
DDL: Extending Dynamic Linking for Program Customization,
Analysis, and Evolution

Sumant Tambe Navin Vedagiri Naoman Abbas Jonathan E. Cook
Department of Computer Science

New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

Abstract
While new software languages and environments

have moved towards richer introspective and manip-
ulatable runtime environments, there is still much
traditional software that is compiled into platform-
specific executables and runs in a context that does
not easily offer such luxuries. Yet even in these
environments, mechanisms such as dynamic link li-
braries do offer the potential of building more con-
trol over the deployed and running system, and can
offer opportunities for supporting dynamic evolu-
tion of such systems. Indeed, the basic dynamic
linking mechanisms can be exploited to offer a rich
component-based execution environment.

In this paper, we present our initial explorations
into building such support. Our approach is to ex-
tend the Gnu open-source dynamic loader to give the
deployer control over the configuration of the system,
and to be able to dynamically evolve that system.
Applications of this capability include runtime com-
ponent configuration, program evolution and version
management, and runtime monitoring.

1 Introduction

Dynamic link libraries, also called shared libraries
or shared objects, have the potential to offer a
rich, dynamic, component-based deployment plat-
form. Many, if not most, of the latest ideas in
component-based software frameworks and develop-
ment could be supported by the shared object plat-
form. Private namespaces, naming service lookup
for binding requests, interface checking, introspec-
tion and monitoring support, and dynamic reconfig-
uration are just some of the capabilities that could
be supported—if the underlying framework enabled
it to be.

Shared objects (or dynamic link libraries) delay
the binding of externally needed symbols (functions,

methods, global data) to the runtime of the program.
An extra module, the dynamic linker, is loaded with
the program, and accomplishes the dynamic link-
ing necessary for the program to complete its execu-
tion. Since symbols are not yet bound, a dynamic
linker could allow a tool builder access to the bind-
ing operation, and allow the tool to take a variety
of actions. Inserting wrappers for tracing, security,
assertion checks, and many other uses ought to be
possible. Redirecting a binding to another symbol
should be supported. Even run-time modification
of bindings should be possible. All of this is feasible
without any modification or translation of the object
code of the application.

Current dynamic linkers do allow rudimentary
control over the linking process. Most allow an ap-
plication to preload a library, so that symbols in
the preloaded library will take precedence over those
in libraries loaded later. This is typically done for
things like wrapping system calls with particular be-
havior (e.g., a virtual file system) or security checks.
However, the preload mechanism is static and is
cumbersome to program—the wrappers need to ex-
plicitly load and find the actual symbols that it is
wrapping.

In this paper we describe DDL, a tool based on
modifications and extensions to the dynamic linker
that allow us to have dynamic control over the
linking process, and to implement features such as
those listed above. DDL allows the user to con-
trol the runtime configuration of the application,
enables the easy construction of runtime monitor-
ing tools and supports the runtime evolution of dy-
namically linked programs. DDL is a modification
of the Gnu dynamic loader, which is part of the
Gnu C library. Our current tests have only been on
the Gnu/Linux/x86 platform, although the Gnu li-
braries (and the dynamic linker) are ported to many
other platforms.

Section 2 gives a brief overview of dynamic linking.
Section 3 discusses dynamic linking from an architec-
tural perspective. Section 4 details our modifications
to dynamic linking that allow link interception and
runtime evolution. Section 6 describes how C++ in-
teracts with the dynamic linking framework and how
DDL can support it. Section 7.1 presents a brief look
at one example tool that uses the DDL framework,
while Section 7.2 presents some ad-hoc data analysis
examples using DDL. Section 8 discusses lessons and
ideas learned during the project. Section 9 presents
related work, and finally Section 10 concludes with
some ideas for the future directions that we are pur-
suing.

2 Dynamic Linking, Briefly

The fundamental action of a linker is to take multiple
separately-compiled pieces of object code and resolve
the unknown shared symbols into addresses, so that
the object code can execute without any missing
pieces of information. Dynamic linking leaves the
symbol resolution process to be completed at run-
time. The external symbols are still “resolved” dur-
ing the static link process—however, only a place-
holder dependency reference to the dynamic link li-
brary that contains the symbol is put into the exe-
cutable object code.

From here on we will use the terms shared library
and/or shared object rather than dynamic link li-
brary, because this term is more traditional, and
it does capture the important notion that dynam-
ically linked objects can be shared among processes.
The code pages—which typically make up most of a
shared library—are write-only and the code in them
is compiled to be position-independent1, and thus it
can be mapped into multiple process spaces, even at
different addresses.

In the Executable and Linking Format (ELF) [9],
dynamic linking uses two tables: the Procedure
Linkage Table (PLT) and the Global Offset Table
(GOT). Calls to external functions (and often to in-
ternal functions as well) use these tables to effect
an indirect call. Figure 1 shows a call to the printf
function as it goes through the PLT on an already
resolved entry. The actual call site in the program
“calls” an entry in the PLT. The PLT is executable
code, with basically a jump instruction for each en-
try. The jump is an indirect jump that uses the cor-
responding entry in the GOT—an address—to jump
to the correct function. Before a symbol has been

1With the Gnu C/C++ compiler, generating position-
independent code must be explicitly selected with the -fPIC
option.

PLT
...

PLT4:
JMP (GOT4)

...

libc.so

printf

GOT
...

GOT4:

...
&printf

myprog.o

JSR PLT4

printf("hello")

myprog.c

Figure 1: Function call through a dynamic link.

resolved, the GOT entry (in effect) has the address
of the dynamic linker’s symbol resolution routine in
it.2

Thus, the PLT and GOT tables centralize the code
that uses the dynamically bound links and the ad-
dresses of those links. The PLT is code while the
GOT is data—a table of addresses of functions. The
dynamic linker is invoked upon the first call to a
function, and its job is to find the symbol (possi-
bly needed to load the shared library into memory),
determine its address, load that address into the cor-
rect GOT entry, and effect a jump to the function.
The function returns directly to the original call site
(since only jumps occurred in between), and all sub-
sequent calls only incur a one-instruction overhead
since the GOT now contains the correct address of
the function.3

For position-independent code, symbols represent-
ing global data are also referred to through the GOT,
but not through the PLT. The GOT is an address
table for all external symbols (and internal globals,
as well), while the PLT is specifically for function
calls.

We briefly mention C++ here, but detailed expla-
2In detail, the PLT entry has a couple of instructions be-

low its main jump. The GOT initially points back to these
instructions. Their job is to push the symbol name as another
parameter and then effect the jump to the dynamic linker,
which still goes through yet another PLT entry in order to
push the library name as a second parameter for the dynamic
linker.

3Dynamic linkers do generally support binding modes
other than first-call binding. Load-time binding allows res-
olution before the first call, essential for real-time systems,
and suppressed binding forces every single function call to
trigger a resolution (which never updates the GOT), which
can be important in debugging situations.

nation of C++ is found in Section 6. The dynamic
linking mechanism (and static linking as well) only
knows about symbol names, it does not have inher-
ent understanding of classes and such. When C++ is
compiled, the compiler does name mangling to con-
vert the class and method name into a single unique
symbol. Because C++ allows method overloading
(same name but different parameters), the types of
the parameters are also used in the name mangling
to produce a unique name for each method, over-
loaded or not, in a class. In this way, C++ is “invis-
ible” to the dynamic linker, and class methods are
only related in that their mangled names all include
the same class name. A further complication is in
polymorphic behavior, especially the mechanism of
virtual methods that allow specific runtime-selected
behavior based on the actual object type being used.
A class vtable—a table of function pointers—is used
to implement polymorphic method calls.

3 An Architectural Perspective

If one steps back for a moment away from the low-
level idea of dynamic linking being symbol resolu-
tion, a broader picture of the meaning of what is
happening can appear.

In using dynamic linking, an executable program
is incomplete—it does not have the complete code
to run. Instead, it needs external services to be able
to run to completion. The dynamic linker’s job is to
find these services and connect the program to them
so that it can use them.

In the abstract, the area of software architecture
gives us a language to understand this interaction.
The pieces of a system are called components and
other pieces called connectors create the connections
between the components [11]. We might be used to
these ideas when thinking of, say, Java RMI and
the stubs and skeletons acting as connectors for our
remote method invocation, but the same basic idea
applies to the dynamic linking environment.

Each shared object, including the application pro-
gram, is a component that contains references to re-
quired services. These references are in the form
of names (symbols). Additionally, each component
also advertises its provided services, also referring to
these by using names (symbols). There is no reason
at all why the required service name must match the
provided service name—indeed, it is constraints like
these that cause global namespace pollution.

Rather, we can view the names as local specifiers
of required and provided services. It is the architec-
tural level that needs to provide a binding specifica-
tion between component namespaces. This might be

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

app
libraryapplication

ddl services

ddl control

dynamic linker

hooks

Figure 2: DDL system architecture.

as simple as equating them (thus reducing the prob-
lem to normal linking), but it might involve trans-
lation of one name to another, binding a complex
connector in between, binding to a remote service,
or even more complex processes.

This view is useful on many different levels. As
already seen, it allows components to have indepen-
dent namespaces, even for externally required or pro-
vided services. It allows an external framework to
choose how to connect the components rather than
having a single implicit mechanism. It allows the
framework to choose to add monitoring or manage-
ment capability into the system, by placing it in the
connectors between application components. It en-
ables interface translators to connect required and
provided services that might have slightly different
formats.

Understanding dynamic linking as just one mech-
anism for connecting independent components into
a complete application, one which the default behav-
ior of symbol matching is a throwback to a mono-
lithic system, programming language centric view-
point, enables us to place it alongside modern com-
ponent system frameworks and to work to bring its
implementation—the dynamic linker—up to date in
its capabilities.

4 DDL: A Dynamic Dynamic Linker

While the long-term goal of our work is to move
dynamic linking towards a full-fledged component
framework, this paper presents just the beginnings of
that work, and modified dynamic linker called DDL.

DDL is an extension to the Gnu dynamic linker,
and is extensible itself. Figure 2 shows the high-level

system architecture that DDL implements. The
shaded portions indicate parts of the system that
DDL does not modify. The application and appli-
cation libraries are not modified, at the source or
binary level, and the bulk of the system dynamic
linker is unmodified.

At the lowest level, we added hooks into the dy-
namic linker itself so that we could interact with the
linking process. On top of these hooks we built use-
ful service abstractions so that tool builders would
not need to start from scratch. Further, we imple-
ment a application services level that provides even
higher level interaction for some types of common
services—one such service is scripting language sup-
port.

5 Linker Modifications

One goal in this project was to have very mini-
mal modification to the Gnu dynamic linker itself.
We decided that any significant code we developed
would sit outside of the linker. Thus, our essen-
tial modifications boil down to callback hooks in
the linker code itself. The hooks themselves are de-
scribed later; this section only describes the linker
modifications.

To activate our modifications, we added linker
code to check and use an environment variable,
LD REDIRECT. If this is not defined, our modifica-
tions are ignored, and the linker operates normally.

The callback hooks are in the form of function
pointers. If LD REDIRECT is defined, our code at-
tempts to initialize the function pointers by doing
symbol lookups—using the dynamic linker code it-
self. The symbols are of course not defined in the
linker or in the application and its libraries. They
are defined only if a tool library has been preloaded
(using LD PRELOAD), and thus the hooks internal
to the linker get connected to tool functionality out
in a library.

All of this happens once, at application startup.
Only if the function pointer callback hooks are ini-
tialized properly will DDL act differently than the
regular Gnu linker. If they are, then at key points
in the linking process, the callbacks are invoked and
the external tool has the opportunity to interact
with and manipulate the linking process. In this,
the hooks built into the dynamic linker do not pro-
vide an API to external services but rather they use
an API provided by DDL control library. DDL con-
trol and the tools that use them are thus generally
passive and event-driven.

5.1 Link Process Manipulation

The fundamental capability that DDL supports is
link interception and redirection. This allows DDL
and the tools that use it to peer into the dynamic
linking process, and control it. The callback points
are:

redirect init : This is called once to initialize any-
thing the redirection code needs. It is called be-
fore “main()”, so it should not depend on any
initializations in the application.

redirect isactive : This should return non-zero if
redirection is desired. If it returns 0, no other
redirection code is executed. This offers dy-
namic on/off control to the DDL services.

redirect lookup : This hook is called before the
linker tries to resolve a symbol. As parameters
this function receives the symbol of the function
to be resolved and the shared object from which
this call is coming from (i.e., the main applica-
tion or some shared library). It returns either
a) the new name to which it should be redi-
rected; b) the exact same pointer it received as
a parameter, indicating no redirection is taking
place; or c) a NULL pointer, also indicating no
redirection.

redirect definition : This function receives all the
information about the symbol and link that
have been resolved. For convenience it again
provides the original symbol looked up and the
name of the shared object the link request is
coming from (as in redirect lookup). It also
provides the symbol that was actually resolved
(different if redirect lookup returned a different
name), the library that the resolved symbol is
in, the address of the resolved symbol, and the
address of the GOT entry that is being updated.
Through this, analysis tools can keep track of
every link request and every symbol definition
that is resolved.

redirect offset : This function provides the off-
set (in bytes) that will be added to the ad-
dress of the symbol that was used. This allows
application-level PLT-style table-based redirec-
tion. It should return 0 if table-based redirec-
tion is not being used.

redirect symdef : This function provides the in-
formation about load-time symbol definitions,
many of which are not function symbols and
so will not appear in the above callbacks. The

Link Definition
defName
soName
funcAddressGOTAddress

callName
soName * 1

<from> <to>

binds−to

Figure 3: Link and definition UML.

symbol name, library name in which it occurs,
and its resolved address are all provided.

Thus, with this interface, tools using DDL can in-
spect every link request, choose whether to redirect
it to another symbol name, and record the informa-
tion about the resolved symbol and about the link
itself.

Our redirection capabilities allow for table-based
redirection. That is, the redirection code can imple-
ment a mechanism similar to the builtin PLT-GOT
table-based dynamic linking. The redirect offset
callback supports this capability. This will be ex-
plained in the next section in more detail.

Figure 3 shows how the links and definitions re-
late to each other and the information that uniquely
describes each of them.

A link is defined by the original function name it
is supposed to be linked to, the name of the shared
object it is for (the main application or a shared li-
brary), and the address of the GOT entry where its
binding address is stored. A definition is defined by
its function name, the name of the shared object it
exists in, and the address at which it exists. Fur-
ther information that is useful to save is a reference
from the link to its current definition, and in the re-
verse direction a set of links that currently reference
a given definition.

Without using our redirection capabilities, all
links will point to definitions of the same name.
There are potentially multiple links to the same
definition because each shared object that calls
that function will have its own link (i.e., its own
PLT/GOT and its own unique PLT/GOT entry for
calls to that function). If our redirection capabilities
are being used, then the called name associated with
the link can be different from the defined name of
the definition; thus it is important to keep track of
these names separately.

5.2 Table-based redirection

In general, our link interception and redirection ca-
pability supports redirecting the calls of each unique
function to some other unique function. While the
mechanism does not prevent multiple redirections

to the same symbol, in practice this does not make
sense, outside of perhaps a few special cases. This is
because the called function cannot differentiate be-
tween the calls, and thus cannot know which calls
map to which original symbols. Thus, only if the
arguments from all the calls were the same and the
desired behavior was the same would it make sense
to redirect multiple symbols to the same target.

There are cases in runtime monitoring and pro-
gram maintenance, however, where it would be use-
ful to have a concentrator function that did receive
calls for multiple symbols and was able to differen-
tiate them. For example, if one wanted to trace all
calls in a program, it would be nice to have a single
wrapper do the job rather than a unique wrapper
for every function.

To support this functionality, we utilize the same
basic mechanisms of the system PLT/GOT jump ta-
bles, but at our own user-defined level. The DDL in-
terface that supports this is the capability of provid-
ing an offset to be added to the address of a symbol
that is resolved.

To use this capability, we first must create a jump
table. A simple (and non-thread-safe) example of
this is below.

unsigned int func_id;

void wrapper_plt()

{

asm(" movl $0, func_id\n\t\

jmp wrapper\n\t\

movl $1, func_id\n\t\

jmp wrapper\n\t\

...

movl $98, func_id\n\t\

jmp wrapper\n\t\

movl $99, func_id\n\t\

jmp wrapper\n");

}

This example represents a 100-entry jump table,
where each entry sets a global variable to its in-
dex value and then jumps to the wrapper func-
tion. Note that the program never calls the wrap-
per plt function—rather, it jumps directly to one
of the entries, which in turn jumps to the wrap-
per. Our use of DDL would redirect each symbol
to (wrapper plt + 3 + i ∗ 15), where i is the entry
assigned to that symbol. To do this it would do
symbol redirection to “wrapper plt”, allow the dy-
namic linker to find that symbol, and then add the
offset using the redirect offset DDL callback. At the
same time, our DDL extension we would save the
symbol string in a string table, at the same index
being used in the jump table.

The wrapper function, using the global func id,
would have access to the index of the function cur-
rently being called, and from there could get the
name of the function (since we saved it). After do-
ing its tracing behavior (or whatever it is supposed
to do), it could use dlsym() to resolve the original
function and to call it. Functions with different ar-
gument vector lengths can still be handled by the
same wrapper, since the reverse-calling convention
ensures that extra argument data is ignored. The
wrapper only needs to know the maximum argument
bytes it needs to push on the stack.

While the jump table must be created in a
platform-dependent manner, the basic idea remains
essentially the same on most platforms, and through
the symbol-plus-offset mechanism that DDL exposes
to the user, effective use of a single site for multiple
redirected symbols can be accomplished.

As one example, we used this capability to fully
trace the SimpleScalar CPU simulator [3, 1].

5.3 Runtime Link Modification

In Section 5.1 we saw that we can maintain an inter-
nal data structure of resolved symbols, their address
of GOT entries and the current definition of the
function the link is referring to. Maintaining this in-
formation during the runtime of the program allows
us to support dynamic program evolution through
runtime link modification.

In order to modify a link, we simply need to
change the address that is in its GOT entry to be the
address of some other function. All the subsequent
calls through that link will be directed to the new
function. Note that these calls are from all the call
sites in the shared object whose link we just modi-
fied. Thus, the granularity of program evolution is
at the shared object level.

Once the link is initially resolved, however, the
linker is never going to be called for that particular
link again. Therefore, we have to have some way of
regaining control over the execution of the program
in order to perform runtime link modification. While
in the long run some OS support would be needed
for generic framework control of an application, as
proof of concept we currently employ the OS’s signal
mechanism to accomplish this.

The user must first provide a specification file de-
scribing which links they want to modify. While the
file does not need to be created when the applica-
tion is first started, an agreed-upon file name and
location does need to be known at startup, since
there is no way to send such information through a
signal. When a user-defined signal is sent to the ap-

plication, our own handler reads in the specification
file, traverses the internal data structures of links
and definitions, and modifies the GOT entries for
the specified links. When the handler is completed
and the application regains control, subsequent calls
on those links will go to the new definitions. The
downside of the signal mechanism is that if the user
process also installs its own signal handler for the
same signal, our signal handler will likely never be
called, since we installed ours first, before the appli-
cation started up.4

In runtime link modification, it can be the case
that a new definition for which links should point
to may not yet have been loaded by the dynamic
linker. This means that we must be able to not
only search the existing definitions but also bring
in new definitions, possibly even loading new shared
libraries. We can do this using the standard dlopen()
and dlsym() interface that already exists for user-
level access to shared libraries.

Other work in dynamic program evolution has
noted a desire to perform transactional updating—
making sure that a module is not being actively used
before updating references to or away from it [12].
This often boils down to checking the call stack to
see if any functions in the module are active. We
have not yet concerned ourselves with providing such
capability, but plan to investigate these aspects in
the future. In our current mechanism, existing calls
through links being modified have already invoked
the old definition, and those will eventually com-
plete.

6 Supporting C++

The basic mechanisms used in static and dy-
namic linking were built to support simple symbol
sharing—both data and functions—and they do not
directly support more complex execution environ-
ments such as those that object-oriented program-
ming languages like C++ demand. In this section
we discuss using DDL on C++ applications, and
concentrate on creating wrappers for C++ classes
and methods, rather than just simply redirecting the
method calls because creating wrappers exposes in-
teresting problems and solutions.

When C++ is compiled, the compiler does name
mangling to convert the class and method name into
a single unique symbol, as discussed in Section 2.

4We believe we can use the DDL mechanisms themselves
to wrap the signal() call and protect our signal handler while
still giving the application its desired functionality, but we
have not done so yet.

private int x
private foo()
public bar()

A
public int x
public foo()
public bar()

A’

public foo()
public bar()

wrap_A

Xlat

Figure 4: C++ wrapper definition.

It is possible to create wrappers in C for methods
in a C++ class. Our redirection mechanism can map
a request for the mangled symbol into the symbol for
our C function. In C, one can directly call the man-
gled symbol as another C function, with an explicit
this pointer as the first argument. The mechanism is
even typesafe when compiled with a C++ compiler
and using the extern “C” syntax. However, it is not
very convenient. With the application coded in an
OO methodology, we would like to create wrappers
in the same way.

With wrappers in C++, our wrapper class(es)
ought to mirror our application class(es). Moreover,
the wrappers will need to know about (and invoke
methods on) the application classes. The next sub-
sections detail the methods for doing this.

6.1 Wrappers for C++ methods

To wrap any non-virtual method of a C++ class,
we need to intercept the call to the mangled symbol
of that method and redirect it to our own wrap-
per class’ method. The approach we took to im-
plement this is that we make the wrapper class to
be a subclass of the target class (the class whose
method(s) we want to wrap), and then define the
wrapper method as the same name (and type signa-
ture) as the method which we want to wrap in our
wrapper class.

Figure 4 shows the relationship between the ap-
plication class A and the wrapper classwrap A. In
practice, we need to translate the declaration of A
into a class declaration A′ where all private mem-
bers have been made public. We do not create an
implementation of A′. This translation is done so
that the wrapper class can have access to the data
and methods. Note that A′ is only used in compil-
ing the wrapper, and we assume that this translation

does not effect the binary layout of the class. Thus,
the encapsulation defined for the class still holds for
the rest of the application—it is only for the wrap-
per that we allow the compiler to give us full access.
As shown in Figure 4, we can inherit from A′ and
redefine both methods to have wrapped versions.

Although we have related the two methods
(wrapped and wrapper) through inheritance, we can
not use the relationship to cause an automatic invo-
cation of the wrapper method, since the application
is not necessarily available for modification (it may
only exist in binary form). Rather, at runtime we
use the DDL capabilities to redirect the calls to the
method of the original class to the method of the
wrapper class.

The code for the wrapper for foo() looks like:

returnType wrap_A::foo()

{

returnType result;

. // ops before actual call

result = A::foo(); // actual call

. // ops after actual call

return result;

}

With this approach we do not need any special han-
dling for the object reference itself. It is important
to note that no object of the wrapper class is ever
instantiated. The application creates objects of type
A, calls methods on type A, and is compiled as such.
At runtime, the calls to the methods which we want
to wrap are redirected to the methods of the wrap-
per class. Although our wrapper is a subtype of
A′ (which we consider equivalent to A for our pur-
poses), it does not add anything “new” in its class
definition and the explicit superclass call correctly
succeeds because the this pointer refers to an object
of type A anyways.

6.2 Wrapping constructors and de-
structors

Constructors and destructors are special case meth-
ods that require special handling by our wrapping
mechanisms.

We can not simply redirect a constructor call to
the constructor of our wrapper class because when
the constructor of the wrapper class is called the
constructor of the parent class is called implicitly,
which is again redirected to our wrapper method.
This ends up in an infinite loop. To resolve this prob-
lem we write a new (non-constructor) method in our
wrapper class and redirect the call to the constructor
to this method. Inside this method, we would like to
make an explicit constructor call, but C++ language

semantics demand that an explicit constructor call
should create a temporary object of the class, which
is not what we need. Our solution to this issue is
solved by reverting to using the extern “C” capa-
bility and calling the mangled symbol of the parent
class constructor, passing the this pointer as an ex-
plicit parameter. Although not elegant, it does work.

With destructors we face a similar problem. If we
redirect the destructor call to the destructor of our
wrapper class, the destructor of the parent class is
implicitly called after returning from the destructor
of the wrapper class. Another restriction that we
have in the case of destructors is that some compilers
mangle the symbol of a destructor in such a way that
it cannot be explicitly called, even using the extern
“C” mechanism.

Thus, similarly to constructors, we redirect the
destructor call to a regular method of the wrapper
class; however, we do not need to call the destructor
through a mangled C function call. Rather, C++
allows us to call the destructor of our own class (the
wrapper class), and when we call the destructor of
the wrapper class the destructor of parent class is
called implicitly. The destructor of the wrapper class
is an empty method, since no object of the wrapper
class exists anyways; it only serves to cause an invo-
cation of the parent class’ destructor.

6.3 Wrapping virtual methods

The process of linking in the case of virtual meth-
ods is quite a bit different from non-virtual methods.
Every object of a class with virtual methods has a
pointer to the class vtable. The entries in the vtable
point to the actual methods for the class, no mat-
ter where they are in the class hierarchy. To wrap
virtual methods we need to intercept the binding of
the entries stored in the virtual method table.

Generally, C++ compilers optimize away some of
the vtable use on calls of virtual functions. For ex-
ample, if an object variable is declared rather than
an object pointer, any calls to virtual methods made
on that variable (using the o.foo() syntax rather
than the p → foo() syntax as on a pointer call) can
be resolved at compile time, since the object type is
known and is static. These calls will to the linker
look like non-virtual method calls, and will use nor-
mal symbol resolution and can easily be handled by
DDL as previously explained.

For virtual method calls on object pointers that
might point to a variety of object types, however,
the vtable must be used. When supporting calls
through a vtable, the mangled method names are
not even referenced, and will not appear as exter-

nally required symbols for the linking process to re-
solve.5

The object vtable pointer is initialized by the con-
structor(s), and these are (generally) in the same
object code as the vtable itself, which is (generally)
a static list of symbols that are resolved at load-
time, not run-time.6 The effect of this is that the
basic mechanisms of DDL run-time linking intercep-
tion are completely bypassed, and thus without some
new capability, virtual method calls can not in gen-
eral be supported.

We have solved this problem by building into DDL
a hook for watching load-time symbol resolutions.
At this point we do not allow manipulation of this
step, because we have not yet considered all of its
ramifications, but we can record the information
about symbols other than dynamically linked func-
tions. Since these are resolved early on, by the time
our initialization code is called, the vtable symbols
are known, and we can over-write the vtable entries
with pointers to our wrapper functions.

6.4 Wrapping and inheritance

So far we have concentrated on wrappers for individ-
ual methods of C++ classes. When we aim to wrap a
compete C++ class we face some more issues. In the
object oriented paradigm, a class may inherit meth-
ods from one or more base classes. So if we want
to wrap a derived class we need to wrap the meth-
ods of the base class(es) too. All the calls to these
methods will be redirected to the methods of our
wrapper class. But in this, all the calls on methods
for objects from other subclasses, which also inherit
the methods and which we do not want to wrap, will
also be redirected to our wrapper class.

Figure 5 shows our wrapper class in a larger class
hierarchy. For example, suppose we have a class B
which has a method B :: foo(), and two subclasses
are inherited from it, S1 and S2. S1 and S2 will use
the method foo() of base class unless it is overridden
in them. Here if we want to wrap class S1, we will
inherit our wrapper class from S1 and will override
the method foo() in it, as shown in the figure.

The problem is that all the calls to B :: foo() will
be redirected to wrap S1 :: foo(), even if they are
made on an object of type S2. This is because we
are using symbol redirection on the B :: foo symbol.

5And since it cannot be known at compile time which class’
method will be invoked, it is impossible for the compiler to
“pick” a symbol refer to.

6If a class, or classes related through inheritance, are in
different shared libraries, there is some run-time symbol reso-
lution, but this special case does not help us solve the general
case.

B
public foo()

S1 S1

public foo()

wrap_S1

S1’

Figure 5: C++ inheritance problem.

To resolve this problem we make use of the Run
Time Type Information (RTTI) provided by C++.
With this we can find the type of object calling this
method at runtime and bypass any wrapper process-
ing of a call that is not made from an object of our
target class. The wrapper will still add overhead be-
cause it is invoked and needs to pass the invocation
on to the real method, but the functionality of the
wrapper can be applied to only one subclass, even
in the presence of “shared” base class methods.

7 Example Uses of DDL

7.1 Scripted Analysis Tools

The first example tool we have built that uses our
DDL framework is Datcl, a tool that allows some
dynamic analyses to be written at the scripting level.
This tool allows new dynamic analysis ideas to be
prototyped in a high level scripting languages (Tcl),
and enables even project-specific analyses to be de-
veloped cost-effectively.

In Datcl, we employ only the link interception
capability of DDL. The user of Datcl writes a sim-
ple specification of the introspection points (function
calls) that they are interested in observing, and a
wrapper generator generates the C code that imple-
ments the interception of the introspection points,
the hooks into the Tcl language level, and the call
to the actual application function.

The Datclwrappers call a Tcl procedure before
the actual function, and then call a Tcl procedure
after the function is done. Thus, each introspection
site is matched by a pair of Tcl procedures that the
tool builder writes. The Tcl procedures receive the
argument values used in the call, and the post-call

Figure 6: Memory usage analysis in the shared li-
brary framework.

Tcl procedure also receives the return values.7

Since Tcl comes with the GUI toolkit Tk, the
capabilities of Datclinclude runtime visualization
of application behavior. Figure 6 shows a graph-
ical view of memory allocation in the Ghostview
Postscript viewer application, fully implemented in
Tcl/Tk on top of Datcl, by performing introspection
on the memory allocation system calls.

7.2 Component Views

In this section we demonstrate the data gathering
capability of DDL, without demonstrating its link
interception capability. The scripted analysis exam-
ple of watching memory allocation in Ghostview al-
ready showed the link interception capability.

In the example here, we show the interconnections
between shared objects (shared libraries, the main
program, and other loaded shared objects) as estab-
lished and used at runtime. This is different than
what would be determined statically, because it re-
flects the symbols that were actually bound at run-
time. With lazy first-call binding, this only shows
functions that were actually used. However, as we
will see there are many other symbols that are bound
at load-time, and for these we cannot know in this
simple analysis whether they were used or not.

Figure 7 shows the connectivity between the
shared objects that make up Adobe Acrobat Reader
(acroread). The first (or only) number on the link is
the number of first-call bindings that occurred from
the source to the destination object. The second
number is the number of load-time bindings that oc-
curred. These are either shared data symbols that

7Datclcurrently understands only a limited number of
simple data types, including numeric types, opaque pointer
values, and a special string type that will convert character
pointers to Tcl strings.

AcroForm.api

libX11.so.6

0:2libXt.so.6

0:1

unknown

0:453

libc.so.6

4

libXcursor.so.1.0

0:4

81:54

20

EScript.api

0:7

libm.so.6

0:9

ewh.api

0:1

0:2

libACE.so

9

libAGM.so

9

2

libBIB.so

3

libCoolType.so

41

3:3

12

libXrender.so.1

2:2

2libXext.so.6

2:2

2:1

1

main

0:1

128:74

115:72

0:1

57

0:1

0:1

0:56

libOPP.so

0:1

libdl.so.2

2

wwwlink.api

0:1

0:1 0:10

ximcp.so.2

1

1

Figure 7: Acrobat Reader library interconnections (edge numbers are run-time:load-time symbol binding
counts).

need bound immediately, function symbols bound by
the application using dlsym(), or function symbols
that were requested to be bound at load time. If the
number of load-time bindings is greater than 75% of
the total bindings, the link is drawn as a dotted line.

This application is an X-based application and
so shows its centralization around the use of the
X libraries. Acroread, however, also loads plugins
and additional shared libraries through the program-
matic dlopen/dlsym API. A number of shared ob-
jects are only connected with dotted lines (and have
0 runtime bindings) These include the CoolType,
ACE, and AGM libraries; and plugins, identified by
a name not beginning with “lib”. The static library
dependencies of acroread do not include the shared
objects connected by dotted lines8, and the main
application shows a dependency to libdl, which con-
tains the dynamic linker API, and so this tells us
that the objects with dotted lines are being loaded
by the application.

For the plugins and libraries that Adobe Acrobat
Reader loads programmatically, it forces them to
have their externally required symbols resolved im-
mediately rather than lazily. These are the shared
objects that are only connected through dotted lines.
This decision makes sense when one considers appli-
cation robustness, because it would be better to have
a plugin (embodying some functionality extension)
fail at load time rather than later at run-time, which

8Static dependencies are printed out using the ldd com-
mand.

would cause the whole application to fail.
An interesting pseudo-shared object that shows

up is the “unknown” node. This is not a real object,
but simply catches symbol lookups by the dynamic
linker where the name of the shared object it is found
in is not known. Inspecting the individual symbols,
it is clear that they do belong with other libraries
already known (most of the symbols are X library
symbols). Yet for some reason in certain contexts
the dynamic linker cannot resolve the library name.
We are still working on solving this, but it should
be noted that the debug output that is available on
the standard linker also does not print the library
name in these cases. For example, most of the large
number of links from AcroForm.api are X windowing
library functions.

These views of the interconnections can help in
understanding the dependencies between the shared
objects and could lead to refactoring the shared li-
braries into a more cohesive packages.

7.3 Example: runtime behavior mod-
ification

In this example the task is the understanding and
modification of the SimpleScalar CPU/architectural
simulator [3]. We were able to use DDL to under-
stand the behavior of SimpleScalar at a function-call
level, and then used DDL to modify the run-time
behavior (without modifying the functional source
code) to implement the switching between detailed

and functional simulation modes (an important ex-
tension to the community [4]).

Using DDL’s tracing capability, we found call sites
in the existing program that could be to hook func-
tional simulation into. We created an additional
shared library with functional simulation code, and
then used DDL to dynamically modify which func-
tions are called at these existing call sites. We sim-
ply took the calls that entered into the detailed sim-
ulation, and dynamically redirected all but one of
them to an empty-bodied function, and then redi-
rected one (we chose ruu fetch()) to a function
that performs one functional instruction simulation
step. When we needed to switch back to detailed
simulation we simply restored the original binding
of those function links. In this manner, the source
code for sim main() is not changed but the behav-
ior is switched back and forth between detailed and
functional simulation.

We thus accomplished a major change in the func-
tionality of a fairly complex program without chang-
ing its functional code. Without any explicit calls to
our new code, we were able to use DDL to modify
the system to exhibit new, valuable behavior.

8 Reflections, Lessons, and Ideas

When first starting this project, we perhaps naively
assumed that we could accomplish it in a fairly clean
and portable manner. For the most part, indeed, we
have done so. The changes made to the underlying
Gnu source code are small, and most of our capabil-
ities reside in external, independent libraries.

Yet, we found that distributing our DDL linker
to be quite troublesome, even simply on one plat-
form, Gnu/Linux. Most users of Gnu/Linux install
binary distributions, and even most who might actu-
ally install source typically only install source for the
Gnu/Linux kernel. Very few users actually bother
with the source for the rest of Gnu/Linux, includ-
ing the C library and its associated dynamic linker.
This is a good thing, since any commodity system
must be usable by people who do not desire to build
it from source code.

However, we have found that the dynamic linker
is intricately tied to the C library, and it has been
almost impossible to distribute a binary linker sep-
arate from its binary C library that it was compiled
with. There simply seems to be too much inter-
dependency between these to actually make a binary
DDL available to a wide variety of Gnu/Linux users.
This statement is true even within a single version
of glibc, since the various Gnu/Linux distributions
might apply different patches, and inevitably have

slightly different build environments.
For example, there is a symbol “rtld global” that is

owned by the dynamic linker but accessed by code in
the C library. It is a reference for a long data struc-
ture that contains many fields of global data items
that might be accessed by other code. That is not
all bad—however, there are conditional compilation
units in it that change what fields are defined, and
thus where the rest of the fields are in relation to the
start of the structure. So while it might look clean
to simply export one symbol in lieu of many, in actu-
ality it makes the interaction very brittle. We have
found that it is almost always necessary to run the
DDL linker with the libraries it was compiled with.9

We are not interested in “bashing” glibc from
afar—rather, we recognize that glibc is an extremely
robust and heavily relied-upon system, and all of us
would wish to have software so heavily used and ap-
preciated by the world. Yet in experimenting with
it in ways that others perhaps have not done very
much, we can find areas that might be worth looking
into improving.

8.1 Ideas for Improvement

From an outsider’s perspective, it would seem obvi-
ous at first thought that a dynamic linker ought to
be considered a piece of an operating system rather
than a piece of a language library. Indeed we were
initially surprised to learn it was part of the glibc
distribution. One might not be too surprised to find
a static linker as part of a compiler distribution, but
the dynamic linker as part of a library? Since it is
acting as much like a loader as a linker and is dealing
with run-time configuration of a process, one would
suspect that it would be an operating system com-
ponent.

Yet, we recognize the blurriness between these
pieces of a system. Given that the API to the op-
erating system (e.g., the POSIX API) is typically
implemented as part of the C library, and that there
is a POSIX interface to dynamic link functionality
(dlopen(), etc.), the dynamic linker does need to
have some interaction between itself and the C li-
brary.

Practically speaking, it would seem highly un-
likely that the Gnu dynamic linker would become
a component distributed separately from the C li-
brary. However, it does not seem unreasonable to
aim for a goal of making it robustly independent of
a particular build of its associated C library. Being

9When we started, with glibc 2.2.5, things weren’t quite as
bad and we regulary could distribute binaries. Since moving
to glibc 2.3.2 and beyond, the dependencies seem worse.

sim_main
(detailed)

sim_main
(pipeline flush)

DDL-swap

ruu_commit ruu_release_furuu_writebacklsq_refresh ruu_issueruu_dispatchruu_fetch

sim_main
(functional)

DDL-swap

no fetch but
check pipeline

ruu_fetch

DDL-swap

null_function

6 calls

functional_step

ruu_fetch

Figure 8: Implementation of SimpleScalar behavior modification.

able to offer binary distributions of the Gnu dynamic
linker separate from binary kernel and library distri-
butions would encourage more projects like DDL to
move the shared library platform towards a more
configurable, dynamic, manageable execution plat-
form.

Our experience in building DDL has not yet
reached a level where we know all the interactions
between the dynamic linker and the C library, but
we hope to investigate this interaction in detail and
offer suggested modifications to make the dynamic
linker a true independently deployable component.

9 Related Work

The DITools project [13] is the closest related work
to our DDL project. They used a similar approach
to link interception and modification, and supported
redirecting a link to a wrapper and also an event
notification mechanism where each monitored call
was not wrapped but did generate an event to a
fixed-interface callback. It does not appear that they
addressed the issues surrounding C++, nor did they
do non-function symbol resolution nor runtime link
modification.

Ho and Olsson [8] describe dld, a tool for “gen-
uine” dynamic linking. Their tool provides the ca-
pability to load and unload shared libraries, breaking
links when a library is unloaded and relinking them
to new code when new libraries are loaded. How-
ever, it does not appear that they ever supported
redirection of links to different symbol names.

Hicks et. al [7] work on binary software updating
from a formal perspective. Their methods use typed,
proof-carrying assembly code from which they can
verify that an update will be safe. Their infrastruc-
ture includes special languages and compilers to gen-
erate the annotated assembly code, and a runtime
framework that uses it.

Additional systems that provide instrumentation
capabilities on executable binaries exist. Dyninst [2]
can patch custom code into pre-existing executable
code, and has provided a platform for several re-

search tools. Valgrind [14] provides a complete sim-
ulated CPU and execution space to the program un-
der inspection, and is extensible, thus allowing new
dynamic analyses to use it as a foundation.

There is much work in dynamic introspection and
modification of Java programs, but since this work
is in a very different environment than ours, we do
not explain it in detail here. Some representative
references are [5, 6, 10, 12].

10 Conclusion

We have presented DDL, an extension to the stan-
dard dynamic linker that allows introspection and
modification of the dynamic linking process. This
capability supports a wide range of uses for software
engineering practitioners and researchers, including
a foundation for runtime monitoring and dynamic
analyses, dynamic runtime program evolution, and
other ideas that can use control over the linking pro-
cess.

In our future work we are pursuing the use of this
platform to support multi-version software fault tol-
erance and evolution, and to support our ongoing
research interests in dynamic analysis. We are build-
ing an event-based extensible tool framework on top
of DDL, called ETF, and we have an initial proto-
type of C++-based execution of multiple versions of
classes, along with class and object evolution.

Acknowledgments

This work was supported in part by the National Sci-
ence Foundation under grants CCR-0306457, EIA-
9810732, and EIA-0220590. The content of the in-
formation does not necessarily reflect the position
or the policy of the Government and no official en-
dorsement should be inferred.

References

[1] N. Abbas, S. Tambe, R. Srinivasan, and J. Cook.
Using DDL to understand and modify Sim-

pleScalar. In Proc. 2004 Working Conference on
Reverse Engineering, page to appear, Oct. 2004.

[2] B. Buck and J. Hollingsworth. An API for
Runtime Code Patching. Journal of High Per-
formance Computing Applications, 14(4):317–329,
2000. www.dyninst.org.

[3] D. Burger and T. M. Austin. The simplescalar
tool set version 2.0. Technical Report 1342, Com-
puter Sciences Department, Universi ty of Wiscon-
sin, June 1997.

[4] J. Cook, R. L. Oliver, and E. E. Johnson. Ex-
amining performance differences in workload exe-
cution phases. 4th IEEE International Workshop
on Workload Characterization, December 2001.

[5] M. Dahm. Byte Code Engineering Library. 2002.
http://jakarta.apache.org/bcel/.

[6] S. Eisenbach and C. Sadler. Changing Java Pro-
grams. In Proceedings of the 2001 International
Conference on Software Maintenance, pages 479–
487, Nov. 2001.

[7] M. Hicks, J. Moore, and S. Nettles. Dynamic Soft-
ware Updating. In Proc. 2001 ACM Conference
on Programming Language Design and Implemen-
tation, pages 13–23, 2001.

[8] W. Ho and R. Olsson. An Approach to Genuine Dy-
namic Linking. Software Practice and Experience,
21(4):375–390, 1991.

[9] J. Levine. Linkers & Loaders. Morgan Kaufmann,
San Diego, CA, 2000.

[10] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and
J. Barnes. Runtime Support for Type-Safe Dy-
namic Java Classes. In Proc. European Conference
on Object-Oriented Programming, pages 337–361,
2000.

[11] N. Medvidovic and R. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Trans. Softw. Eng.,
26(1):70–93, 2000.

[12] A. Orso, A. Rao, and M. Harrold. A Technique for
Dynamic Updating of Java Software. In Proc. 2002
International Conference on Software Maintenance,
pages 649–658, Oct. 2002.

[13] A. Serra, N. Navarro, and T. Cortes. DITools:
Application-level Support for Dynamic Extension
and Flexible Composition. In Proc. 2000 Usenix
Technical Conference, pages 225–238, June 2000.

[14] J. Seward. Valgrind, an Open-Source Memory De-
bugger for x86-Gnu/Linux. Technical report. val-
grind.kde.org.

