
Resource Allocation &Resource Allocation &
Control EngineControl Engine

(RACE)(RACE)

William R. Otte

Jaiganesh Balasubramanian

Dr. Douglas C. Schmidt

Nishanth Shankaran

Thomas Damiano

Edward Mulholland

Gautam Thaker

2RACERACE

Existing ARMS Phase 1 Architecture
• Non standard entities

• Custom built for ARMS
• Monolithic implementation of each

layer
• Reduced flexibility
• Increases complexity

• Number of layers in MLRM is fixed
to three

• Infrastructure Layer
• Pool Layer
• Node Layer

• Possibly limits scalability
• Roles performed by entities at

Infrastructure Layer and Pool Layer
are similar, but differ only in
“scope”

Infrastructure Layer

Infrastructure Allocator

ASM Global

ASM Local

Resource
Allocator

Pool Manager

Pool Layer

Node Layer

Node
Provisioner

RSS

3RACERACE

Overview of Phase II MLRM Needs (1/2)
• ARMS’ Primary Goal

• Develop Adaptive Resource Management technology for DD(X)
• Research Goals

• Develop general general purpose Adaptive Resource Management into
standardized software services

• Benefits
• Life of technology is not limited to the lifetime of ARMS program
• MLRM technology can be reused in other areas research other than

ARMS
• Increases ease of technology transfer to DD(X) if DRM capability is

available via standardized service compared to custom application
architectures

• Leverages the latest development in CCM technology, and potentially
enhances it

• As DARPA PM Joseph Cross says:
• “We deliver Technology, and not Software!”
• “If we can improve the design, lets improve it as now is the time to do

so!”

4RACERACE

Overview of Phase II MLRM Needs (2/2)
• Limitations with current MLRM infrastructure

• Software Architecture for Phase I MLRM is brittle and
difficult to reuse in contexts outside ARMS

• Provide custom services for functions where emerging
standardized services are available

• e.g. Node Provisioner is a ARMS  Node
Manager in DnC specification

• Provides an all or nothing solution
• Can not reuse individual components such as

AMS, IA, or Pool Manager separately out slide the
MLRM framework

• Proposed Approach
• Package ARMS adaptive resource management

capabilities into a set of a modular, general purpose,
DnC spec compliant / coordinated services

• Design framework for plugging algorithms specializing
in resource allocation and adaptive resource
management

• Provides an abstraction to address the
interdependencies between resource allocation and
string management in a scalable and configurable
manner

• Is NOT
• One monolithic software application
• Algorithms or the core science

5RACERACE

Meeting ARMS Phase II MLRM Needs (1/2)
Context
• Deploy application components with

• Varying resource requirements
• Varying resource availability/capability
• Unique properties not shared by traditional

CORBA objects
• Need for resource allocation

• Initially place components
• Generate configuration for OS level QoS

mechanisms
• Need for adaptation

• Changes in mission goals (modes) as
execution progresses

• Changes in mission goals because tasks
cannot be completed on time

• Degradation in system performance – loss
of resources

• Task execution times & resource
requirements may vary dynamically

Application Components
with Varying Resource

Requirements

Target Platform with
Dynamically Varying Resource

Availabilities & Capabilities

Multiple Resource
Allocation Algorithms

Uniform interface to
parse component

requirements

Uniform interface to
deploy components

6RACERACE

Problem
• Develop effective allocation & RT

scheduling algorithms (policies)
• Implement allocation & scheduling

algorithms (mechanisms)
• Tight coupling between policies &

mechanisms
• Monolithic implementations increases

memory footprint & complexity
Solution
• Separation of concerns

• e.g., separate policy & mechanism
• Framework support for plugging in

allocation/scheduling algorithms
• Leverage properties of existing adaptive

middleware, such as QuO, in the context of
component middleware

Resource Allocation & Control Engine (RACE)

Application Components With
Varying Resource Requirements

Target Platform With Varying
Resource Availabilities

& Capabilities

Allocation
Algorithms

Scheduling
Algorithms

Uniform interface to
parse component

requirements

Uniform interface to
deploy components

Resource Allocation &
Control Engine (RACE)

Meeting ARMS Phase II MLRM Needs (2/2)

7RACERACE

RACE Overview
RACE is a component assembly
implementing an on-line planner which:

• Accepts input from an off-line
planner (such as PICML)

• Examines plan meta-data and
selects

• Allocation and scheduling
algorithms, which are
encapsulated inside “Planners”

• A deployment method (ie,
DAnCE) for the modified plan

• Monitors current resource utilization
and application performance

• Tune Application QoS and
potentially redeploy components in
response to changes in application
performance or the environment.

8RACERACE

Plan
Analyzer

Plan
Manager

Output
Adapter

Input

Adapter

XML->IDL
Plug-In

Web Service
Plug-In

Allocation
Analyzer Plug-In

RT Analyzer
Plug-In

2D Bin Packing
Plug-In

CKRM Scheduling
Plug-In

DAnCE Ouput
Plug-In

OpenCCM
Plug-In

Deployment Manager

Detailed RACE Allocation Architecture (1/3)

• The Input Adapters, which are responsible
for translating input provided to RACE into
IDL data structures

• The Plan Analyzer, which is responsible for
examining metadata in the plan and
selecting planners to be run on the plan.

• The Planner Manager, which executes the
planners selected by the Plan Analyzer and
maintains a registry of metadata about
installed planners.

• The Output Adapters, which are responsible
for translating the provisioned deployment
plans into a native format for deployment.

The Planning capability in RACE is implemented
by four distinct components:

9RACERACE

Plan
Analyzer

Plan
Manager

Output
Adapter

Input

Adapter

XML->IDL
Plug-In

Web Service
Plug-In

Allocation
Analyzer Plug-In

RT Analyzer
Plug-In

2D Bin Packing
Plug-In

CKRM Scheduling
Plug-In

DAnCE Ouput
Plug-In

OpenCCM
Plug-In

Deployment Manager

Detailed RACE Allocation Architecture(2/3)
• Input Adapter
• Translates deployment information from some

application or platform specific format into IDL
data useful to RACE

• Any number of adapters may plugged into the
Input Adapter component.

• Plan Analyzer
• Examines metadata in a plan to determine if a

static or dynamic deployment is requested.
• Dynamic plans are examined by Analyzer

plug-ins
• Static plans are passed directly to the Output

Adapters
• Analyzers are grouped into “classes.” Only one

analyzer will be chosen per class via a chain of
responsibility.

10RACERACE

Plan
Analyzer

Plan
Manager

Output
Adapter

Input

Adapter

XML->IDL
Plug-In

Web Service
Plug-In

Allocation
Analyzer Plug-In

RT Analyzer
Plug-In

2D Bin Packing
Plug-In

CKRM Scheduling
Plug-In

DAnCE Ouput
Plug-In

OpenCCM
Plug-In

Deployment Manager

• Planner Manager
• Responsible for executing planning strings

provided by the Plan Analyzer
• Plug-In architecture allows new planners to be

updated and added in at run-time
• The Planner Manager will maintain a catalog of

all installed planners so Analyzers may take
advantage of new algorithms as they are
installed

• Output Adapters
• The Output Adapter will examine metadata

present in the plan and select an output adapter
required by the plan

• The Plug-In architecture allows RACE to support
multiple CCM toolchains (DAnCE/OpenCCM) or
even multiple middlware types (EJB, .NET)

Detailed RACE Allocation Architecture (3/3)

11RACERACE

DAnCE In Action (1/4)

Deployment Target Host

Node Manager
Node

Application
Manager

Component
Repository
Manager

Execution Manager

Executor

1. Deploy
assembly
xyz.cdp

6. return the
assembly id

2. create node application (component server)

Node
Application

2a. crea te

2b. Return node application reference

Container

3a
.

cr
ea

te
4a. Query implUUID

CCMHome
Enterprise

Component

4c
.

cr
ea

te

5a. create

3. create containers

4. Install homes

4b. Retrieve impl binaries

Domain
Application
Manager

3b .
R

eturn
container
interface

4d.
R

eturn
ho m

e
ob jref

5. Install components

5b. Return comp objref

Execution Manager:
Global/Domain level daemon process

CIAO
CORE

12RACERACE

Deployment Target Host

Node Manager
Node

Application
Manager

Component
Repository
Manager

Execution Manager

Executor

1. Deploy
assembly
xyz.cdp

6. return the
assembly id

2. create node application (component server)

Node
Application

2a. create

2b. Return node application reference

Container

3a
.

cr
ea

te
4a. Query implUUID

CCMHome
Enterprise

Component

4c
.

cr
ea

te

5a. create

3. create containers

4. Install homes

4b. Retrieve impl binaries

Domain
Application
Manager

3b .
R

eturn
container
interface

4d.
R

eturn
hom

e
objref

5. Install components

5b. Return comp objref

Domain Application
Manager:

A global coordinator
interface for deploying an
application into the target

domain

Node Manager:
Local/node level daemon process

DAnCE In Action (2/4)

13RACERACE

Deployment Target Host

Node Manager
Node

Application
Manager

Component
Repository
Manager

Execution Manager

Executor

1. Deploy
assembly
xyz.cdp

6. return the
assembly id

2. create node application (component server)

Node
Application

2a. create

2b. Return node application reference

Container

3a
.

cr
ea

te
4a. Query implUUID

CCMHome
Enterprise

Component

4c
.

cr
ea

te

5a. create

3. create containers

4. Install homes

4b. Retrieve impl binaries

Domain
Application
Manager

3b .
R

eturn
container
inte rface

4d.
R

eturn
hom

e
objref

5. Install components

5b. Return comp objref

Node Application
Manager:

A local coordinator
interface for deploying an

application into the
particular node

*Needs enhancement for
different middleware*

DAnCE In Action (3/4)

14RACERACE

Deployment Target Host

Node Manager
Node

Application
Manager

Component
Repository
Manager

Execution Manager

Executor

1. Deploy
assembly
xyz.cdp

6. return the
assembly id

2. create node application (component server)

Node
Application

2a. create

2b. Return node application reference

Container

3a
.

cr
ea

te
4a. Query implUUID

CCMHome
Enterprise

Component

4c
.

cr
ea

te

5a. create

3. create containers

4. Install homes

4b. Retrieve impl binaries

Domain
Application
Manager

3b .
R

eturn
container
interface

4d.
R

eturn
hom

e
objref

5. Install components

5b. Return comp objref

Node Application:
A component server
process which hosts

containers
Middleware-specific

Repository Manager:
Stores component binaries &

metadata to describe components

DAnCE In Action (4/4)

15RACERACE

Current Status & Implementation Plan
Completed
• CIAO/DAnCE infrastructure

middleware
• Architecture of RACE
• CCM interfaces of RACE
• Simple bin-packing allocation planner
• Web application front end for

selecting and deploying WLGs
In design phase
• Resource Monitors
• Target Manager
• Control aspects of RACE

Plan of action
• Implement

• Resource monitors
• Target Manager

Target
Manager

Deployment

Plan

PICML

CIAO/DAnCE

Target Domain

Deploy
Components

What to Deploy

RACE

Resource
Monitors

Current RACE source code is available on the ACE CVS
repository under ACE_wrappers/TAO/CIAO/RACE

Plan
Manager

2D Bin Packing
Plug-In

CKRM Scheduling
Plug-In

Output
Adapter

DAnCE Output
Plug-In

OpenCCM
Plug-In

Plan
Analyzer

Allocation
Analyzer Plug-In

RT Analyzer
Plug-In

Input
Adapter

XML->IDL

Web Service

16RACERACE

RACE Demo

• Utilizes an instance of RACE configured with:
• An Input Adapter that implements a web application using JAWS to:

• Allow modification of WLG deployments
• Select and deploy WLG both static and dynamic assemblies

• A simple Plan Analyzer which selects the only planner available in the
system

• A Planner implementing a simple bin-packing algorithm
• Examines a property describing CPU utilization of a WLG component
• Does not take into account current resource utilization

• An Output Adapter which deploys plans using DAnCE

DnC DnC CDP CDP DnC DnC CDPCDP
(modified)(modified)

RACERACEPICMLPICML DAnCEDAnCE

17RACERACE

ASM Local

Pool Layer

Infrastructure Layer

Infrastructure Allocator

ASM Global

RACE

(Optionally)

Integrating MLRM Architecture with RACE/DAnCE

Pool Manager
(Interface Only)

Node Layer

DAnCE

Target

Manager/

RSS

Infrastructure Layer

Infrastructure Allocator

ASM Global

ASM Local

Resource
Allocator

Pool Manager

Pool Layer

Node Layer

Node
Provisioner

RSS

19RACERACE

Integrating MLRM Architecture with RACE/DAnCE

• DnC Spec compliant entities
• Wide applicability
• Can be reused outside ARMS

• Pluggable Framework
• Supports multiple

• Allocation Algorithms
• Adaptation Algorithms

• Number of layers in MRLM
architecture is flexible

• Increases scalability
• Logical grouping of related entities
• Provides a template template for each

(higher) layers in the MLRM
architecture

• MLRM is truly a Multi-Layer
Resource Management
Middleware, and not limited to
three layers

Infrastructure Layer

Infrastructure Allocator

ASM Global

ASM Local

RACE
Pool Manager

(Interface Only)

Pool Layer

Node Layer

DAnCE

Target

Manager/

RSS
RACE RACE

20RACERACE

RACE Implementation Milestones

William Otte (wotte@dre.vanderbilt.edu)2 WeeksInput/Output adapters

William Otte (wotte@dre.vanderbilt.edu)1 MonthAnalyzer Plugins

Nishanth Shankaran
(nishanth@dre.vanderbilt.edu)

2 WeeksDesign RACE Monitoring
Framework

Jai Balasubramanian
(jai@dre.vanderbilt.edu)

Implement Planner/Analyzer
meta-data catalogue

1 Month

3 Weeks

1 Month

1 Month

1-2 weeks

Timeframe

Jai Balasubramanian
(jai@dre.vanderbilt.edu)

Plan Manager

Nilabja Roy (nilabja@dre.vanderbilt.edu)Implement Target Manager with
RSS

Nishanth Shankaran
(nshanth@dre.vanderbilt.edu)

Design RACE Control
Infrastructure

William Otte (wotte@dre.vanderbilt.edu)Plan Analyzer

Ed MulhollandIntegrate Demo code into CVS

POCRACE Element

21RACERACE

ARMS RACE Integration Milestones

Ed Mulholland (emulholl@atl.lmco.com)
Will Otte (wotte@dre.vanderbilt.edu)

2 MonthsExecute Phase 2 Gate Test 1
Using RACE

Ed Mulholland (emulholl@atl.lmco.com)
Will Otte (wotte@dre.vanderbilt.edu)

1.5 MonthsExecute Phase 1 Gate Test 3
using RACE

3 Months

Timeframe

Josh Chattin (jchattin@atl.lmco.com)Develop DnC Deployment Plan
representation of the AIM

POCRACE Element

