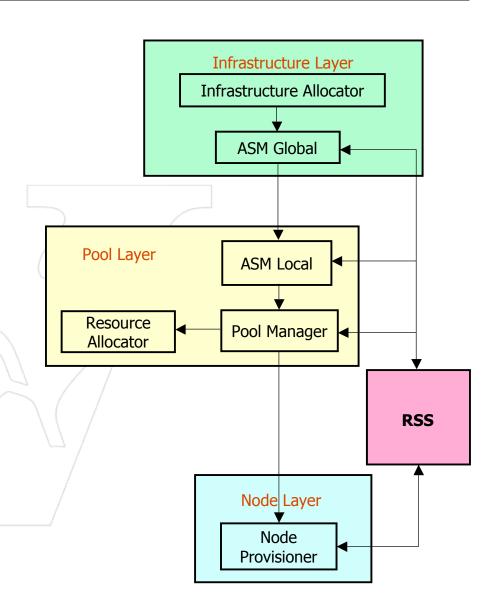
Resource Allocation & Control Engine (RACE)

William R. Otte Jaiganesh Balasubramanian Dr. Douglas C. Schmidt Nishanth Shankaran

Thomas Damiano Edward Mulholland Gautam Thaker


Existing ARMS Phase 1 Architecture

u (p

Non standard entities

V

- Custom built for ARMS
- Monolithic implementation of each layer
 - Reduced flexibility
 - Increases complexity
- Number of layers in MLRM is fixed to three
 - Infrastructure Layer
 - Pool Layer
 - Node Layer
- Possibly limits scalability
- Roles performed by entities at Infrastructure Layer and Pool Layer are similar, but differ only in "scope"

Overview of Phase II MLRM Needs (1/2)

- ARMS' Primary Goal
 - Develop Adaptive Resource Management technology for DD(X)
- Research Goals
 - Develop general purpose Adaptive Resource Management into standardized software services
- Benefits
 - Life of technology is not limited to the lifetime of ARMS program
 - MLRM technology can be reused in other areas research other than ARMS
 - Increases ease of technology transfer to DD(X) if DRM capability is available via standardized service compared to custom application architectures
 - Leverages the latest development in CCM technology, and potentially enhances it
- As DARPA PM Joseph Cross says:
 - "We deliver Technology, and not Software!"
 - "If we can improve the design, lets improve it as now is the time to do so!"

Overview of Phase II MLRM Needs (2/2)

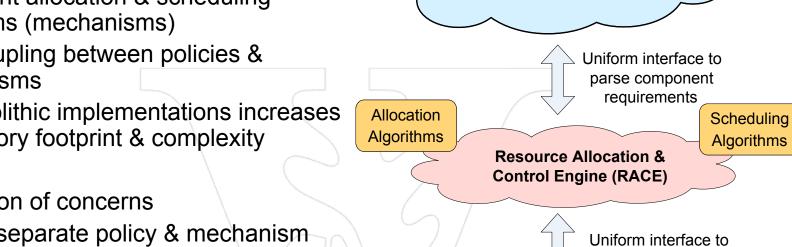
- Limitations with current MLRM infrastructure
 - Software Architecture for Phase I MLRM is brittle and difficult to reuse in contexts outside ARMS
 - Provide custom services for functions where emerging standardized services are available
 - e.g. Node Provisioner is a ARMS ⇔ Node Manager in DnC specification
 - Provides an all or nothing solution
 - Can not reuse individual components such as AMS, IA, or Pool Manager separately out slide the MLRM framework
- Proposed Approach
 - Package ARMS adaptive resource management capabilities into a set of a modular, general purpose, DnC spec compliant / coordinated services
 - Design framework for plugging algorithms specializing in resource allocation and adaptive resource management
 - Provides an abstraction to address the interdependencies between resource allocation and string management in a scalable and configurable manner
 - Is NOT
 - One monolithic software application
 - Algorithms or the core science

with Varying Resource **Requirements** Uniform interface to parse component requirements **Multiple Resource Allocation Algorithms** Uniform interface to deploy components Changes in mission goals because tasks cannot be completed on time

- Degradation in system performance loss of resources
- Task execution times & resource requirements may vary dynamically

RACE

V Meeting ARMS Phase II MLRM Needs (1/2)


Context

- Deploy application components with
 - Varying resource requirements
 - Varying resource availability/capability
 - Unique properties not shared by traditional **CORBA** objects
- Need for resource allocation
 - Initially place components
 - Generate configuration for OS level QoS mechanisms
- Need for adaptation
 - Changes in mission goals (modes) as execution progresses
- **Target Platform with** Dynamically Varying Resource **Availabilities & Capabilities**

Application Components

6

Meeting ARMS Phase II MLRM Needs (2/2)

- Framework support for plugging in allocation/scheduling algorithms
- Leverage properties of existing adaptive middleware, such as QuO, in the context of component middleware

Varying Resource Requirements Implement allocation & scheduling algorithms (mechanisms)

Tight coupling between policies &

Develop effective allocation & RT

scheduling algorithms (policies)

- mechanisms
 - Monolithic implementations increases memory footprint & complexity

Solution

V

Problem

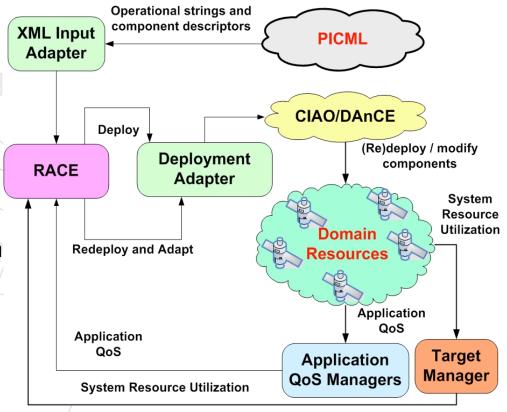
- Separation of concerns
 - e.g., separate policy & mechanism

deploy components

Application Components With

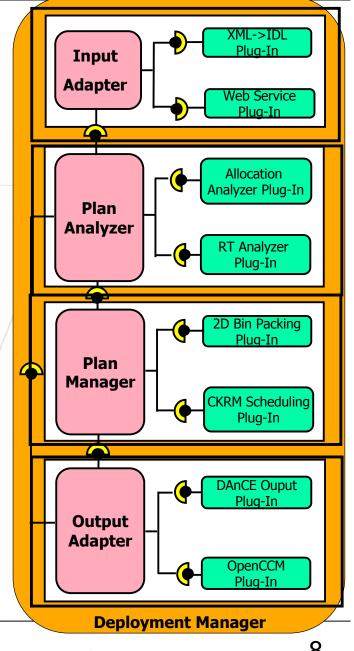
Target Platform With Varying Resource Availabilities & Capabilities

Resource Allocation & Control Engine (RACE)



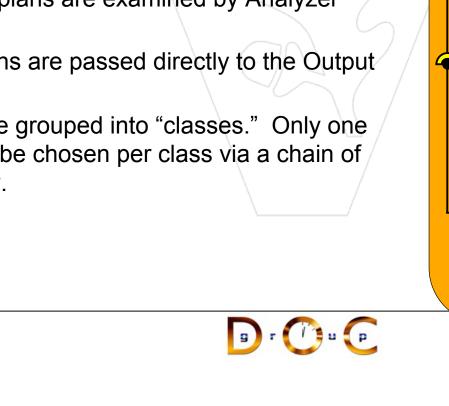
RACE is a component assembly implementing an on-line planner which:

- Accepts input from an off-line planner (such as PICML)
- Examines plan meta-data and selects
 - Allocation and scheduling algorithms, which are encapsulated inside "Planners"
 - A deployment method (ie, DAnCE) for the modified plan
- Monitors current resource utilization and application performance
- Tune Application QoS and potentially redeploy components in response to changes in application performance or the environment.

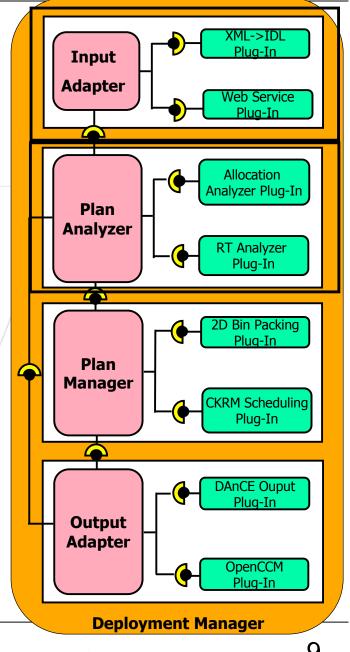

E7

V Detailed RACE Allocation Architecture (1/3)

/ 🐧 ц 🌔 р


The Planning capability in RACE is implemented by four distinct components:

- The Input Adapters, which are responsible for translating input provided to RACE into IDI data structures
- The Plan Analyzer, which is responsible for examining metadata in the plan and selecting planners to be run on the plan.
- The Planner Manager, which executes the planners selected by the Plan Analyzer and maintains a registry of metadata about installed planners.
- The Output Adapters, which are responsible for translating the provisioned deployment plans into a native format for deployment.



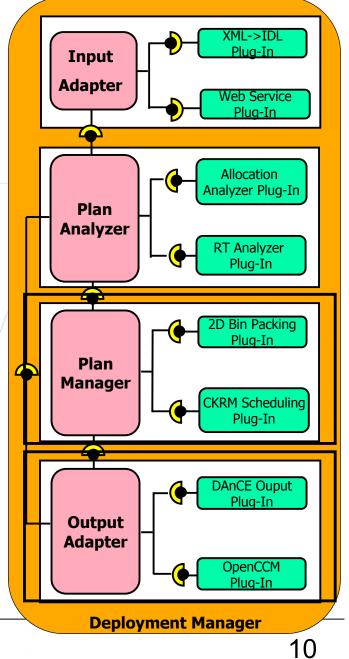
9

V Detailed RACE Allocation Architecture(2/3) Input Adapter

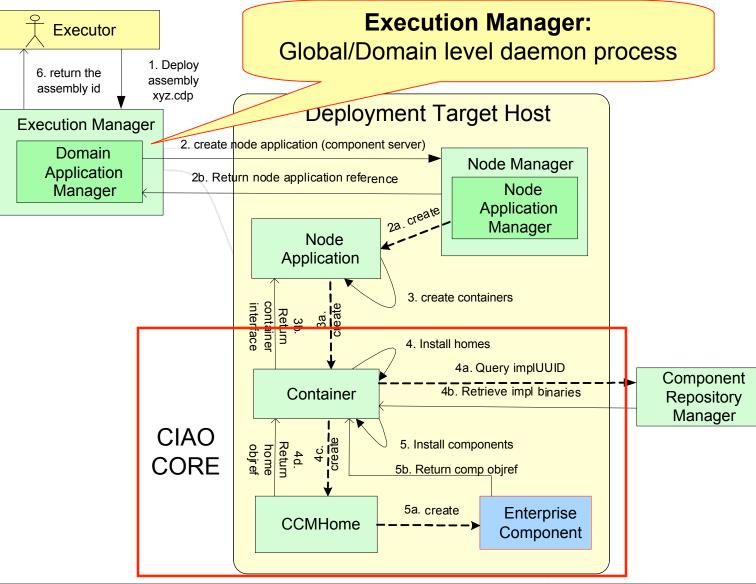
- Translates deployment information from some application or platform specific format into IDL data useful to RACE
- Any number of adapters may plugged into the Input Adapter component.
- Plan Analyzer
 - Examines metadata in a plan to determine if a static or dynamic deployment is requested.
 - Dynamic plans are examined by Analyzer plug-ins
 - Static plans are passed directly to the Output Adapters
 - Analyzers are grouped into "classes." Only one analyzer will be chosen per class via a chain of responsibility.

RACE

V Detailed RACE Allocation Architecture (3/3) $\overline{\mathbf{S}}$

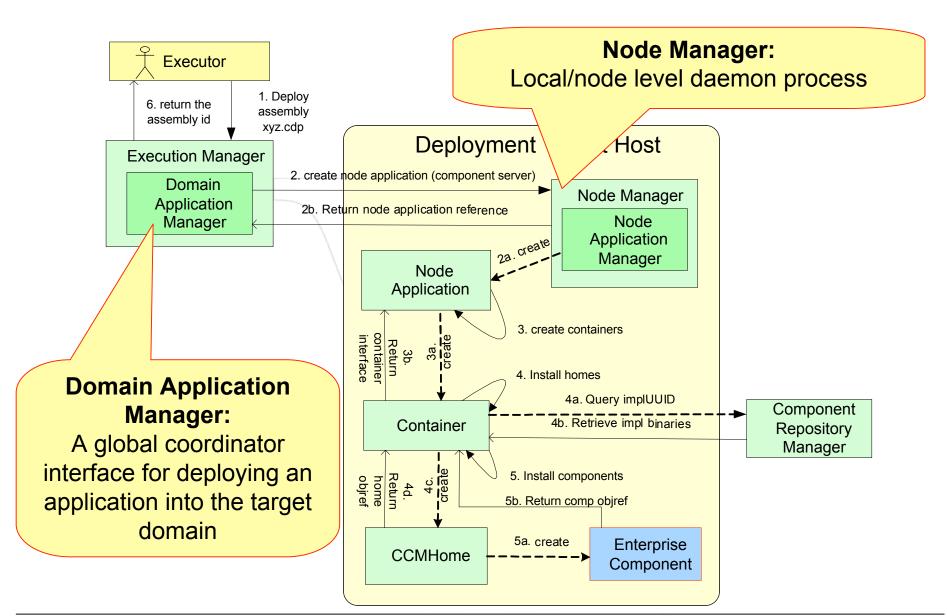

/ u p

Planner Manager

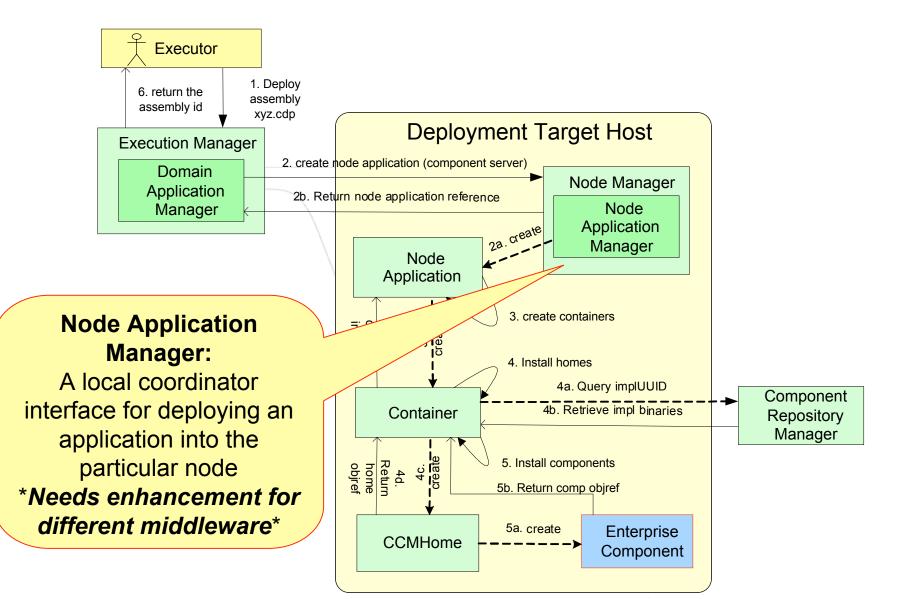

- Responsible for executing planning strings provided by the Plan Analyzer
- Plug-In architecture allows new planners to be updated and added in at run-time
- The Planner Manager will maintain a catalog of all installed planners so Analyzers may take advantage of new algorithms as they are installed

Output Adapters

- The Output Adapter will examine metadata present in the plan and select an output adapter required by the plan
- The Plug-In architecture allows RACE to support multiple CCM toolchains (DAnCE/OpenCCM) or even multiple middlware types (EJB, .NET)



E7


U)u p

g) r

67

g)r(¹)u(p)

l'u p

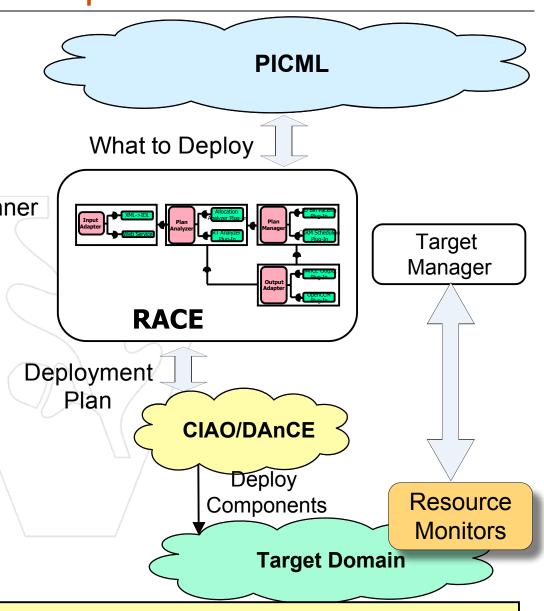
RACE

67

Current Status & Implementation Plan

Completed

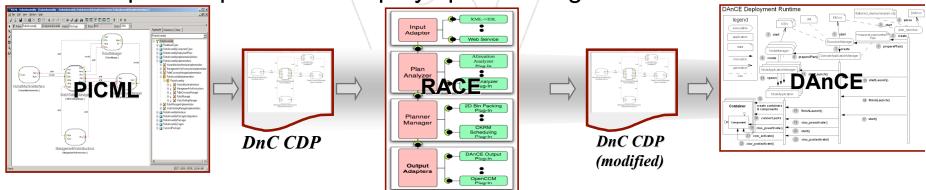
V


- CIAO/DAnCE infrastructure middleware
- Architecture of RACE
- CCM interfaces of RACE
- Simple bin-packing allocation planner
- Web application front end for selecting and deploying WLGs

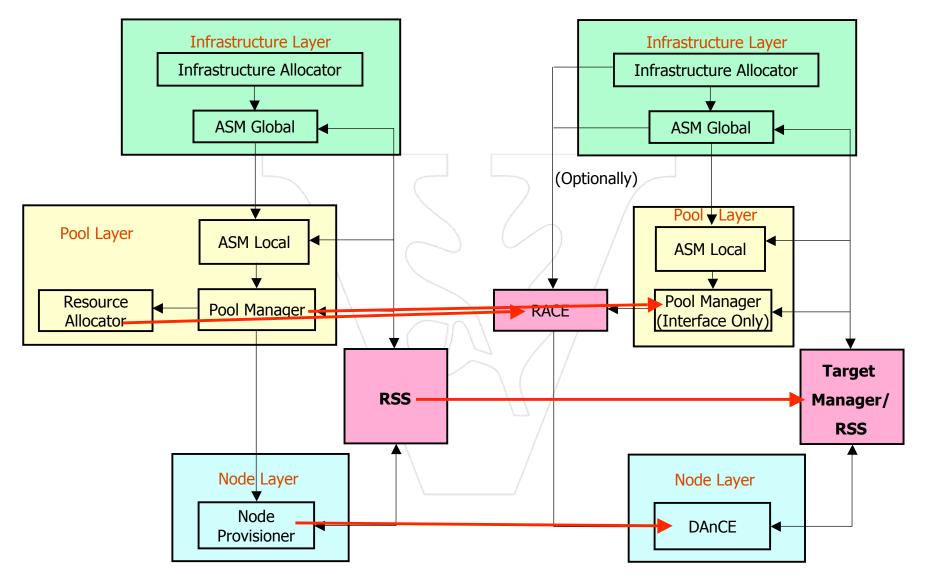
In design phase

- Resource Monitors
- Target Manager
- Control aspects of RACE

Plan of action


- Implement
 - Resource monitors
 - Target Manager

Current RACE source code is available on the ACE CVS repository under ACE_wrappers/TAO/CIAO/RACE


- Utilizes an instance of RACE configured with:
 - An Input Adapter that implements a web application using JAWS to:
 - Allow modification of WLG deployments
 - Select and deploy WLG both static and dynamic assemblies
 - A simple Plan Analyzer which selects the only planner available in the system
 - A Planner implementing a simple bin-packing algorithm
 - Examines a property describing CPU utilization of a WLG component
 - Does not take into account current resource utilization
 - An Output Adapter which deploys plans using DAnCE

67

Integrating MLRM Architecture with RACE/DAnCE

Integrating MLRM Architecture with RACE/DAnCE

l']u (p

RACE Implementation Milestones

RACE Element	Timeframe	POC
Integrate Demo code into CVS	1-2 weeks	Ed Mulholland
Plan Analyzer	1 Month	William Otte (wotte@dre.vanderbilt.edu)
Analyzer Plugins	1 Month	William Otte (wotte@dre.vanderbilt.edu)
Plan Manager	1 Month	Jai Balasubramanian (jai@dre.vanderbilt.edu)
Input/Output adapters	2 Weeks	William Otte (wotte@dre.vanderbilt.edu)
Implement Planner/Analyzer meta-data catalogue		Jai Balasubramanian (jai@dre.vanderbilt.edu)
Implement Target Manager with RSS	3 Weeks	Nilabja Roy (nilabja@dre.vanderbilt.edu)
Design RACE Monitoring Framework	2 Weeks	Nishanth Shankaran (nishanth@dre.vanderbilt.edu)
Design RACE Control Infrastructure	1 Month	Nishanth Shankaran (nshanth@dre.vanderbilt.edu)


V

ARMS RACE Integration Milestones

RACE Element	Timeframe	POC
Execute Phase 1 Gate Test 3 using RACE	1.5 Months	Ed Mulholland (<u>emulholl@atl.lmco.com</u>) Will Otte (wotte@dre.vanderbilt.edu)
Execute Phase 2 Gate Test 1 Using RACE	2 Months	Ed Mulholland (<u>emulholl@atl.lmco.com</u>) Will Otte (wotte@dre.vanderbilt.edu)
Develop DnC Deployment Plan representation of the AIM	3 Months	Josh Chattin (jchattin@atl.lmco.com)

V

