs can either
be public (where any business can query for the service of
another business) or private (which are used within organi-
zations to advertise services).

• JXTA. JXTA [14] is a set of open-source XML-based
protocols that allow connected devices on the network to
communicate and collaborate with other connected devices.
The intended devices range from cell phones and wireless
PDAs to PCs and servers. JXTA supports a peer-to-peer
(P2P) paradigm where a network overlay is formed to al-
low direct communication even if a peer is behind a firewall
or a network address translation (NAT) service. Two clas-
sifications of peers are used when developing the network
overlay: (1) an edge peer, such as a low-bandwidth device
with transient connectivity, and (2) a super-peer, which is a
proxy for other peers that would not otherwise communicate
(e.g., edge peers on different subnets or peers hidden behind
a firewall or NAT service).

• Gnutella. Gnutella [5] is a resource sharing network
used primarily to exchange files. It uses a P2P architecture
that enables clients to also be servers. When a client initi-
ates a query for a resource it contacts the list of peers that
it knows. With the network overlay scheme Gnutella em-
ploys, if the contacted peers do not have the resource they

forward the request onto the peers which they know. This
forwarding continues until a hop count (a.k.a. time-to-live)
value is reached. If the resource is found the provider peer
contacts the client peer directly and the two can initiate the
transfer of the resource.

• Napster. Napster [8] uses a P2P architecture for dis-
covering songs that can be played with an MP3 device. Nap-
ster differs from Gnutella in that it uses a centralized registry
with a well known IP address and port number that users
query for song selections. Once the registry matches the
queries the locations of the peers supplying the requested
songs are provided to the client. Direct P2P transfer of au-
dio files can then commence, with the client requesting files
from peers (via Napster transfer or by some other means).

Figure 1 shows the classification of the discovery services
outlined above using the categories described in Section 2.

4. ANALYZING GAPS IN DISCOVERY SER-
VICE SUPPORT FOR ULS SYSTEMS

This section presents a gap analysis of the properties sum-
marized in Table 2 to indicate which discovery services capa-
bilities must be enhanced to support the needs of emerging
ULS systems. Figure 1 shows that the discovery services we
surveyed in Section 3 have little or no support for three cate-
gories in our discovery service taxonomy: (1) heterogeneity,
(2) discovery QoS, and (3) service negotiation. Although
many conventional distributed systems do not need these

4

Categories Need Status
Heterogeneity Support legacy services Initial R&D
Discovery QoS Mission-critical systems Some COTS support
Service negotiation Flexibility Needs scaling-up R&D
Network scope and type ULS systems Needs scaling-up and intermittent connectivity R&D

Table 2: Gap Analysis Properties

discovery service capabilities, they are critically important
for emerging ULS systems. Moreover, the requirements of
ULS systems push certain properties (such as network scope
and dynamic services) of conventional discovery service im-
plementations beyond what they can currently handle, as
discussed below.

• Heterogeneity. Many discovery services today only
work with a single technology (e.g., CORBA or Java) and
do not support different types of underlying discovery pro-
tocols. Heterogeneity plays an important role for ULS sys-
tems, however, which must integrate legacy applications and
technologies that use existing discovery services. The effort
to migrate these systems to a single common discovery ser-
vice or to reimplement existing functionality would be mon-
umental and cost-prohibitive. Discovery services for ULS
systems will therefore need to accommodate currently exist-
ing discovery services. The use of federations and gateways
have been used in other areas (e.g., networking protocols,
enterprise service buses) and can provide architectural guid-
ance to incorporate heterogeneous discovery services.

Some examples of work done to support heterogeneous
discovery services include the Service Discovery Broker En-
gine [7], which provides (1) a gateway that locates services
across heterogeneous discovery services (e.g., Jini Lookup
Service and SLP) and (2) federation of Service Discovery
Brokers for scalability. Friday et al. [4] identify key limita-
tions of existing discovery services for ubiquitous computing
applications, enumerate requirements for effective support,
summarize the design of an appropriate discovery architec-
ture, and present the lessons learned from prototype devel-
opment. We found no industry standards or commercial
products, however, that support heterogeneity. The work
that has been done can be categorized as initial research
into this area.

• Discovery QoS. In ULS systems the right answer de-
livered too late will be the wrong answer. Discovery services
for ULS systems will therefore need to support QoS capabil-
ities for finding services. This QoS is distinct from the QoS
that a service might provide once it is discovered.

For example, consider the QoS requirements needed for
discovery services in disaster recovery, such as in the after-
math of a hurricane hitting a large metropolitan area. Crit-
ical services would need to be found in a timely manner,
e.g., information from monitors on levee walls during floods
from excessive rains, since late responses could be disastrous.
This scenario is just one of many examples of how discov-
ery QoS can be crucial to acceptable performance. Other
examples involve different kinds of QoS, such as specifying
when and at what rate a discovery service might on its own
search for new, updated, or removed services.

The DDS discovery services in our survey provide limited
QoS for discovery by specifying metatraffic transport prior-
ities and restricting nodes that are able to connect. While
this provides some initial support of rudimentary QoS for

discovery services it does not enable solutions for the dis-
aster recover scenario outlined above. Much more work is
needed, therefore, to identify and address discovery QoS re-
quirements for ULS systems.

• Service negotiation. Most discovery services only re-
trieve services as requested by clients, i.e., the clients either
get what they asked for in whole or they get nothing, but
there is no negotiation of services. An example of negotia-
tion could be a client looking for a particular service with
particular attributes that is not available. The discovery ser-
vice might negotiate with the client to see if there are other
available services that are close to what the client wants.
The provided service might not be ideal, but it might be
better than no service at all.

Negotiation of services is essential in ULS systems. Again,
consider the hurricane disaster recovery described above.
Rescuers are tasked with finding people stranded by high
water and bringing them to safety. As the rescuers find sur-
vivors they realize some need immediate medical attention,
so they seek to discover the appropriate health care facility.
Unfortunately, due to the wide-scale impact of the disaster
the appropriate health care facility is inundated with pa-
tients and has no capacity. In this instance, the next best
plan would be to find a health care facility (e.g., a paramedic
facility at a fire station) that might not be ideal but is better
than no facility at all.

In cases like this, finding a less optimal service in time is
better than finding an ideal service too late. Research on
service negotiation may therefore be able to leverage work
on QoS of the discovery service itself, as described above.
Although there is a large body of literature on negotiation
strategies for multi-agent systems [15], this work must be
scaled up to the scope of ULS systems and integrated into
discovery service implementations.

• Network scope and type. An important property
of discovery services for ULS systems will be support for
networks that are broader in scope and more dynamic than
today’s conventional fixed LANs. By their very nature, ULS
systems will run in WANs, and increasingly will involve mo-
bile ad hoc networks (MANETs). As a result, significant
R&D will be required on discovery services that can oper-
ate robustly in environments characterized by distributed
control, configuration, and administration, i.e., that exhibit
(1) lack of centralized control, (2) self-organization and self-
restoration, (3) transmission through multiple hops, and (4)
frequent link failures and changes of network topologies.

While most discovery services can discover services dy-
namically, ULS systems require even greater dynamism in
the WANs and MANETs outlined above. Services must be
discovered in a timely and reliable manner and the window
of time that a service is available may be very short and/or
sporadic. For example, an aircraft or satellite might only
be in contact with a discovery service on the ground briefly
due to inclement weather conditions or terrain obstructions.

5

For some transport protocols (e.g., TCP) this actually cre-
ates more problems than it solves. While Internet Protocol
version 6 (IPv6) supports a plethora of self-discovery and
re-configuration support new R&D is needed on discovery
services for ULS systems that can operate robustly even in
the face of discontinuities in time or availability in the net-
work. Just as the Internet Protocol was a breakthrough in
connecting disjoint LANs, innovations will be needed to con-
nect together the discontinuous pieces of a sporadic network
with limited availability to provide the needed connectivity.

5. CONCLUDING REMARKS
Technologies that support ULS systems are gaining atten-

tion in the research community, as evidenced from the ULS
systems report [6] and workshops at ACM OOPSLA 2006
and IEEE/ACM ICSE 2007. This paper describes several
categories within a taxonomy of existing discovery services
that require further research and experimentation. Four
categories particularly relevant to ULS technologies include
(1) heterogeneity, (2) discovery QoS, (3) service negotiation,
and (4) network scope and type, as shown in Table 2.

The most mature of these four technologies is the sup-
port for wide-area networks (WANs) since several discovery
services in our survey (i.e., the CORBA Naming and Trad-
ing Services, DDS implementations, UDDI, JXTA, Gnutella,
and Napster) are designed for and support WANs. ULS sys-
tems, however, will push the envelope for size, scope, and
granularity of availability. As ULS systems become more
prevalent, however, they will include more entities over a
wider geographical area and a broader range of networks
(such as MANETs), so the services they provide will be
available more sporadically and in smaller time slots. The
scale needed for ULS systems will therefore force rethinking
of the current WAN support for these services.

Existing discovery service implementations and R&D ac-
tivities provide little or no support for the other three cat-
egories. There has been some work on discovery QoS, and
the discovery services for DDS in our survey address this to
a limited extent. The level of support must be enhanced
greatly, however, to support the scale of ULS systems. We
could find no existing discovery services that supported ser-
vice negotiation. Current work should therefore be enhanced
and new research be initiated to address ULS system needs
for federating existing discovery services to collaborate and
interact, as well as adding global properties to any such fed-
eration, e.g., QoS-enabled federation of discovery services.

Our research group at the Institute for Software Inte-
grated Systems (ISIS) at Vanderbilt University is using the
taxonomy and the resulting gap analysis presented in this
paper to investigate policies and mechanisms for developing
discovery services that can meet the needs of ULS systems.
In the near-term, support for federations of discovery ser-
vices to enable heterogeneity (a.k.a. open scalability) will be
a research focus for us. Moreover, we have started research-
ing the addition of QoS (i.e., real-time, fault tolerance, and
security) support for discovery in anonymous publish/sub-
scribe middleware. We plan to transfer this knowledge and
experience into the broader context of discovery services for
ULS systems.

Acknowledgments
The authors would like to thank Prof. Aniruddha Gokhale
for his assistance in developing this paper and Prof. Larry
Dowdy for his encouragement in writing this paper.

6. REFERENCES
[1] Quadrennial Defense Review Report.

www.defenselink.mil/pubs/pdfs/qdr20060203.pdf,
February 2006. p. 70.

[2] Bluetooth Special Interest Group. The Official
Bluetooth Wireless Info Site.
www.bluetooth.com/bluetooth/, 2007.

[3] World Wide Web Consortium. Web Services.
www.w3.org/2002/ws, 2002.

[4] Adrian Friday, Nigel Davies, Nat Wallbank, Elaine
Catterall, and Stephen Pink. Supporting Service
Discovery, Querying, and Interaction in Ubiquitous
Computing Environments. Wireless Networks,
10(6):631–641, November 2004.

[5] Gnutella.com. Gnutella. www.gnutella.com, 2001.

[6] Software Engineering Institute. Ultra-Large-Scale
Systems: Software Challenge of the Future. Technical
report, Carnegie Mellon University, Pittsburgh, PA,
USA, Jun 2006.

[7] Teemu Koponen and Teemupekka Virtanen. A Service
Discovery: A Service Broker Approach. In Proceedings
of the 37th Hawaii International Conference on
System Sciences, pages 284–290, Washington, DC,
USA, January 2004. IEEE Computer Society.

[8] Napster. Napster. www.napster.com, 2007.

[9] OASIS UDDI. Universal Description, Discovery, and
Integration Protocol. www.uddi.org, 2007.

[10] Object Management Group. Trading Object Service
Specification Version 1.0, OMG Document
formal/2000-06-27 edition, June 2000.

[11] Object Management Group. Common Object Request
Broker Architecture Version 1.3, OMG Document
formal/2004-03-12 edition, March 2004.

[12] Object Management Group. Naming Service
Specification Version 1.3, OMG Document
formal/2004-10-03 edition, October 2004.

[13] Object Management Group. Data Distribution Service
for Real-time Systems Specification, 1.2 edition,
January 2007.

[14] Project JXTA. JXTA. www.jxta.org, 2006.

[15] Tuomas Sandholm. Distributed Rational Decision
Making. In G. Weiss, editor, Multiagent Systems: A
Modern Introduction to Distributed Artificial
Intelligence. MIT Press, 1999.

[16] Sun Microsystems. Jini Connection Technology
Version 1.2. www.sun.com/software/jini, December
2001.

[17] Sun Microsystems. Jini Lookup Service Specification
Version 1.1.
www.sun.com/software/jini/specs/jini1.2html/discovery-
spec.html, September
2006.

[18] The OpenSLP Project. Service Location Protocol
Version 1.2.1. www.openslp.org, March 2005.

[19] UPnP Forum. UPnP Device Architecture Version 1.0.
www.upnp.org, June 2000.

6

[20] Koen Vanthournout, Geert Deconinck, and Ronnie
Belmans. A Taxonomy for Resource Discovery.
Personal and Ubiquitous Computing, 9(2):81–89,
March 2005.

7

