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Abstract

As a case study application of DDL, our tool for dy-
namically inspecting and modifying the linking of pro-
grams using dynamic link libraries, we investigate the
SimpleScalar CPU/architecture simulator. In particu-
lar, we gain an understanding of SimpleScalar’s behavior
in order to modify it to be able to dynamically switch be-
tween detailed-but-slow full architectural simulation and
functional-but-fast instructions simulation. This appli-
cation anecdotally shows that DDL is useful for reverse
engineering and re-engingeering legacy systems.

1. Introduction

Many legacy systems are built on the technology of
dynamic link libraries. In this deployment style, code li-
braries are linked at run-time by a dynamic linker that
runs alongside the actual application. It intercepts ini-
tial calls to unlinked functions/methods, finds the cor-
rect library and loads it if necessary, resolves the sym-
bol into an address, updates the call link to point di-
rectly to the address, and finally jumps to the intended
function. All subsequent calls go directly to the target,
and thus the overhead of dynamic linking is only paid
once.!

Software engineering tools have not exploited this
framework very well. Because the linking is delayed un-
til runtime, it seems natural to provide tools access to
the linking process, in order to track it, and even to
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1 There are other models of dynamic linking, but this is the most
widely used mechanism.

modify it. There is no reason the dynamic linker must
resolve a symbol to the intended function. A tool might
prefer to have it resolve to a wrapper, which may pro-
vide extra result checking, protection from a known
bug, or may translate certain argument values. An ap-
plication developer might prefer to redirect a legacy
call to new code that is improved in some way.

To this end we have created DDL (the Dynamic Dy-
namic Linker) by modifying the Gnu dynamic linker
to provide an API for developers to use to customize
the linking process. We believe that DDL will be use-
ful for a wide variety of software engineering tasks, not
the least of which is the reverse engineering of legacy
systems, and their maintenance and modification.

In this paper, we present a case study of one such
task. This task is the understanding and modifica-
tion of the SimpleScalar CPU /architectural simulator.
Some of the authors are already experts in using Sim-
pleScalar, and are investigating methods for improv-
ing the speed and efficiency of architectural simula-
tion. One such method is to skip the “uninteresting”
parts of a workload that is being simulated by perform-
ing simple, fast, functional simulation on those parts,
and only performing full architectural simulation on
parts that are “interesting” or new.? SimpleScalar al-
ready has a very limited form of this—it allows one
to “fast forward” through an initial part of the work-
load, but once it starts the full architectural simula-
tion, it does not have the ability to stop.

We were able to use DDL to understand the behav-
ior of SimpleScalar at a function-call level, and then
used DDL to modify the run-time behavior (without
modifying the source code?®) to implement the switch-

2 Inthis paper we are not attemping to define what “interesting”
means. We are only trying to build the mechanisms that would
allow someone to switch simulation modes.

3 We did modify the source code for other purposes, as will be
explained later, but we did not modify it to explicitly invoke
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ing between detailed and functional simulation modes.

Section 2 presents an overview of our DDL tool,
Section 3 presents our reverse engineering of the be-
havior of SimpleScalar, and Section 4 presents how we
used DDL to modify its behavior. Section 5 quanti-
tatively evaluates the new SimpleScalar behavior, and
the Sections 6 and 7 wrap up the paper with discus-
sion on related work and conclusions.

2. DDL: API Access to the Dynamic
Linker

Here we present a brief overview of DDL, a frame-
work of modifications and extensions to the dynamic
linker that allow us to have dynamic control over the
linking process, and to implement the full range of de-
sired features listed above. DDL allows powerful con-
trol over the linking process, enables the easy construc-
tion of runtime monitoring tools, and supports the run-
time evolution of dynamically linked programs. DDL
is a modification of the Gnu dynamic loader, which is
part of the Gnu C library. Our current tests have only
been on the Gnu/Linux platform, although the Gnu li-
braries (and the dynamic linker) are ported to many
other platforms.

Figure 1 shows the high-level system architecture
that DDL implements. The shaded portions indicate
parts of the system that DDL does not modify. The
application and application libraries are not modified,
at the source or binary level, and the bulk of the sys-
tem dynamic linker is unmodified.

our new functionality.

At the lowest level, we added hooks into the dynamic
linker itself so that we could interact with the link-
ing process. On top of these hooks we built useful ser-
vice abstractions so that tool builders would not need
to start from scratch. Further, we implement a appli-
cation services level that provides even higher level in-
teraction for some types of common services—one such
service is scripting language support.

The fundamental capability that DDL supports is
link interception and redirection. This allows DDL and
the tools that use it to peer into the dynamic linking
process, and control it. When a symbol is being looked
up for purposes of linking, our hooks in the dynamic
linker perform callbacks into the DDL control library.
In this, the hooks built into the dynamic linker do not
provide an API to external services but rather they
use an API provided by DDL control library. DDL
control and the tools that use them are generally pas-
sive and event-driven, those events being, for the most
part, link requests.

With the link interception, we can maintain an in-
ternal data structure of resolved symbols (functions),
and the bindings or links that refer to them. Main-
taining this information during the runtime of the pro-
gram allows us to support dynamic program evolution
through runtime link modification.

In order to modify a link, we simply need to change
the address that is in its jump table entry to be the ad-
dress of some other function. All the subsequent calls
through that link will be directed to the new function.
Note that jump tables are allocated per shared object
(the main program and other shared libraries), and so
these calls are from all the call sites in the shared ob-
ject whose link we just modified. Thus, the granularity
of program evolution is at the shared object level.

Once the link is initially resolved, however, the linker
is never going to be called for that particular link again.
Therefore, we have to have some way of regaining con-
trol over the execution of the program in order to per-
form runtime link modification. We currently employ
the OS’s signal mechanism to accomplish this. Our in-
stalled signal handler reads a remapping specification,
and rebinds the links as directed. Once the application
resumes execution, these new bindings will have imme-
diate effect (when they are used).

Although we have much future work to make this
type of program evolution generally useful, such as con-
cerns about state corruption or migration, interference
between existing calls to the old bindings and new calls
to the new bindings, recursion, and the like, there are
some applications where the current functionality can
be used already.



# of instructions executed | 49475
# of loads and stores 13655
code size in bytes 188416
data and bss in bytes 41984
initial stack size (bytes) 16384
# pages allocated 29
size of memory allocated 232k
1st level page table misses 75
# page table accesses 536256

Table 1. sim-safe results from simulating
test-math

# of instructions committed 49475
# of instructions executed 54901
# of loads committed 8508
# of stores committed 5147
# of loads & stores committed | 13655
# of loads executed 9406
# of stores executed 5492
# of loads & stores executed 14898
# of branches executed 8259
# of cpu cycles 52381
1st level page table misses 79
# page table accesses 716030

Table 2. SimpleScalar results from simulating
test-math

3. Understanding SimpleScalar

SimpleScalar is actually a family of simulators.
While most people think of its full detailed simula-
tor, sim-outorder?, when they hear “SimpleScalar”,
its distribution also includes a basic functional simu-
lator, sim-safe, a cache simulator, and other simu-
lator configurations. Since we are focussing on being
able to combine the detailed and functional simula-
tions, we concentrate on sim-outorder and sim-safe.

The workload we used for the understanding phase
was a very small one, the test-math.c that is in-
cluded in the distribution. It simply calls various math
library functions and checks the results, in a linear se-
quence and directly in main (). The top-level data that
sim-safe outputs for this workload is shown in Ta-
ble 1, and the (condensed) output from sim-outorder
is shown in Table 2. This data will help us understand

4  Then name comes from the fact that it simulates modern pro-
cessor designs that can do out-of-order instruction execution.

our later data.

We should note that to use DDL we had to mod-
ify SimpleScalar slightly. This is because it is not gen-
erally built using shared libraries. When one down-
loads, installs, and builds SimpleScalar, it builds stati-
cally linked single executables for each simulator, even
though there is code sharing between them. This is be-
cause when doing large simulations that can take days
or weeks, every bit of performance is needed, and stati-
cally linked code is slightly faster (by one jump instruc-
tion for every call) than dynamically linked code.

Our first modification was to change the Makefile
to build the simulator using shared libraries. This was
a trivial change which needed no modification of source
code. Next, we noted that each simulator, apart from
code shared with other simulators, was implemented
in a single file and used static declarations on many
functions (sim-outorder. c is 4605 lines long). To gain
access to the calls within this file, we removed the
static designation and created a dummy shared li-
brary with code that “called” these functions, although
the calls are never executed. This trick makes the linker
route even local calls through the dynamic link jump
tables, so that DDL can process calls local to a shared
object.

We used DDL to generate the dynamic call graphs
of both sim-safe and sim-outorder. DDL allows us
to do this easily by using table-based redirection. In
this mode, DDL can allow the tool builder to use a
single tracing wrapper around all traced function calls,
rather than creating a unique wrapper for every func-
tion. The single wrapper relies on the C calling con-
ventions to call each traced function without knowing
its type signature. The only restrictions are that we
know the maximum number of argument bytes that
any traced function will use, and that all traced func-
tions return an integer-sized return value. SimpleScalar
obeyed these restrictions.

Figure 2 is a view of the important parts of the dy-
namic call graph of sim-safe. We clipped some of the
initialization calls for the sake of readability. The num-
bers in the nodes and on the edges represent the num-
ber of calls of a function, in total and per parent, re-
spectively. sim-safe is a fairly simple program, and in-
deed its main simulation engine is within a single func-
tion, sim-main, only making a few calls for memory ref-
erencing and for system calls from the simulated work-
load.

Figure 3 is a view of the dynamic call graph of
sim-outorder (again, with some initialization calls re-
moved). As can be seen, sim-outorder is a much more
complex application. It also uses a function sim-main
as the top-level simulation function, but it clearly farms



Figure 2. Sim-safe: fast functional simulation.

out much of the detailed simulation to called functions.

Since these two simulators are related, we then
wanted to see the differences in their call graphs, in or-
der to understand them a little better. These were eas-
ily generated (actually using diff on the dot files), and
appear below.

Figure 4 is a view of the parts of sim-outorder
that are not in sim-safe, and Figure 3 is a view of
the parts of sim-safe that are not in sim-outorder.
Since sim-outorder is the more complex simulator, we
would expect that it contains much behavior not found
in sim-safe, and indeed the graphs show this. The
content of Figure 3 is actually there only because the
number of calls differ between the two simulations—
the functions and their relations exist in both simula-
tors.

These graphs show some interesting behavior and
point to some possible ideas for modifying that be-
havior. We should note that initially we started com-
paring the call graphs to output taken from a run of
sim-outorder compiled statically (from an unmodi-
fied distribution). When we did this a few anomalies,
such as the number of pages allocated being 1 off of the
number of calls to mem_newpage, the number of cycles
simulated being several tens off of the number of calls
we thought would match it, and the number of mem-
ory access being slightly different than the number of
calls to mem_access. We discovered that simply com-
piling sim-outorder differently actually affected the
results!

Investigating this further, we found that this was
known in the SimpleScalar community, and we believe

it comes from the fact that it use memory addresses
transparently from the simulator space into the work-
load space, and this affects caching and subsequent
instruction execution. While the size of the variation
is probably miniscule in proportion to the magnitude
of the results that are of interest to architecture re-
searchers, this variablity was disconcerting to us, and
seems incongruous with the desired qualites of com-
puter simulations.

Nevertheless, in looking at the output pro-
duced by the run from which we produced the dy-
namic call graph, the numbers matched very well.
The sim-outorder simulation calls its main sub-
functions each 52,382 times, which is one more than
the number of cycles simulated (more than the num-
ber of instructions committed but less than the
number of instructions executed, since specula-
tive execution is supported). We also see that in
sim-outorder, ruu.dispatch() calls mem_access()
13,656 times, also one more than what the simu-
lator reports. Check this — This slight differ-
ence would be worth looking in to in the source
code, or may be an artifact of our data collec-
tion.

As far as potentially using DDL on sim-safe, as
we mentioned earlier, it does not call functions to per-
form instruction simulation. From our perspective, this
means we would not have much access to its behavior,
since DDL operates at the function-call interface.

For sim-outorder, however, it has extremely con-
venient behavior from our point of view. As can clearly
be seen, the ruu_* and lsq_* calls, which are called
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Figure 4. Parts of sim-outorder not in sim-safe.

once for each simulated cycle, offer a clean slicing point looking at the source code shows the main simulation
at which we could expect to modify the behavior with loop in sim main to be almost solely the repetitive calls
DDL. Since we had the source code in this small study, of these functions (along with some counter updates).
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Figure 5. Parts of sim-safe not in sim-outorder.

If one is familiar with modern CPU design and the
accepted names of pipeline stages, it can quickly be
seen that the functions are simulating the pipeline
stages. Furthermore, the stages are called in re-
verse order—e.g., the main simulation loop first calls
ruu_commit, the last stage in a real pipeline, and fi-
nally calls ruu_fetch at the end of the loop, which
is the first stage. This makes sense because while in
a real simulator the stages operate concurrently, in
lock-step mode with the system clock, the simula-
tor simulates them sequentially, and so simulating
the last stage first makes available the buffer be-
tween it and the previous stage, and this wripples all
the way back up the pipeline.

4. Modifying SimpleScalar

Through understanding sim-outorder we saw a
very promising point at which to use DDL to mod-
ify its behavior, namely that of the set of functions
that are called once per cycle. Our basic idea is shown
in Figure 6. We simply take the calls that enter into
the detailed simulation, redirect all but one of them to
an empty-bodied function, and then redirect one (we
chose ruu_fetch) to a function that performs one func-
tional instruction simulation step.

Note that this study and this paper are not about
deciding when to switch modes—-that is a complicated
decision and is still being researched in the simulation
community [?]. We are just interested in seeing if DDL
could be used to support a change known to be of in-
terest to users of the simulator. As such, we had to rig
a dummy mechanism to switch back and forth between
the detailed and functional simulation modes. We did
this simply based on counters such that we could con-
trol the percentage of time spent in either mode and
the frequency of switching modes, both of which are im-
portant in evaluating the performance of our approach.

Our initial attemps at naively switching were not
successful. Indeed we suspected this might be the case,

but we wanted to approach the problem one piece at a
time. When we saw the simulator failing, we started in-
vestigating the second part of the problem, and that is
how to manage consistency between the two simula-
tion modes.

We rightly suspected that we could not arbitrar-
ily switch out of detailed simulation mode, because
the simulator would leave partially executed instruc-
tions in the simulated pipeline. Not only does this mean
that some small number of instructions were not fin-
ished that should be finished before the functionally
simulated instructions were executed, it also meant
that those instructions would finish once we switched
back to detailed simulation. Thus, switching modes cor-
rupted the state of the simulated workload because
some instructions were left incomplete. We suspected
this would happen, and indeed it did.

To overcome this situation, we needed to learn more
about the detail of the sim-outorder implementation.
Rather than start from scratch on this problem, we
sought some expert help from researchers using the
simulator for their own research and who had expe-
rience in modifying it (two of the co-authors of this
paper). Essentially, before switching to functional sim-
ulation, we needed to simulate all of the pipeline ez-
cept the fetch mode (which fetches new instructions)
until the pipeline was empty.

Fortunately, the fetch mode was embodied in a
function call. Switching now needed three modes
rather than just two: detailed simulation, flush-
ing the pipeline, and functional simulation. Since
functional simulation did not do any hardware sim-
ulation and thus always finished the instructions it
“fetched”, there was no patch-up mode needed in go-
ing from it back to detailed simulation.

Figure 7 shows our second approach, embodying the
three modes that we now knew we needed. Intermedi-
ate to switching to the functional mode, we use DDL
to point the ruu_fetch call to a function that does
not fetch any new instructions but does check the sta-
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Figure 7. Correct DDL-based sim-outorder dynamic modification approach.

tus of the pipeline simulation. Our sim-outorder ex-
perts had found a simple condition over global vari-
ables that indicated when the pipeline was completely
empty, and when this condition was reached, we then
completed the switch to functional mode by using DDL
to now switch all of the necessary function calls over
to the functional mode.

Modulo a few minor programming mistakes, this
technique worked almost instantly. We thus accom-
plished a major change in the functionality of a fairly
complex program without changing its functional code.
Without any explicit calls to our new code, we were
able to use the DDL framework to modify the system
to exhibit new, valuable behavior.

5. Evaluation

Of course, the important aspect of this case study
was not only to see if DDL could be used on a practi-
cal problem, but also to actually speed up the simula-
tion of a workload by sim-outorder. This means that
we needed to evaluate the performance of our modi-
fied simulator.

While it might seem obvious that the performance
will improve, we do add some overhead. Firstly, the
original sim-outorder is linked statically, while our
changed version is linked dynamically. Secondly, the
switching adds overhead in both the basic DDL code
that does the switching, and perhaps more importantly,
the overhead to flush the pipeline each time switching
is done in the detailed-to-functional direction.

We considered that the two main dimensions to eval-
uate performance on were the amount of the workload
that was simulated in each mode, and the frequency
at which the simulator switched modes. The first cap-
tures a relative measure of the time it takes to sim-
ulate an instruction in detailed mode versus the time

Simulation Seconds
statically linked 168
dynamically linked 185
10% functional 173
25% functional 150
50% functional 112
75% functional 75
90% functional 52
sim-safe (100% func) 11

Table 3. Performance over varying amounts of
functional simulation. (switching frequency is
nominally every 100,000 instructions

it takes in functional mode, and the second provides
a measure of the overhead costs of doing the switch-
ing. We also provide measurements of SimpleScalar’s
own pure functional simulator sim-safe, the perfor-
mance of the original statically linked detailed simula-
tor sim-outorder, and a baseline dynamically linked
sim-outorder that is not running under our frame-
work. Both of the sim-outorder’s are of course doing
100% detailed simulation.

We used an integer SPEC benchmark workload,
MCF, with a very small input that we created by hand.
Since we are not particularly interested at this point
in what the simulator is simulating, rather just in ex-
ercising it reasonably, we created a small input, and
ended up with a simulation workload of 84,448,851 in-
structions, which ran in about 11 seconds for a func-
tional simulation and in 168 seconds on the original
SimpleScalar detailed simulation.

Table 3 and Figure 8 shows the performance of the
base simulators and our modified simulator over a vary-
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Simulation Seconds
statically linked 168
dynamically linked 185
100 instructions 382
1,000 instructions 140
10,000 instructions 115
100,000 instructions 112
1,000,000 instructions 112

Table 4. Performance over varying switching fre-
quencies, with a constant 50% functional simu-
lation.

ing amount of functional simulation, with the switching
frequency held constant at 100,000 instructions. As can
be seen, we achieve a very nice linear performance im-
provement as the amount of detailed simulation goes
down.

Table 4 and Figure 9 shows the performance of the
base simulators and our modified simulator over a vary-
ing rate of switching, and the percentage of functional
simulation held constant at 50%. Note that on Figure 9
a log scale is used on the horizontal axis. Since there is
overhead in switching, not only just the mechanics of
switching using DDL but also the flushing of instruc-
tions already in the pipeline when switching from de-
tailed to functional, we would expect that a point can
be reached where too much switching actually slows
down the simulation, and this is clearly the case. At
the far end of the frequency, we reach an asymptote
where the switching overhead is no longer a measure-
able part of the performance, and the ratio of detailed
to functional simulation is the only dominant factor in
performance.

6. Related Work

The DITools project [8] is the closest related work to
our DDL project. They used a similar approach to link
interception and modification, and supported redirect-
ing a link to a wrapper and also an event notification
mechanism where each monitored call was not wrapped
but did generate an event to a fixed-interface callback.
It does not appear that they addressed the issues sur-
rounding C++, nor did they do non-function symbol
resolution nor runtime link modification.

Ho and Olsson [5] describe dld, a tool for “genuine”
dynamic linking. Their tool provides the capability to
load and unload shared libraries, breaking links when
a library is unloaded and relinking them to new code
when new libraries are loaded. However, it does not ap-
pear that they ever supported redirection of links to
different symbol names.

Hicks et. al [4] work on binary software updating
from a formal perspective. Their methods use typed,
proof-carrying assembly code from which they can ver-
ify that an update will be safe. Their infrastructure
includes special languages and compilers to generate
the annotated assembly code, and a runtime frame-
work that uses it.

Additional systems that provide instrumentation ca-
pabilities on executable binaries exist. Dyninst [1] can
patch custom code into pre-existing executable code,
and has provided a platform for several research tools.
Valgrind [9] provides a complete simulated CPU and
execution space to the program under inspection, and
is extensible, thus allowing new dynamic analyses to
use it as a foundation.

There is much work in dynamic introspection and
modification of Java programs, but since this work is
in a very different environment than ours, we do not



explain it in detail here. Some representative references
are [2, 3, 6, 7).

7. Conclusion

This paper explored the use of DDL to understand
and then evolve a medium-sized application. DDL is
an extensible platform on which tool builders can in-
spect and control the dynamic linking process, for uses
from simple runtime monitoring all the way to runtime
software evolution. In this paper, the study evolved the
SimpleScalar architectural simulator without changing
any existing functional code. This was done by using
DDL to dynamically relink existing function calls.

In the future, we plan to build upon DDL a full reli-
able runtime evolution environment that will give engi-
neers full support for a process of software deployment
that is tolerant of some common errors.
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