
LEESA: Language for Embedded Query and Traversal

Sumant Tambe (HHUUsutambe [AT] dre [d0t] vanderbilt [d0t] eduUUHH)

Institute for Software Integrated Systems (ISIS), Vanderbilt University, Nashville, TN

(Last updated May 24, 2013)

Introduction

LEESA is a new way of writing traversals over typed object structures, such as models and XML

documents. LEESA (Language for Embedded quEry and traverSAl) is a domain-specific embedded

language (DSEL) in C++ that provides a succinct and expressive notation for writing object structure

traversal. It decouples traversal from visitation actions and improves visitor reusability. It provides a C++

templates based combinatory style to write traversals in a strategic programming style. LEESA

significantly reduces the development cost of programs operating on complex object structures (e.g.,

domain-specific modeling language (DSML) interpreters) compared to the traditional techniques. LEESA

is embedded in C++ using sophisticated generic programming techniques.

Motivation and research documents

 “Toward Native XML Processing Using Multi-paradigm Design in C++”, in the 5th Annual Boost

Conference, Aspen, CO (2011) (slides) (video)

 A research paper on LEESA titled, “LEESA: Embedding Strategic and XPath-like Object

Structure Traversals in C++” has been published in the IFIP Working Conference on Domain

Specific Languages (DSL WC), 2009, Oxford UK. (slides)

 A previous, shorter research paper on LEESA titled, “An Embedded Declarative Language for

Hierarchical Object Structure Traversal” has been published in the 2nd International Workshop

on Domain-Specific Program Development (DSPD), GPCE 2008, Nashville, Tennessee, October

22, 2008. (slides)

Purpose of this document is to provide a through documentation of the features and capabilities of

LEESA with examples.

Downloading LEESA

There are two ways to obtain LEESA.

1. Download LEESA.zip (The latest and greatest changes may not be available)

2. Use subversion (svn) to checkout LEESA from the CoSMIC repository. You may need to install a

subversion client. Sliksvn is a good svn client. The command to checkout LEESA is given below.

mailto:sutambe@dre.vanderbilt.edu
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/LEESA-Multiparadigm.pdf
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/ppt/LEESA-BoostCon.pdf
http://www.dre.vanderbilt.edu/LEESA/#boostcon11_video
http://www.dre.vanderbilt.edu/~sutambe/ccount/click.php?id=2
http://www.dre.vanderbilt.edu/~sutambe/ccount/click.php?id=2
http://dsl09.blogspot.com/
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/ppt/LEESA-DSL09.ppt
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/LEESA.pdf
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/LEESA.pdf
http://www.labri.fr/perso/reveille/DSPD/2008/
http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/ppt/LEESA-short.ppt
http://www.dre.vanderbilt.edu/~sutambe/files/LEESA/LEESA.zip
http://www.dre.vanderbilt.edu/cosmic
http://www.sliksvn.com/en/download/

svn co svn://svn.dre.vanderbilt.edu/LEESA/trunk/LEESA LEESA

Software needed to use LEESA

LEESA is a header-only C++ library except in one case where it depends on Boost regular expression

library (boost-regex). That means, including LEESA.h in your main program should suffice in most cases

– no linking is needed.

1. Visual Studio 2008 (VC9)

2. Latest UDM (Universal Data Model) 3.2.1 or later.

3. Boost C++ Library 1.36 or later. LEESA is known to work with boost 1.51 on Windows. Boost

HHUUbinariesUUHH can be downloaded from BoostPro consulting website. Please select “Multithread”

and “Multithread Debug” (i.e., 3
rd

 and 4
th
) options for your Visual Studio while installing Boost.

Make sure you select boost-regex library. Other libraries are optional. (You will likely save a lot

of time during installation if you uncheck all libraries except Boost.Regex)

Using LEESA in your UDM project

Here are detailed instructions to get your UDM project working with LEESA

1. Extract LEESA.zip or checkout from the subversion repo. Lets assume you extracted it under

$LEESA

2. Install boost 1.36 from BoostPro Computing. Lets assume you installed boost under

C:\Libraries\boost_1_36_0

1. Add C:\Libraries\boost_1_36_0\lib in you %PATH% environmental variable. Make sure

boost-regex dll is available under that directory.

3. Generate UDM classes from your paradigm.xml file using udm.exe with -v and –leesa as options.

For example, if your paradigm is called SM, you should run

 Udm.exe SM.xml –v –leesa

4. Goto Tools→Options→Projects and Solutions→VC++ Directories

1. Select "Include Files" from the drop down box.

1. Add $LEESA

2. Add C:\Libraries\boost_1_36_0

2. Select "Library Files" from the drop down box.

1. Add C:\Libraries\boost_1_36_0\lib

http://www.boostpro.com/products/free

5. Add the following two lines after your #include of your paradigm-specific header file. For

example, if your paradigm is called SM (StateMachine) then add the following two lines after

#include “SM.h”.

#define DOMAIN_NAMESPACE SM

#include “LEESA.h”

6. DOMAIN_NAMESPACE macro is the way LEESA learns about your paradigm. So #define

this macro and assign the name of your paradigm. #include LEESA.h after defining the

macro. For example, if SM (StateMachine) is your paradigm, define:

#define DOMAIN_NAMESPACE SM

#include “LEESA.h”

If DOMAIN_NAMESPACE is not defined, LEESA detects that and flags an error. Note that

LEESA.h must be in your include path as described in step #4.1

7. Define LEESA_FOR_UDM macro when invoking the compiler. In Visual Studio, you will have

to #define additional preprocessor using the project settings dialog box.

8. Assuming you have generated your paradigm-specific files (.h and .cpp) run $LESSA/bin/gen-

pairs.pl and specify the paradigm name as a parameter. The Perl script will update the generated

files in-place with some additional code. ActivePerl for Windows seem to work fine.

9. At this point you have just setup the environment necessary to use LEESA. Your interpreter

should compile and run without any problems. Please make sure it compiles and runs in GME

before proceeding. An example paradigm (SM) and related sample code is available in

LEESA.zip or can be obtained using subversion from

svn co svn://svn.dre.vanderbilt.edu/LEESA/trunk/LEESA LEESA

http://www.dre.vanderbilt.edu/~sutambe/files/LEESA/LEESA.zip

LEESA Language Documentation

LEESA by examples

If you prefer playing with real LEESA code than reading documentation, please take a look at

LEESA.h. This file has about 9 to 10 LEESA examples that progressively use different features

of LEESA. The examples are based on the HFSM paradigm that comes bundled with GME 7.

Basic syntax and traversal strategies

1. LEESA namespace should be opened by writing: using namespace LEESA; Without

opening LEESA namespace, there is no way to leverage the syntactic sugar provided by it. And it

is extremely hard to appreciate LEESA without its syntactic sugar.

However, it is strongly advisable that LEESA namespace should be opened (every time) inside

smaller scopes such as a function or a class rather than in the global namespace. If proper care is

not exercised with LEESA namespace, C++ compiler may get confused with normal C++

statements and LEESA statements. This happens due to generic nature of templates in LEESA

and a whole slew of overloaded operators that are also overloaded in some other places in C++.

E.g., std::cin and std::cout. You can still write cin, cout, sstream statements

while using LEESA as its implementation guards users against ambiguous overloaded operator

errors in most cases but it can’t do so for the operators that it does not know about!

2. Every LEESA expression begins with a kind name followed by empty brackets. The kind names

are nothing but the classes generated by UDM from the meta-model. The first kind name need not

be the RootFolder in every LEESA expression; it can be any other kind name except

MgaObject, which is not supported by LEESA. E.g.,

StateMachine() >> State() >> Property()

3. Traversal strategies: Kind names are separated by traversal strategies in every LEESA

expression. LEESA defines two main traversal strategies: breadth-first and depth-first. Breadth-

first strategy is specified using “>>” whereas depth-first strategy is specified using “>>=”.

The LEESA examples in this document are based on

the StateMachine meta-model shown here. Some

motivating examples based on this meta-model are

provided in this presentation. It is highly recommended

to go through these presentation slides before reading

this document. This document is meant to be a

reference for LEESA and assumes introductory level of

familiarity with it.

http://www.dre.vanderbilt.edu/~sutambe/documents/pubs/ppt/LEESA-DSL09.ppt

a. Both the traversal strategies navigate direct parent child relationship. The kind name at

the right hand side of the operator should be composed (immediately) inside the left hand

side kind name. For instance, in the example above, StateMachine can occur at the

left hand side of State but not vice versa. Moreover, Property cannot occur after

StateMachine because Property is not a direct child of StateMachine. In

other words, every parent/child (composition) relationship should be expressed explicitly

in LEESA.

b. Breadth-first strategy: Result of a valid LEESA expression written using breadth-first

strategy alone is a collection (STL vector) of the last kind name in the expression. For

example, the above expression results a std::vector<Property>. Breadth-first

strategy progressively collects all the instances of a given child kind name as it navigates

the parent/child relationship deeper.

c. Depth-first strategy: The result of a valid LEESA expression written using one or more

occurrences of the depth-first strategy operator (>>=) is -– please note –- void. for how

Depth-first strategy, as the name suggests, navigates one instance at a time and goes

deeper before moving on to the next instance of the same kind. It is not clear at this point

what could be a meaningful return type for depth-first strategy because the order of

elements it visits can’t be grouped together easily (based on kind names) like in the

breadth-first strategy. However, this strategy is most useful while using visitors.

d. Combining strategies: Breadth-first and depth-first strategies can be combined together

in a single LEESA expression. Result of such an expression is, again, void. It is observed

that using multiple strategies in a single large LEESA expression hampers

comprehensibility of the traversal.

4. Traversing from child to parent: LEESA uses “<<” operator to traverse composition

relationship in reverse direction, i.e., from child to parent. For instance, following example yields

parent state of a property. Please see the Unique query operator to see how it is useful while

navigating from child to parent.

Property() << State()

5. Traversing Associations: LEESA is designed for object network traversal and therefore supports

arbitrary user-defined association traversal. LEESA uses “>>&” operator to specify association

traversal. For instance, in the StateMachine meta-model above, Transition is a user-

defined association between two states. With respect to a Transition between two states, one

state is a “source” state whereas the other state is a “destination” state. These source and

destination roles are captured in the Transition class using srcTransition and

dstTransition member functions. LEESA uses these functions as a way to navigate

association. For instance, the example below returns a set of States those are at the

“destination” end of all the Transitions under a StateMachine. The result of such an

expression is the same as the return type of the association function being used.

StateMachine() >> Transition >>& Transition::dstTransition

Note that there is no empty bracket at the end of the association name.

Executing LEESA expressions

1. Every LEESA expression must be evaluated to obtain its result (which could be void in case of

depth-first strategy.) To evaluate, LEESA provides a function by the same name. For example,

following is the most convenient way of using LEESA in a C++ program.

RootFolder rf;

std::vector<State> sv =

LEESA::evaluate(rf, RootFolder() >> StateMachine() >> State());

The evaluate function takes two parameters. The first parameter should be a valid (non-null)

UDM object whereas the second parameter should be a valid LEESA expression. The kind name

of the first parameter must be the same as that of the first kind name in the LEESA expression.

For example, rf, which is the first parameter is of RootFolder kind which is the first kind

name in the expression.

Alternatively, the first parameter could be an object, a std::set, or a std::vector of the

same kind name.

Labeling LEESA expressions

1. LEESA statements can be labeled before they are evaluated. LEESA uses BOOST_AUTO macro

to label LEESA expressions. The BOOST_AUTO macro emulates the proposed auto keyword in

C++. For example,

State state;

BOOST_AUTO(expr, State() >> Property());

std::vector<Property> vp = LEESA::evaluate (state, expr);

Using labeled LEESA expressions, compound expressions can be built. While building

compound expressions, all the rules of composition stated earlier should be followed.

RootFolder rf;

BOOST_AUTO(get_statemachines, RootFolder() >> StateMachine());

BOOST_AUTO(get_states, get_statemachines >> State());

Std::vector<State> s = LEESA::evaluate (rf, get_states);

Query operators in LEESA

 LEESA defines several query operators that can be used to perform various actions on the

intermediate results of a LEESA expression. The first parameter of every query operator is a kind

name that indicates the kinds that are being processed by the operator. This kind name must

match the result of the previous expression. The query operators can also participate in

expressions that use depth-first traversal strategy. Query operators do their job internally but the

result of the expression is still void. All the query operators should follow after a “>>” operator.

1. SelectByName (Kind, String)

Filters the instances whose name do not match the regular expression given as the second

parameter. The second parameter string coule be a const char * or a std::string that

represents a regular expression. Using this query operator requires linking with boost-regex

library. Example:

State() >> SelectByName(State(), “abcd”) >> Property()

2. SelectSubSet (Kind, vector<Kind> v)

Filters the elements that are not contained in vector v. The result of this query operator is a subset

or the same set as v.

3. Select (Kind, predicate p)

Filters the elements that do not satisfy predicate p. Predicate could be a standard C++ unary

function or a unary function object. The types of the parameters of the function must match the

kind.

4. CastFromTo (From Kind, To Kind)

This query operator is a wrapper around Udm::IsDerivedFrom function. It selects elements

only if Udm::IsDerivedFrom returns true.

5. Sort (Kind, Comparator c)

As the name suggest, it sorts the result of the previous expression using comparator c. The

types of parameters of the comparator function must match the kind.

6. Unique (Kind, BinPred c)

As the name suggests, it selects only unique elements from the result of the previous expression.

It uses a binary predicate c to determine uniqueness. A binary predicate could be a standard C++

function with two parameters or a binary function object. The parameters of the function must

match the kind.

7. Unique (Kind)

This operator uses the default uniqueness property defined by UDM to filter elements. This query

operator is particularly useful while using “<<” operator that navigates composition relationship

from child to parent. While navigating from child to parent, identical parent objects can be easily

eliminated using this query operator. Example,

std::vector <State> states; // populate this vector somehow.

std::vector<StateMachine> sm =

evaluate (states, State() << StateMachine() >> Unique(StateMachine());

8. ForEach (Kind, callback)

ForEach is a query operator that simply invokes a function on every element of the intermediate

result of a LEESA expression. The callback is a function or a function object that accepts a

single parameter of the same kind as Kind and returns void.

9. SelectNonNull (Kind)

SelectNonNull is a query operator that selects Kind model elements that are not null.

10. Id (Kind)

Id is a no-op. Simply returns the input set. This is a combinator for strategic programming.

Results of all the query operators that are dependent on a predicate or comparison can be inverted using

logical negation operator “!”. It is a unary operator that occurs before the query operator name. For

example, the following query will select states that do not have name “abcd”.

State() >> ! SelectByName (State(), “abcd”)

Using Visitors

One of the most important features of LEESA is its support for visitors. If a visitor is to visit kind K, then

visitor object should be added after “K() >>”. Any number of consecutive visitations are supported by

LEESA. For instance, visiting all the states 3 times is possible using

CountVisitor cv;

StateMachine() >> State() >> cv >> cv >> cv;

Visiting multiple different kinds is possible in a similar fashion. Simply append “>>” and a visitor object

after the desired kind name. Visitors can be used irrespective of the traversal strategy. Visitors make sense

when combined with the depth-first strategy because, depth-first strategy guarantees that all the children

will be traversed before moving on to the next element of the same kind. For example, in the traversal

below, all the states and their properties will be visited before going to the next statemachine.

CountVisitor cv;

RootFolder() >>= StateMachine() >> cv >> State() >> cv >> Property() >> cv ;

Visiting siblings

So far we talked about only parent-child and association traversal. An important aspect of traversal is

visiting siblings. Siblings are kind names that are children of the same parent kind. LEESA supports

sibling traversal using MembersOf construct. Return type of MembersOf construct is void.

MembersOf construct should always be used with labeling support provided by BOOST_AUTO. For

example, visiting Transition and State in every StateMachine in that order is done using:

CountVisitor cv;

BOOST_AUTO(v_tran, Transition() >> cv);

BOOST_AUTO(v_state, State() >> cv);

BOOST_AUTO(members, MembersOf(StateMachine(), v_tran FOLLOWED_BY v_state))

StateMachine() >>= members;

The keyword “FOLLOWED_BY” need not be used literally but reads well! If the expressions to the left or

right hand side of FOLLOWED_BY keyword are complex statements, (those which use any of breadth-

first, depth-first, visitor, or association traversal) then use of BOOST_AUTO for those expressions is

highly recommended and must in some cases.

Coding Guidelines

1. “using namespace LEESA;” should be put inside the smallest possible scope and should be

repeated in other scopes, if needed, to prevent polluting global namespace.

2. MembersOf statement should always be labeled using BOOST_AUTO.

3. Avoid inline complex statements around FOLLOWED_BY. Use statement labeling using

BOOST_AUTO instead.

4. Build your queries and traversals incrementally while making small changes each time. Make

sure your program compiles after every small change you make to the expression.

Inside LEESA

The core of LEESA is Expression Templates idiom and C++ operator overloading on steroids! In a

nutshell, Expression Templates are used to build a compile-time abstract syntax tree (AST) of types from

ordinary C++ expressions. The AST in itself is a (complex) type that embodies the computation expressed

by the expression. LEESA’s expression templates build such an AST at compile-time using very clever

overloading of operators. Understanding C++ operator precedence and associativity may help you

understand LEESA’s choice of overloaded operators and appreciate the ingenuity of how they work in

unison. A partial table of operator precedence and associativity in C++ is shown below. Based on these

rules, LEESA tries to seek a fine balance between expressiveness and what is possible in C++.

Precedence Operator Description Associativity

1 (highest) :: Scoping operator none

2 () Function call Left to right

3 & ! Address-of, logical negation Right to left

7 << >> Bitwise shift left, bitwise shift right Left to right

http://en.wikibooks.org/wiki/More_C++_Idioms/Expression-template

16 >>= <<= Bitwise shift and assign Right to left

18 (lowest) , Comma Left to right

A key observation to be made here is that, the operators have mixed associativity and precedence. In fact,

right-to-left associativity and lower precedence of bitwise shift-assign operators is central to LEESA’s

implementation of the depth-first traversal strategy.

Some examples of ASTs of LEESA expressions are presented below. In the AST diagrams, ChainExpr

works like a composite and passes the result from its left hand side tree to the function object to its right.

GetChildren<T,U> is a function object that obtains children of type U of an object of type T.

DepthFirstGetChildren<T,U> like its cousin GetChildren<T,U>, obtains U type of children

of T but additionally invokes the function object to its right-hand-side on each object of type U.

RootFolder() >> StateMachine() >> State() >> Property()

1. Obtain a set P of StateMachines from RootFolder.

2. Obtain a set Q of States from every StateMachine in set P.

3. Obtain the final result set R of Properties from every State in set Q.

RootFolder() >>= StateMachine() >> State() >> Property()

1. Obtain a set P of StateMachines from RootFolder.

2. For each StateMachine in set P do the following:

a. Obtain a set Q of States from the current StateMachine

b. Obtain a result set R of Properties from every State in set Q.

Generally, it is not advisable to write long, complex LEESA expressions that mix the operators below

freely. It makes traversals extremely counterintuitive to understand due to complex rules of how and in

which order compiler resolves the precedence and associativity of these overloaded operators. Therefore,

expression labeling using BOOST_AUTO and LEESA’s readability enhancing macros shown below are

your friends!

#define MembersOf(A,...) ((A, __VA_ARGS__))

#define DEPTH_FIRST >>=

#define BREADTH_FIRST >>

#define PARENT <<

#define Association(X) &X

#define AND ,

#define FOLLOWED_BY ,

