
Infrastructure for Making Legacy Systems Self-Managed

Naoman Abbas Mayur Palankar Sumant Tambe Jonathan E. Cook
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

ABSTRACT
Software systems that are successfully deployed and used
seem to always have a longer lifetime than was originally
expected. It is also common knowledge that the cost of
maintaining and evolving those systems during that lifetime
dwarf the initial cost of creating the system. This makes
support for self-management in the legacy software arena
all that much more important.

We are building an infrastructure for such support, called
DDL, that offers adaptation, evolution, and autonomic man-
agement support to systems built on the dynamic link li-
brary platform. With the proper support, dynamic link
mechanisms can be exploited to support many CBSE and
software architecture ideas, and can provide a platform for
self-management capabilities. DDL is meant to provide that
support.

1. INTRODUCTION
Self-managing systems need infrastructure to support in-

trospection and manipulation of themselves. And while the
“start from scratch” approach is attractive, allowing one to
define their own customized framework (and perhaps even a
new programming language) and not to worry about legacy
issues, there is a tremendous amount of existing software
that could benefit from self-management. The question is:
can self-management be brought to legacy platforms?

It is our position that the existing deployment framework
of shared, dynamically linked libraries has the fundamen-
tal potential of being a true software component deploy-
ment platform, and can offer the capability of building self-
management into legacy software systems. Dynamic linking
is most often seen as a way to save memory resources, both
secondary (by having smaller executable files) and primary

This work was supported in part by the National Science
Foundation under grants CCR-0306457, EIA-9810732, and
EIA-0220590. The content of the information does not nec-
essarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

(by applications sharing code pages). Yet, its fundamen-
tal decoupling of a system into separately deployable com-
ponents offers much more. Recent use of this has become
popular in browser plug-ins, which are essentially shared li-
braries (also called shared objects) that obey a strict API
dictated by the plugin standard.

We believe that a true component framework can be re-
alized using shared objects, if the underlying foundation
would support it. To this end, we have been building such
framework capabilities based on DDL, a customized dy-
namic loader, that offers programmatic access to the linking
process, and enables dynamic manipulation of the existing
bindings in a running software system. Such capabilities will
be necessary if self-management ideas are to be deployed
into these legacy systems. This short paper summarizes the
capabilities of DDL, focusing on how those features can sup-
port self-managing systems.

The following section (2) gives a brief overview of DDL,
Section 3 discusses how DDL can support both the diagno-
sis and repair/reconfiguration aspects of self management.
Finally, Section 4 presents related work and Section 5 con-
cludes.

2. DDL: A DYNAMIC DYNAMIC LINKER
Here we present a brief overview of DDL, a framework

of modifications and extensions to the dynamic linker that
allow us to have dynamic control over the linking process,
and to implement a range of features desirable for compo-
nent frameworks and self-managing applications. DDL al-
lows powerful control over the linking process, enables the
easy construction of runtime monitoring tools, and supports
the runtime evolution of dynamically linked programs. DDL
is a modification of the Gnu dynamic loader, which is part
of the Gnu C library. Our current tests have only been on
the Gnu/Linux platform, although the Gnu libraries (and
the dynamic linker) are ported to many other platforms.

Figure 1 shows the high-level system architecture that
DDL implements. The shaded portions indicate parts of
the system that DDL does not modify. The application
and application libraries are not modified, at the source or
binary level, and the bulk of the system dynamic linker is
unmodified.

At the lowest level, we added hooks into the dynamic
linker itself so that we could interact with the linking pro-
cess. On top of these hooks we built useful service abstrac-
tions so that tool builders would not need to start from
scratch. Further, we implemented an application services
level that provides even higher level interaction for some

app
libraryapplication

dynamic linker

hooks

DDL app−svc

DDL
services

Figure 1: DDL system architecture.

types of common services—one such service is scripting lan-
guage support.

The fundamental capability that DDL supports is link in-
terception and redirection. This allows DDL and the tools
that use it to peer into the dynamic linking process, collect
information about it, and control it. When a symbol is being
looked up for purposes of linking, our hooks in the dynamic
linker perform callbacks into the DDL control library. In
this, the hooks built into the dynamic linker do not provide
an API to external services but rather they use an API pro-
vided by DDL control library. DDL control and the tools
that use them are generally passive and event-driven, those
events being, for the most part, link requests.

We have created an event-based extensible framework for
allowing multiple tools access to the DDL capabilities. This
is shown in Figure 2. Tools, each embodied in a shared ob-
ject, register with the event dispatcher to be notified of link
request events. We are currently extending this to allow
the tools themselves to interact with each other through the
same event mechanism. We envision that self-management
frameworks would be implemented as one or more cooper-
ating tools.

With the link interception, we maintain an internal data
structure of resolved symbols (functions and global sym-
bols), and the bindings or links that refer to them. Main-
taining this information during the runtime of the program
allows us to support dynamic program evolution through
runtime link modification. This is done in the redirection
library that acts as a master control tool and is made avail-
able to other tools through a direct API, since this capability
is generally useful and should not be re-built in every tool.

In order to modify a link, we simply need to change the
address that is in its jump table entry to be the address of
some other function. All the subsequent calls through that
link will be directed to the new function. Note that jump
tables are allocated per shared object (the main program
and other shared libraries), and so these calls are from all the
call sites in the shared object whose link we just modified.
Thus, the granularity of program evolution is at the shared
object level.

Apart from startup binding and lazy link resolution and

Tool N Tool 1

Hash Table

List

Dynamic Linker

Hooks

Dispatcher
API

Event

Event Dispatcher

Function Callbacks

Redirection
Library

API Library
Redirection

LinkDef
LibraryLinkDef

API

Legend

API function call

Function callback

...

Figure 2: DDL event-based tool framework.

binding, the dynamic linker, and thus our tools, are never
going to be invoked. Therefore, we have to have some way
of regaining control over the execution of the program in
order to perform runtime link modification. We currently
employ the OS’s signal mechanism to accomplish this. Our
installed signal handler reads a remapping specification, and
rebinds the links as directed. Once the application resumes
execution, these new bindings will have immediate effect
(when they are used). In later sections, we will see other
ways that self-managing applications can regain control.

Although we have much future work to make this type of
program evolution generally useful, such as concerns about
state corruption or migration, interference between existing
calls to the old bindings and new calls to the new bindings,
recursion, and the like, DDL offers the foundation for bring-
ing dynamicity and runtime configurability to the legacy
framework of shared libraries.

3. SELF MANAGEMENT USING DDL
Figure 3 represents the basic abstract structure of a self-

managing system. A feedback loop is essential for an au-
tonomous system. Some decision/action component must
be able to examine data from the executing system, diag-
nose problems and decide on actions to modify, re-configure,
and/or update the system, and then be able to perform those
modifications. DDL supports both the data collection abil-
ity for diagnostic purposes and the system modification abil-
ity for adaptation purposes.

3.1 Supporting Self-Diagnosis
Self managed systems must be able to inspect their oper-

ation and diagnose situations that must be addressed. Two
basic approaches to this issue is to have either in-line, in-
process diagnostic checks or an observer process that concur-
rently inspects the system and updates diagnostic computa-
tions appropriately. DDL supports both types of operations,
although the former is more directly supported.

Management
Capabilities

System
Under

Management
Runtime

Data

Modification
Actions

Figure 3: Self-managing system.

3.1.1 In-line Diagnosis
Since DDL is mainly concerned with the bindings between

shared objects, it naturally supports inserting wrappers in
between the invocation and the real target of the invocation.
In this way, pre- and post-invocation diagnostic computa-
tions can be placed in the wrapper. While dynamic linking
generally assumes a 1-to-1 mapping between invocations and
targets, DDL supports a table-based rebinding mode that
enables the re-use of a diagnostic computation for multiple
targets, so that things such as class invariant checking are
possible without a unique wrapper for each method of the
class.

DDL allows monitoring of computation events—essentially
invocations of public code units. However, it can also make
available any global external symbols that are visible to the
dynamic linker. Thus, some global state is accessible. In a
C++ setting, object data is also accessible, since invocations
carry the object reference with them. DDL is certainly not
the complete introspection solution, but it does offer easy
implementation of some system probe points.

With in-line diagnostic checks, one must take great care
in what is being evaluated where. In complex situations,
such as monitoring data structure integrity, it is easy to in-
sert multiplicative terms into the overall complexity of the
underlying application algorithms. In an autonomous self-
managed system, the diagnostic techniques might involve
very complex “AI” decision algorithms, and in-lining these
within the application computation would mean that effi-
cient incremental checking algorithms are needed. We are
not working in that area, and leave it up to the engineer to
know how much diagnostic computation can be done in each
specific wrapper. This does lead, however, to the desire to
place the management into a separate thread or process.

3.1.2 Observer Process Diagnosis
If diagnostics are to be computed in a separate observer

process (or thread), DDL can support this in an event-based
manner. In this scenario, DDL would insert wrappers that
simply convey an IPC message indicating an event that takes
place in the system. This IPC messaging should allow an
acknowledgment to be returned before the system proceeds
with its computation. In this way the observer process can
choose to provide a default immediate ack and then process
the event concurrent with the system (and taking a chance
that the system proceeds in error), or to delay the ack until
it decides that no action needs to be taken.

Since the observer portion of a self-managed system should
ideally have full access to the application portion, it would
be natural to think of the observer as a thread rather than a
heavyweight process. The observer thread, however, should
not be considered as symmetric to the application thread(s),
since it should have full access to the application (code+data),
while the application should not have access to it. Offhand,
we know of no thread package or operating system that im-
plements such asymmetric threads, and we think this may
be an important area of future research, especially when
considering the security aspects of such a system.

3.1.3 Data-Centric Diagnosis
We also have been working on efficient monitoring of data

accesses. Most notably, given the prevalence of the Intel x86
platform, we have been investigating the use of its hardware
breakpoint registers as a method for monitoring data ac-
cesses.1 These registers can be used to monitor memory
accesses at full CPU speed. They offer a potential basis for
deploying efficient monitoring facilities that are data-centric.

Unfortunately, access to these registers is privileged, and
the software support must trigger kernel-level traps, and in-
deed their only use currently is in an observer-process mode
(typically, a debugger). Our investigations into using these
facilities may lead to suggestions for future hardware or
O/S changes, so that self-management can be deployed ef-
ficiently and can take advantage of hardware capabilities.
This also relates to the idea of a privileged, asymmetric ob-
server thread in a system, where perhaps the breakpoint
registers are accessible to the observer thread, while still
protected from the application.

Currently, we have not integrated these capabilities with
our DDL framework, but we are intending to.

3.2 Supporting Modification and Repair
A framework supporting self-management must not just

support monitoring and diagnosis, it must also support the
run-time modification of the system. DDL naturally sup-
ports this.

The basic capability that DDL offers is the ability to dy-
namically retarget a binding between shared objects. This
simply modifies the built-in jump table that the shared ob-
jects use anyways, so no extra overhead is incurred by this
basic capability. Since a self-managed system would have
diagnosis hooks into the application, it naturally has con-
trol points at which it could perform these modifications, or
it could use O/S signals as we described in Section 2.

On top of this capability, DDL offers the ability to fully re-
place a shared object with a new one, by remapping all cur-
rent bindings from the old to the new one, and then remov-
ing the old one. This works under certain constraints—e.g.,
no indirectly exported symbol pointers, such as a function
or symbol address returned from another function. Such
bypassing of the “normal” interaction of shared objects is
problematic for us to handle, although we will be investi-
gating methods to do so.

Shared object replacement is not the only method for
modifying a system, however. DDL can be used to bring in
new functionality without removing old functionality. We
recently did a case study where we “managed” an archi-
tectural simulator to extend its behavior to allow dynamic

1Other modern processors also have breakpoint registers,
but the x86 line is notable for having four of them.

switching between a detailed (and slow) simulation mode
and a partial (but fast) simulation mode [1]. Although we
did have to make minor code changes (the original simulator
was statically linked and had C “static” (i.e., hidden) sym-
bol declarations), we did not change any functional code but
instead used DDL to bring in and dynamically activate the
new behavior (fast partial simulation).

Another method for modifying a system is to provide a
framework for controlled modification, rather than just sim-
ply making the modifications and hoping for the best. Our
Hercules framework for supporting an evolution process
whereby multiple versions of components can be executed
side-by-side is one example of such a framework [3]. In
this mode, DDL supports the rebinding of shared object
connections to insert framework connections between them,
thereby giving the framework the necessary control to per-
form its duties. We have an initial Hercules prototype
working on top of DDL. With dynamic link rebinding, pre-
and post-evolution system states incur no extra overhead,
since the links are direct, while during evolution, Hercules
sits in-between as a complex connector that manages the
evolution process.

Our tools do not currently assist in other aspects of mod-
ification, such as new component initialization, state migra-
tion, and similar issues. These aspects are somewhat orthog-
onal to the functionality that DDL provides, but we will be
investigating them in the future as part of our ongoing work.

4. RELATED WORK
The DITools project [10] is the closest related work to our

DDL project. They used a similar approach to link intercep-
tion and modification, and supported redirecting a link to
a wrapper and also an event notification mechanism where
each monitored call was not wrapped but did generate an
event to a fixed-interface callback. It does not appear that
they addressed the issues surrounding C++, nor did they
do non-function symbol resolution nor runtime link modifi-
cation.

Ho and Olsson [7] describe dld, a tool for “genuine” dy-
namic linking. Their tool provides the capability to load
and unload shared libraries, breaking links when a library is
unloaded and relinking them to new code when new libraries
are loaded. However, it does not appear that they ever sup-
ported redirection of links to different symbol names.

Hicks et. al [6] work on binary software updating from a
formal perspective. Their methods use typed, proof-carrying
assembly code from which they can verify that an update
will be safe. Their infrastructure includes special languages
and compilers to generate the annotated assembly code, and
a runtime framework that uses it.

Additional systems that provide instrumentation capabil-
ities on executable binaries exist. Dyninst [2] can patch
custom code into pre-existing executable code, and has pro-
vided a platform for several research tools. Valgrind [11]
provides a complete simulated CPU and execution space to
the program under inspection, and is extensible, thus allow-
ing new dynamic analyses to use it as a foundation.

There is much work in dynamic introspection and modi-
fication of Java programs, but since this work is in a very
different environment than ours, we do not explain it in de-
tail here. Some representative references are [4, 5, 8, 9].

5. CONCLUSION
Shared, dynamically linked libraries have been around for

quite some time, and yet they have been ignored as a plat-
form for CBSE ideas. We believe that this ubiquitous plat-
form can support much more dynamicity and component
management than it currently does, and we are working to
achieve these goals. Our ultimate hope is that we can influ-
ence the direction of future dynamic library infrastructure
to include the support needed to make shared libraries true
manageable components, and to make building the infras-
tructure for this and for self-management features possible.

Our current focus is in the deployment of the Hercules
framework on top of DDL, but we are also using DDL for dy-
namic analysis work (especially scripting language support),
for dynamic behavior adaptation, and other applications.

DDL is freely available for research use at
http://www.cs.nmsu.edu/please/ddl/index.php.

6. REFERENCES
[1] N. Abbas, S. Tambe, R. Srinivasan, and J. Cook.

Using DDL to understand and modify SimpleScalar.
In Proc. 2004 Working Conference on Reverse
Engineering, page to appear, Oct. 2004.

[2] B. Buck and J. Hollingsworth. An API for Runtime
Code Patching. Journal of High Performance
Computing Applications, 14(4):317–329, 2000.
www.dyninst.org.

[3] J. Cook and J. Dage. Highly Reliable Upgrading of
Components. In Proceedings of the 21st International
Conference on Software Engineering, pages 203–212,
May 1999.

[4] M. Dahm. Byte Code Engineering Library. 2002.
http://jakarta.apache.org/bcel/.

[5] S. Eisenbach and C. Sadler. Changing Java Programs.
In Proceedings of the 2001 International Conference
on Software Maintenance, pages 479–487, Nov. 2001.

[6] M. Hicks, J. Moore, and S. Nettles. Dynamic Software
Updating. In Proc. 2001 ACM Conference on
Programming Language Design and Implementation,
pages 13–23, 2001.

[7] W. Ho and R. Olsson. An Approach to Genuine
Dynamic Linking. Software Practice and Experience,
21(4):375–390, 1991.

[8] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and
J. Barnes. Runtime Support for Type-Safe Dynamic
Java Classes. In Proc. European Conference on
Object-Oriented Programming, pages 337–361, 2000.

[9] A. Orso, A. Rao, and M. Harrold. A Technique for
Dynamic Updating of Java Software. In Proc. 2002
International Conference on Software Maintenance,
pages 649–658, Oct. 2002.

[10] A. Serra, N. Navarro, and T. Cortes. DITools:
Application-level Support for Dynamic Extension and
Flexible Composition. In Proc. 2000 Usenix Technical
Conference, pages 225–238, June 2000.

[11] J. Seward. Valgrind, an Open-Source Memory
Debugger for x86-Gnu/Linux. Technical report.
valgrind.kde.org.

