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ABSTRACT
The Internet of Things (IoT) paradigm has given rise to
a new class of applications wherein complex data analytics
must be performed in real-time on large volumes of fast-
moving and heterogeneous sensor-generated data. Such data
streams are often unbounded and must be processed in a
distributed and parallel manner to ensure timely process-
ing and delivery to interested subscribers. Dataflow archi-
tectures based on event-based design have served well in
such applications because events support asynchrony, loose
coupling, and helps build resilient, responsive and scalable
applications. However, a unified programming model for
event processing and distribution that can naturally com-
pose the processing stages in a dataflow while exploiting the
inherent parallelism available in the environment and com-
putation is still lacking. To that end, we investigate the
benefits of blending Reactive Programming with data dis-
tribution frameworks for building distributed, reactive, and
high-performance stream-processing applications. Specifi-
cally, we present insights from our study integrating and
evaluating Microsoft .NET Reactive Extensions (Rx) with
OMG Data Distribution Service (DDS), which is a standards-
based publish/subscribe middleware suitable for demanding
industrial IoT applications. Several key insights from both
qualitative and quantitative evaluation of our approach are
presented.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications;
C.2.4 [Programming Languages]: Language constructs
and features

Keywords
Reactive Programming, Reactive Extensions (Rx), Stream
Processing, Data Distribution Service (DDS), Publish/Sub-
scribe
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1. INTRODUCTION
The Internet of Things (IoT) is a significant expansion of

the Internet to include physical devices; thereby bridging the
divide between the physical world and cyberspace. These
devices or “things” are uniquely identifiable, fitted with sen-
sors and actuators, which enable them to gather informa-
tion about their environment and respond intelligently [8].
The Industrial IoT (IIoT)–distinct from consumer IoT–will
help realize critical infrastructures, such as smart-grids, in-
telligent transportation systems, advanced manufacturing,
health-care tele-monitoring, etc. Industrial IoT are also
called Cyber-Physical Systems (CPSs). They share sev-
eral key cross-cutting aspects. First, they are often large-
scale, distributed systems comprising several, potentially
mobile, publishers of information that produce large volumes
of asynchronous events. Second, the resulting unbounded
asynchronous streams of data must be combined with one-
another and with historical data and analyzed in a respon-
sive manner. While doing so, the distributed set of resources
and inherent parallelism in the system must be effectively
utilized. Third, the analyzed information must be transmit-
ted downstream to a heterogeneous set of subscribers. In
essence, the emerging IIoT systems can be understood as
a distributed asynchronous dataflow. The key challenge lies
in developing a dataflow-oriented programming model and
a middleware technology that can address both distribution
and asynchronous processing requirements adequately.

The distribution aspects of dataflow-oriented systems can
be handled sufficiently by data-centric publish/subscribe (pub-
/sub) technologies [13], such as Object Management Group
(OMG)’s Data Distribution Service (DDS) [19]. DDS is
an event-driven publish-subscribe middleware that promotes
asynchrony and loose-coupling between data publishers and
subscribers which are decoupled with respect to (1) time
(i.e., they need not be present at the same time), (2) space
(i.e.,they may be located anywhere), (3) flow (i.e., data
publishers must offer equivalent or better quality-of-service
(QoS) than required by data subscribers), (4) behavior (i.e.,
business logic independent), (5) platforms, and (6) program-
ming languages. In fact, as specified by the Reactive Man-
ifesto [5], event-driven design is a pre-requisite for building
systems that are reactive,i.e. readily responsive to incoming
data, user interaction events, failures and load variations-
traits which are desirable of critical IIoT systems. More-
over, asynchronous event-based architectures unify scaling
up (e.g., via multiple cores) and scaling out (e.g., via dis-
tributed compute nodes) while deferring the choice of the
scalability mechanism at deployment-time without hiding



the network from the programming model. Hence, the asyn-
chronous and event-driven programming model offered by
DDS makes it particularly well-suited for demanding IIoT
systems.

However, the data processing aspects, which are local
to the individual stages of a distributed dataflow, are of-
ten not implemented as a dataflow due to lack of sufficient
composability and generality in the application program-
ming interface (API) of the pub/sub middleware. DDS of-
fers various ways to receive data such as, listener callbacks
for push-based notification, read/take functions for polling,
waitset and read-condition to receive data from several en-
tities at a time, and query-conditions to enable application-
specific filtering and demultiplexing. These primitives, how-
ever, are designed for data and meta-data delivery 1 as op-
posed to processing. Further, the lack of proper abstractions
forces programmers to develop event-driven applications us-
ing the observer pattern– disadvantages of which are well
documented [16].

A desirable programming model is one that provides a
first-class abstraction for streams; and one that is compos-
able. Additionally, it should provide an exhaustive set of
reusable coordination primitives for reception, demultiplex-
ing, multiplexing, merging, splitting, joining two or more
data streams. We go on to argue in this paper that a
dataflow programming model that provides the coordination
primitives (combinators) implemented in functional program-
ming style as opposed to an imperative programming style
yields significantly improved expressiveness, composability,
reusability, and scalability. 2 A desirable solution should en-
able an end-to-end dataflow model that unifies the local as
well as the distribution aspects.

To that end we have focused on composable event pro-
cessing inspired by Reactive Programming [7] and blended
it with data-centric pub/sub. Reactive programming lan-
guages provide a dedicated abstraction for time-changing
values called signals or behaviors. The language runtime
tracks changes to the values of signals/behaviors and prop-
agates the change through the application by re-evaluating
dependent variables automatically. Hence, the application
can be visualized as a data-flow, wherein data and respec-
tively changes thereof implicitly flow through the applica-
tion [21, 9]. Functional Reactive Programming (FRP) [12]
was originally developed in the context of pure functional
language, Haskell. and has since been implemented in other
languages, for example, Scala.React (Scala) [16], FlapJax
(Javascript) [18], Frappe (Java) [11].

Composable event processing–a modern variant3 of FRP–
is an emerging new way to create scalable reactive appli-
cations [22], which are applicable in a number of domains
including HD video streaming [4] and UIs. It offers a declar-
ative approach to event processing wherein program specifi-
cation amounts to “what” (i.e., declaration of intent) as op-
posed to “how” (looping, explicit state management, etc.).
State and control flow are hidden from the programmers,
which enables programs to be visualized as a data-flow. Fur-

1Strictly, DDS API is designed for retrieving the state of an
object rather than individual updates about an object
2Microsoft Robotics Coordination and Concurrency
Runtime (CCR) and Robot Operating System (ROS)
http://wiki.ros.org/
3without continuous time abstraction and denotation se-
mantics

thermore, functional style of programming elegantly sup-
ports composability of asynchronous event streams. It tends
to avoid shared mutable state at the application-level, which
is instrumental for multicore scalability. Therefore, there is
a compelling case to systematically blend reactive program-
ming paradigm with data-centric pub/sub mechanisms for
realizing emerging IIoT applications.

In this paper we have combined concrete instances of pub-
/sub technology and reactive programming, to evaluate and
demostrate our research ideas. The data-centric pub/sub
instance we have used is OMG’s DDS, more specifically the
DDS implementation provided by Real Time Innovations
Inc; while the reactive programming instance we have used
is Microsoft’s .NET Reactive Extensions (Rx.NET) [3]. This
paper makes the following contributions:

1. We show the strong correspondence between the dis-
tributed asynchronous dataflow model of DDS and the
local asynchronous dataflow model of Rx. We inte-
grated the two technologies in the Rx4DDS.NET open-
source library. The remarkable overlap between the
two technologies allows us to substitute one for the
other and overcome the missing capabilities in both,
such as the lack of a composable data processing API
in DDS and the lack of interprocess communication
and back-pressure support in .NET Rx; 4

2. We present the advantages of adopting functional style
of programming for real-time stream processing. Func-
tional stream abstractions enable seamless composabil-
ity of operations and preserve the conceptual “shape”
of the application in the actual code. Furthermore,
state management for sliding time-window, event syn-
chronization and concurrency management can be del-
egated to the run-time which is made possible by the
functional tenets, such as the immutable state.

3. We evaluate the Rx4DDS.NET library using a publicly
available high-speed sensor data processing challenge
[14]. We present the ease and the effect of introduc-
ing concurrency in our functional implementation of
“queries” running over high-speed streaming data. Our
dataflow programming admits concurrency very easily
and improves performance (up to 35%).

4. Finally, we compare our functional implementation with
our imperative implementation of the same queries in
C#. We highlight the architectural differences and the
lessons learned with respect to “fitness for a purpose”
of stream processing, state management, and config-
urability of concurrency.

The rest of the paper is organized as follows: Section 2
compares our proposed solution with prior efforts; Section 3
describes our reactive solution that integrates Rx and DDS;
Section 4 reports on both our qualitative and quantitative
experience building a reactive solution to solve a specific case
study problem; and finally Section 5 provides concluding
remarks and lessons learned.

4 Reactive Streams project [1], RxJava [2] support backpres-
sure



2. RELATED WORK
A research roadmap towards applying reactive program-

ming in distributed event-based systems has been presented
in [20]. In this work the authors highlight the key research
challenges in designing distributed reactive programming
systems to deal with“data-in-motion”. Our work on Rx4DDS-
.NET addresses the key open questions raised in this prior
work. In our case we are integrating Reactive Programming
with DDS that enables us to build a loosely coupled, highly
scalable and distributed pub/sub system, for reactive stream
processing.

Nettle is a domain-specific language developed in Haskell,
a purely-functional programming language, to solve the low-
level, complex and error-prone problems of network con-
trol [23]. Nettle uses Functional Reactive Programming
(FRP) including both the discrete and continuous abstrac-
tions and has been applied in the context of OpenFlow soft-
ware defined networking switches. Although the use case
of Nettle is quite different from our work in Rx4DDS.NET,
both approaches aim to demonstrate the integration of reac-
tive programming with an existing technology: we use DDS
where as Nettle uses OpenFlow.

The ASEBA project demonstrates the use of reactive pro-
gramming in the event-based control of complex robots [15].
The key reason for using reactive programming was the need
for fast reactivity to events that arise at the level of physical
devices. Authors of the ASEBA work argue that a central-
ized controller for robots adds substantial delay and presents
a scalability issue. Consequently, they used reactive pro-
gramming at the level of sensors and actuators to process
events as close to the source as possible

Our work on Rx4DDS.NET is orthogonal to the issues of
where to place the reactive programming logic. In our case
such a logic is placed with every processing element, such as
the subscriber that receives the topic data.

Prior work on Eventlets [6] comes close to our work on
Rx4DDS.NET. Eventlets provides a container abstraction to
encapsulate the complex event processing logic inside a com-
ponent so that a component-based service oriented architec-
ture can be realized. The key difference between Eventlets
and Rx4DDS.NET is that the former applies to service ori-
ented architectures and component-based systems, while our
work is used in the context of publish/subscribe systems. Al-
though this distinction is evident, there are ongoing efforts to
merge component abstractions with pub/sub systems such
that we may be able to leverage component abstractions in
our future work.

Functional programming style (akin to Rx) has been used
effectively in Spark Streaming [24] in the context of Lambda
Architecture (LA) [17] to write business logic just once using
functional combinator libraries and reuse that implementa-
tion for both real-time and batch processing of data. In
a typical LA, the batch layer maintains the master data
whereas the “speed layer” compensates for the high latency
of the batch layer and also trades accuracy for speed. Busi-
ness queries represented using the functional style abstract
away the source of data (batch/streaming) and improve code
reuse.

An ongoing project called Escalier [10] has very similar
goals as our work. Escalier provides a Scala language bind-
ing for DDS. The future goals of the Escalier project are to
provide a complete distributed reactive programming frame-
work, however, we have not yet found sufficient related pub-

lications nor are we able to determine from their github site
whether this project is actively maintained or not. Similarly,
OpenDDS [27] and OpenSplice [25] describe integration of
DDS with Rx and other functional-style stream processing
technologies. However, to the best of our knowledge, our
work includes the most comprehensive comparison and eval-
uation of the two technologies together.

3. DESIGN OF THE RX4DDS.NET LIBRARY
We now describe our approach to realizing Rx4DDS.NET.

To better understand our solution, we first provide a brief
overview of DDS and Rx. We then illustrate some draw-
backs of our imperative solution implemented only using
DDS, which motivates the need for Rx4DDS.NET.

3.1 Overview of OMG DDS Data-Centric Pub-
/Sub Middleware

OMG DDS is a data-centric middleware that understands
the schema/structure of “data-in-motion”. The schemas are
explicit and support keyed data types much like a primary
key in a database. Keyed data types partition the global
data-space into logical streams (i.e., instances) of data that
have an observable lifecycle.

DDS DataWriters (belonging to the publisher) and DataRe-
aders (belonging to the subscriber) are endpoints used in
DDS applications to write and read typed data messages
(DDS samples) from the global data space, respectively.
DDS ensures that the endpoints are compatible with respect
to the topic name, data type, and the QoS policies.

3.2 Microsoft Reactive Extensions (Rx)
Microsoft Reactive Extensions (Rx) [3] is a library for

composing asynchronous and event-based programs. Us-
ing Rx, programmers represent asynchronous data streams
with Observables, query asynchronous data streams using a
library of composable functional Operators, and parameter-
ize the concurrency in the asynchronous data streams using
Schedulers. Rx offers many built-in primitives for filtering,
projecting, aggregating and composing multiple sources of
events. Rx has been classified as a “cousin of reactive pro-
gramming”[7] since Rx does not provide a dedicated abstrac-
tion for time-changing values which can be used in ordinary
language expressions (i.e. automatic lifting of operators to
work on behaviors/signals); rather it provides a container
(observable) and the programmer needs to manually extract
the values from this container and encode dependencies be-
tween container values explicitly (i.e. manual lifting of op-
erators).

3.3 Challenges Manifested In Our Imperative
Solution

We implemented the DEBS 2013 grand-challenge queries [14]
in an imperative style using DDS and C#. This experience
highlighted a number of challenges with our imperative so-
lution which motivates our work on Rx4DDS.NET. We de-
scribe these challenges below:

• Lack of built-in streaming constructs – We had
to manually code the logic and maintain relevant state
information for merging, joining, multiplexing, de-mult-
iplexing and capturing data dependencies between mul-
tiple streams of data.



• Lack of a concurrency model to scale up event
processing by employing multiple cores – Since
DDS utilizes a single dedicated thread for a DataReader
to receive an input event, there was a need to manu-
ally create threads or a thread pool to exploit available
cores for concurrent data processing.

• Lack of a reusable library for sliding time win-
dows – A system for complex event processing typ-
ically requires handling events based on different slid-
ing time-windows (e.g., last one hour or one week).
A reusable library for sliding time-windows which also
operates with other streaming constructs is required.
In our imperative approach, we had to reinvent the
solution every time it was needed.

• Lack of flexibility in component boundaries –
In DDS, data-writers/readers are used for publishing/-
subscribing intermediate results between processing st-
ages. However, this approach incurs overhead due
to serialization and de-serialization of DDS samples
across the data writer-reader boundary, even if event
processing blocks are deployed on the same machine.
The use of data-writers/readers imposed a hard com-
ponent boundary and there was no way to overcome
that transparently.

3.4 Rx4DDS.NET: Integrating Rx and DDS
To address the challenges with our imperative approach,

we designed our reactive programming solution that inte-
grates .NET Reactive Extensions (Rx) framework with DDS.
This solution is made available as a reusable library called
Rx4DDS.NET. We describe our design by illustrating the
points of synergy between the two.

In Rx, asynchronous data streams are represented using
Observables. For example, an IObservable<T> produces
values of type T. Observers subscribe to data streams much
like the Subject-Observer pattern. Each Observer is noti-
fied whenever a stream has a new data using the observer’s
OnNext method. If the stream completes or has an error,
the OnCompleted, and OnError operations are called, re-
spectively. IObservable<T> supports chaining of functional
operators to create pipelines of data processing operators
(a.k.a. combinators).

Some common examples of operators in Rx are Select,
Where, SelectMany, Aggregate, Zip, etc. Since Rx has
first-class support for streams, Observables can be passed
and returned to/from functions. Additionally, Rx supports
streams of streams where every object produced by an Ob-
servable is another Observable (e.g.,IObservable<IObserv-
able<T�). Some Rx operators, such as GroupBy, demulti-
plex a single stream of T into a stream of keyed streams pro-
ducing IObservable<IGroupedObservable<Key,T�. The
keyed streams (IGroupedObservable<Key,T>) correspond
directly with DDS instances as described next.

In DDS, a topic is a logical data stream in the global data-
space. DataReaders receive notifications when an update is
available on a topic. Therefore, a topic of type T maps to
Rx’s IObservable<T>. This conceptual mapping is shown
in Figure 1, where the data received by a DataReader is
converted into an Rx Observable which is later consumed by
downstream query operators (represented by white squares
in Figure 1).

Figure 1: Conceptual Illustration of the
Rx4DDS.NET Integration (DR = DataReader,
DW = DataWriter)

DDS supports a key field in a data type that represents a
unique identifier for data streams defined in a topic. A data
stream identified by a key is called instance. If a DataReader
uses a keyed data type, DDS distinguishes each key in the
data as a separate instance. An instance can be thought of
as a continuously changing row in a database table. DDS
provides APIs to detect instance lifecycle events including
Create, Read, Update, and Delete (CRUD). Since each in-
stance is a logical stream by itself, a keyed topic can be
viewed as a stream of keyed streams thereby mapping to
Rx’s IObservable<IGroupedObservable<Key,T�.

Thus, when our Rx4DDS.NET library detects a new key,
it reacts by producing a new IGroupedObservable<Key,T>
with a new key. Subsequently, Rx operations can be com-
posed on the newly created IGroupedObservable<Key, T>
for instance-specific processing. As a result, pipelining and
data partitioning can be implemented very elegantly using
our integrated solution.

Table 1 summarizes how various DDS concepts map nat-
urally to a small number of Rx concepts. DDS provides
various events to keep track of communication status, such
as deadlines missed and samples lost between DataReaders
and DataWriters. For discovery of DDS entities, the DDS
middleware uses special types of DDS entities to exchange
discovery events with remote peers using predefined built-in
topics. As introduced in the table, discovery events using
built-in topics and communication status events can be re-
ceived and processed by Rx4DDS.NET API, but they are
currently not implemented in our library and forms part of
our ongoing improvements to the library.

Due to the similarity in the dataflow models, Rx and DDS
are quite interchangeable. Table 1 forms the basis of our
integration and the Rx4DDS.NET library. The contract be-
tween any two consecutive stages composed with Rx Observ-
ables is based on only two notions: (1) the static type of the
data flowing across and (2) and the pair of IObservable and
IObserver interfaces that represents the lifecycle of a data
stream. These notions can be mapped directly to DDS in
the form of strongly typed topics and the notion of instance
lifecycle. No more (or less) information is required for a suc-
cessful mapping as long as default QoS are used in DDS.
The converse is also true, however, only a subset of QoS at-
tributes can be mapped to Rx operators as of this writing.
For example, DDS time-based filters can be mapped to Rx’s
Sample operator; Durability QoS with history maps to the
Replay operator.



Table 1: Mapping of DDS concepts to Rx concepts
DDS Concept Corresponding Rx Concept and the Rx4DDS.NET API

Topic of type T An IObservable<T> created using DDSObservable.fromTopic<T>(...). Produces a hot ob-
servable. Internally creates a DataReader<T>.

Topic of type T with key-type=Key An IObservable<IGroupedObservable<Key,T� created using
DDSObservable.fromKeyedTopic<Key, T>(keySelector) where keySelector maps T to
Key. Internally uses a DataReader<T>. Produces a hot observable.

A new instance in a topic of type T An IGroupedObservable<Key,T> with Key==instance’s key. Notified using
IObserver<IGroupedObservable<Key,T�.OnNext(IGroupedObservable<Key,T�)

Disposal an instance (graceful) Notified using IObserver<IGroupedObservable<Key,T�.OnCompleted()
Dispose an instance (not alive, no writ-
ers)

Notified using IObserver<IGroupedObservable<Key,T�.OnError(err)

DataReader<T>.take() Push new values of T using IObserver<T>.OnNext(T). The fromTopic<T>() and
fromKeyedTopic<Key,T>() factories produce hot observables.

DataReader<T>.read() Push potentially repeated values of T using IObserver<T>.OnNext(T). The
readFromDataReader<T>() and readFromDataReader<Key,T>() factories produce cold
observables.

A transient local DataReader<T> with
history = N

IObservable<T>.Replay(N) which caches the last N samples.

Hard error on a DataReader Notified using Observer.OnError(err)
Entity status conditions (e.g., deadline
missed, sample lost etc.)

Separate IObservable<T> streams per entity where T is communication status types. For
example, IObservable<DDS::SampleLostStatus>.

Built-in discovery topics Keyed observables for each built-in topic. For example,
IObservable<IGroupedObservable<Key, T� where T=Subscription/Publication/Participant
BuiltInTopicData and Key=BuiltinTopicKey.

Read Conditions (parameterizes sample
state, view state, and instance state)

IObservable<T>.Where() for filtering on sample state; New IGroupedObservable<Key,T>
instance for new view state; and IObserver<IGroupedObservable<Key,T�.OnCompleted()
for disposed instance state.

Query Conditions IObservable<T>.Where() for content-based filtering.
SELECT * in content-based filter topic
(CFT) expression

IObservable<T>.Select(elementSelector) where elementSelector maps T to *

FROM “Topic” in CFT expression DDSObservable.FromTopic<T>(“Topic”) or DDSObservable.FromKeyedTopic<Key,
T>(“Topic”) if keyed

WHERE in CFT expression IObservable<T>.Where(...)
ORDER BY in CFT expression IObservable<T>.OrderBy(...)
MultiTopic (INNER JOIN) IObservable<T>.selectMany(nestedSelector) where nestedSelector maps T to and

IObservable<U>. Other alternatives are Join, CombineLatest, and Zip
Time-based filter IObservable<T>.Sample(...)

4. EVALUATING RX4DDS.NET BASED SO-
LUTION

This section reports on our qualitative and quantitative
experience in evaluating our Rx4DDS.NET based solution.
For the evaluations we have used a case study, which we also
describe briefly.

4.1 Case Study: DEBS 2013 Grand Challenge
Problem

The ACM International Conference on Distributed Event-
based Systems (DEBS) 2013 Grand Challenge problem com-
prises real-life data from a soccer game and queries in event-
based systems [14]. Although the data is recorded in a file
for processing, this scenario reflects IoT use cases where
streamed data must be processed at runtime and not as a
batch job.

The sensors are located near each player’s cleats, in the
ball, and attached to each goal keeper’s hands. The sen-
sors attached to the players generate data at 200Hz while
the ball sensor outputs data at 2,000Hz. Each data sam-
ple contains the sensor ID, a timestamp in picoseconds, and
three-dimensional coordinates of location, velocity, and ac-
celeration. The challenge problem consists of four distinct
queries that must be executed on the incoming streams of
data. Figure 2 shows the high-level view of the four query
components and the flow of data between them. For brevity
we only describe queries 1 and 3 for which we also present
experimental results later.

Query 1: The goal of query 1 is to calculate the run-

ning statistics for each player. Two sets of results – current
running statistics and aggregate running statistics must be
returned. Current running statistics should return the dis-
tance, speed and running intensity of a player, where run-
ning intensity is classified into six states (stop, trot, low,
medium, high and sprint) based on the current speed. Ag-
gregate running statistics for each player are calculated from
the current running statistics and must be reported for four
different time windows: 1 minute, 5 minutes, 20 minutes
and entire game duration.

Query 3: Query 3 requires heat map statistics capturing
how long each player stays in various pre-defined regions of
the field. The soccer field is divided into four grids with x
rows and y columns (8x13, 16x25, 32x50, 64x100) and results
should be generated for each grid type. Moreover, distinct
calculations are required for different time windows. As a
result, query 3 must output 16 result streams (a combination
of 4 different grid sizes and 4 time windows).

4.2 Qualitative Evaluation of the Rx4DDS.NET
Solution

We now evaluate our Rx4DDS.NET based solution along
the dimensions of challenges expounded in Section 3.3 and
compare it qualitatively with our imperative solution for the
case study.

4.2.1 Automatic State Management
Recall that the imperative approach requires additional

logic to maintain state and dependencies. For example, in
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Figure 2: High Level Data Flow Architecture of DEBS 2013 Grand Challenge

the case study, to calculate average sensor data for a player
from the sensor readings, we had to cache the sensor data for
each sensor id as it arrives in a map of sensor id to sensor
data. If the current data is for sensor id 13, then the corre-
sponding player name is extracted and a list of other sensors
also attached to this player is retrieved. Subsequently using
the retrieved sensor ids as keys, the sensor data is retrieved
from the map and used to compute the average player data.

In the functional style, there is no need to store the sensor
values. We can obtain the latest sample for each sensor
attached to the player with the CombineLatest function and
then calculate the average sensor values. CombineLatest
stream operator can be used to synchronize multiple streams
into one by combining a new value observed on a stream with
the latest values on other streams.

In Listing 1, sensorStreamList is a list that contains ref-
erences to each sensor stream associated with sensors at-
tached to a player. For example, for player Nick Gertje with
attached sensor ids (13, 14, 97, and 98), sensorStreamList
for Nick Gertje holds references to sensor streams for sen-
sors (13, 14, 97 and 98). Doing a CombineLatest on sen-
sorStreamList returns a list (lst in Listing 1) of latest sensor
data for each sensor attached to this player. returnPlay-
erData function is then used to obtain the average sensor
values. The Marble diagram5 for CombineLatest is shown
in Figure 3.

Listing 1: CombineLatest Operator Example Code
List<IObservable<SensorData>> sensorStreamList =

new List<IObservable<SensorData>>();
Observable

.CombineLatest(sensorStreamList)

.Select(lst => returnPlayerData(lst));

As another example of automatic state management, in
query 1 the current running statistics need to be computed
from average sensor data for each player (PlayerData). The
distance traveled and average speed of a player (observed in

5Marble diagrams are a way to express and visualize how
the operators in Rx work. For details see http://rxwiki.
wikidot.com/marble-diagrams.
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the interval between the arrivals of two consecutive Player-
Data samples) is calculated. Since our computation depends
on the previous and current data samples, we can make use
of the built-in Scan function and avoid maintaining previous
state information manually. Scan is a runtime accumulator
that will return the result of the accumulator function (op-
tionally taking in a seed value) for each new value of source
sequence. Figure 4 shows the marble diagram of the Scan
operator. In the imperative approach, we employed the mid-
dleware cache to maintain previous state.

4.2.2 Concurrency Model to Scale-up Multi-core Event
Processing

Rx provides abstractions that make concurrency manage-

http://rxwiki.wikidot.com/marble-diagrams
http://rxwiki.wikidot.com/marble-diagrams
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Figure 4: Marble Diagram of Scan Operator

ment declarative, thereby removing the need to make ex-
plicit calls to create threads or thread pools. Rx has a free
threading model such that developers can choose to sub-
scribe to a stream, receive notifications and process data on
different threads of control with a simple call to subscribeOn
or ObserveOn, respectively. Delegating the management of
shared state to stream operators also makes the code more
easily parallelizable. Implementing the same logic in the im-
perative approach incurred greater complexity and the code
was more verbose with explicit calls for creating and man-
aging the thread pools.

In Query 1, the current running statistics and aggregate
running statistics get computed for each player indepen-
dently of the other players. Thus, we can use a pool of
threads to perform the necessary computation on a per-
player stream basis. In Listing 2, player streams represents a
stream of all player streams i.e., an IObservable<IGroupedO-
bservable<String,PlayerData>>. Each player stream, which
is an IGroupedObservable<String,PlayerData> keyed on pla-
yer’s name, is then processed further on a separate thread
by using ObserveOn.

Listing 2: Concurrent Event Processing with Multi-
threading
player_streams.selectMany( player_stream =>
{

return player_stream
.ObserveOn(Scheduler.Default)
.CurrentRunningAnalysis();

}).Subscribe();

4.2.3 Library for Computations based on Different
Time-windows

One of the recurrent patterns in stream processing is to
calculate statistics over a moving time window. All four
queries in the case study require this support for publishing
aggregate statistics collected over different time windows. In
the imperative approach we had to reimplement the neces-
sary functionality and manually maintain pertinent previous
state information for the same because DDS does not sup-
port a time-based cache which can cache samples observed
over a time-window.

Rx provides the “window abstraction” which is most com-
monly needed by stream processing applications, and it sup-
ports both discrete (i.e., based on number of samples) and
time-based windows. Figure 5 depicts aggregation performed
over a moving time window.

4.2.4 Flexible Component Boundaries
Interchangeability of Rx and DDS provides incredible flex-

ibility to the developer in demarcating their component bound-

Current Running Analysis 
Nick Gertje

cb da e

abcab bcda cde
Aggregate Running Analysis 

Nick Gertje

Figure 5: Marble Diagram of Time-window Aggre-
gator

aries or points of data distribution. In fact, the points of
distribution can be chosen at deployment-time. The imper-
ative solution often does not possess a composable dataflow-
oriented structure. Hence, more often than not, developers
tend to over-commit to various interprocess communication
mechanisms by hard-coding the dependency and eliminating
the choice of an alternative mechanism. If scale-out or place-
ment of these components on different machines is required,
then this design is desirable, otherwise overcommitment to
a specific distribution mechanism isolates the components
and imposes “hard” component boundaries. The resulting
structure is very rigid and hard to co-locate efficiently. For
example, each query processor in our imperative solution is
a component. Moving the functionality of one into another
is intrusive and cannot be easily accomplished.

In Rx4DDS.NET, a stream of intermediate results can ei-
ther be distributed over a DDS topic for remote processing
or can be used for local processing by chaining stream oper-
ators. The details of whether the “downstream” processing
happens locally or remotely can be abstracted away using
the Dependency Injection pattern [26]. As a consequence,
component boundaries become more agile and the decision
of data distribution need not be taken at design time but
can be deferred until deployment.

In our implementation, developers may choose to distribute
data over DDS by simply passing a DDS DataWriter to the
Subscribe method. Alternatively, for local processing, a
Subject<T> could be used in place of DDS DataWriter.
The choice of a Subject versus a DataWriter is configurable
at deployment-time.

Table 2 summarizes the key distinctions between our im-
perative and Rx4DDS.NET based solution for the case-study
along each dimension of the challenges.

4.2.5 Program Structure
The composability of operators in Rx allows us to write

programs that preserve the conceptual high-level view of
the application logic and data-flow. For example, Query
1 computes the AggregateRunningData for each player for 1
minute, 5 minutes, 20 minutes and full game duration, as
shown in Listing 3.

In Listing 3, player streams is a stream of streams (e.g.
IObservable<IGroupedObservable<String,PlayerData� com-
prises a stream for each player). Each player stream, repre-
sented by the variable player stream is processed on a sep-
arate pooled thread by means of a single code statement,
ObserveOn(ThreadPoolScheduler.Instance). The CurrentRu-
nningData for each player (curr running stream in Listing 3)
is computed by the function CurrentRunningAnalysis() and
is subsequently used by AggregateRunning*() to compute



Table 2: Comparison of Our Imperative and Reactive Solutions
Imperative Solution Reactive Solution

State Management Manual state management State-management can be delegated to
stream operators

Concurrency
Management

Explicit management of low level concur-
rency

Declarative management of concurrency

Sliding Time-window
Computation

Manual implementation of time window
abstraction

Built-in support for both discrete and
time-based window

Component
Boundaries

Inflexible and hard component boundaries Flexible and more agile component
boundaries

the AggregateRunningData for each player for 1 minute, 5
minutes, 20 minutes and full game durations, respectively.
The use of Publish() and Connect() pair ensures that a sin-
gle underlying subscription to curr running stream is shared
by all subsequent AggregateRunning*() computations other-
wise the same CurrentRunningData will get re-computed for
each downstream AggregateRunning*() processing pipeline.

Listing 3: Program Structure of Query 1
player_streams.Subscribe(player_stream =>
{

var curr_running=
player_stream
.ObserveOn(ThreadPoolScheduler.Instance)
.CurrentRunningAnalysis()
.Publish();

curr_running.AggregateRunningTimeSpan(1);
curr_running.AggregateRunningTimeSpan(5);
curr_running.AggregateRunningTimeSpan(20);
curr_running.AggregateRunningFullGame();

curr_running.Connect();
}

4.2.6 Backpressure
Integration of Rx with DDS allows us to leverage DDS

QoS configurations and Real Time Publish Subscribe (RTPS)
protocol to implement backpressure across the data reader-
writer boundary. DDS offers a variety of QoS policies like
Reliability, History and Resource Limits QoS policies that
can be tuned to implement the desired backpressure strat-
egy. Reliability QoS governs the reliability of data delivery
between DataWriters and DataReaders. It can be set to
either BEST_EFFORT or RELIABLE reliability. BEST_EFFORT
configuration does not use any cpu/memory resources to en-
sure guaranteeded delivery of data samples. RELIABLE con-
figuration, on the other hand, uses ack/nack based protocol
to provide a spectrum of reliability guarantees from strict to
best-effort. Reliability can be configured with History QoS,
which specifies how many data samples must be stored by
the DDS middleware cache for the DataReader/DataWriter
subject to Resource Limits QoS settings. It controls whether
DDS should deliver only the most recent value (i.e., history
depth=1), attempt to deliver all intermediate values (i.e.,
history depth=unlimited), or anything in between. Resource
Limits QoS controls the amount of physical memory allo-
cated for middleware entities. If BEST_EFFORT QoS setting is
used, the DataWriter will drop the samples when the writer
side queue (queue size determined by History and Resource
Limits QoS) becomes full. We can use this strategy to cope
with a slow subscriber or bursty input data rates if the ap-
plication semantics support transient loss of data. On the
other hand, if we use RELIABLE configuration, backpressure
can be supported across the data reader-writer boundary.

If the DataReader is not fast enough, it will start buffering
the incoming samples upto a pre-configured limit (including
unlimited, as configured using History and Resource Limits
QoS) before throttling down the DataWriter in accordance
with the reliability protocol semantics. However, this back-
pressure is only limited to work across two DDS entities.
Local processing stages implemented in Rx .NET do not
support backpressure. Hence, if operators with unbounded
buffer sizes (e.g., ObserveOn, Zip) are used then we may
observe an unbounded increase in queue lengths, arbitrarily
large response times or out-of-memory exceptions.

Unlike Rx NET., the Reactive-Streams specification [1]
implements a dynamic push-pull model for implementing
backpressure between local processing stages. Their model
can shift dynamically from being push-based (when the con-
sumer can keep up with incoming data rate) to a pull-based
model if the consumer is getting overwhelmed. The con-
sumer specifies its “demand” using a backpressure channel
to throttle the source. The producer can also use the “de-
mand” specifications of downstream operators to perform
intelligent load-distribution. In the future, we plan to inte-
grate the Reactive-Streams specification with DDS for end-
to-end backpressure semantics.

4.3 Quantitative Evaluation of Rx4DDS.NET
To assess and compare the performance of Rx4DDS.NET

library with that of the imperative approach, we imple-
mented the DEBS 2013 Grand Challenge queries in an im-
perative style using C# so that both implementations used
C#. Specifically, we compare the performance of our imper-
ative and Rx4DDS.NET solutions under single threaded and
multi-threaded query implementations. All the tests have
been performed on a host with two 6-core AMD Opteron
4170 HE, 2.1 GHz processors and 32 GB RAM. The raw sen-
sor stream was published by a DDS publisher by reading out
the sensor data file in a separate process, while the queries
were executed in another process by subscribing to the raw
sensor stream published over DDS. Interprocess communi-
cation happens over shared-memory.

We implemented the following strategies in the imperative
solution for parallelizing query execution along the lines of
available Rx schedulers: SeparateThread, ThreadPool-Se-
nsorData, ThreadPool-PlayerData, NewThread-SensorDa-
ta and NewThread-PlayerData. In the SeparateThread
strategy, SensorData is received on one thread while the
entire query execution is offloaded to a separate thread (all
player streams are processed on this separate thread). The
ThreadPool-SensorData strategy offloads the received Sen-
sorData on a threadpool such that each player’s PlayerData
calculation and subsequent player-specific processing hap-
pens on the threadpool. In the ThreadPool-PlayerData



Table 3: Performance Comparison of Rx4DDS.NET over Imperative Solution

Rx Scheduler over Imperative Strategy query 1
%throughput
difference

query 1
Std.
Dev.

query 3
%throughput
difference

query 3
Std.
Dev.

query 1 3
%throughput
difference

query 1 3
Std. Dev

Rx single-thread over Imperative single-thread -9.26 6.29 -4.3 7.3 1.19 5.67
Rx NewThread scheduler over Imperative
NewThread-PlayerData Strategy

-6.7 4.44 -8.61 2.9 -3.75 3.28

Rx ThreadPool scheduler over Imperative
ThreadPool-SensorData Strategy

-8.73 6.55 -5.47 4.56 -5.3 6.05

Rx Partitioner Eventloop over Imperative
NewThread-SensorData Strategy

-13.87 7.04 -15.93 6.43 -10.87 3.67

strategy, the PlayerData is calculated from SensorData on
the thread that receives SensorData from DDS; thereafter
the calculated PlayerData is offloaded to a threadpool for
further player specific processing. The NewThread-SensorD-
ata strategy creates a designated thread for processing each
player’s data. The received SensorData is dispatched to its
specific player thread, which computes that player’s PlayerD-
ata and processes it further. The NewThread-PlayerData
strategy also creates a separate thread for processing each
player’s data. However, the PlayerData is calculated from
SensorData on the thread that receives data from DDS,
which is then dispatched to the player-specific thread for
further processing.

Figure 6 presents the performance of different imperative
strategies over single-threaded implementations of query_1,
query_3 and query_1_3 (runs both queries 1 and 3 to-
gether). Each query was run ten times and the error bars
in the graphs denote one standard-deviation of values. For
query_1, the average throughput gains per strategy over
the single threaded implementation of query_1 are, respec-
tively, 29% for the SeparateThread strategy, 35% for the
ThreadPoolSensorData strategy, 23% for the ThreadPool-
PlayerData strategy, 32% for the NewThread-SensorData
strategy and 24% for the NewThread-PlayerData strategy.
For query_3, the SeparateThread strategy shows an av-
erage of 40%, the ThreadPool-SensorData strategy shows
an average of 12%, the ThreadPool-PlayerData strategy
shows an average of 3%, the NewThread-SensorData shows
an average of 15% and the NewThread-PlayerData strat-
egy shows an average of 7% higher throughput than single-
threaded implementation of query_3. For query_1_3, the
SeparateThread strategy shows an average of 34%, the Thr-
eadPool-SensorData strategy shows an average of 45%, the
ThreadPool-PlayerData strategy shows an average of 42%,
the NewThread-SensorData strategy shows an average of
47% and the NewThread-PlayerData strategy shows an av-
erage of 39% higher throughput than single-threaded imple-
mentation of query_1_3.

To evaluate multi-threaded query implementations in our
Rx4DDS.NET solution, we made use of the built-in Rx sched-
ulers as shown in Listing 3. ObserveOn in Listing 3 causes
each player stream(player_stream)’s data to get offloaded
on the specified scheduler and all downstream processing of
that player’s PlayerData takes place on the specified sched-
uler passed to ObserveOn. Hence, in this case PlayerData
gets calculated on the thread which receives data from DDS,
but subsequent processing is offloaded to the specified Obser-
veOn scheduler. Rx offers many built-in schedulers such as
the EventLoopScheduler, NewThreadScheduler, ThreadP-
oolScheduler, TaskPoolScheduler, etc. for parameteriz-
ing the concurrency of the application. EventLoopScheduler
provides a dedicated thread which processes scheduled tasks
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Figure 6: Performance of Imperative Strategies over
Single Threaded implementation

in a FIFO fashion; NewThreadScheduler processes each sched-
uled task on a new thread; ThreadPoolScheduler processes
the scheduled tasks on the default threadpool while TaskPool-
Scheduler processes scheduled tasks on the default taskpool.
Apart from using ObserveOn to process each player’s Player-
Data using a different scheduler, we also tested a variant
test-case named Partitioner EventLoop, wherein the in-
coming SensorData is de-multiplexed and offloaded onto a
player-specific EventLoop (each player has its own EventLo-
op) which will first calculate PlayerData and then perform
further processing. This is similar to imperative NewThread-
SensorData strategy, wherein each player thread is also re-
sponsible for calculating PlayerData from received SensorD-
ata.

Figure 7 presents the performance of different Rx sched-
ulers over single-threaded implementations of query_1, quer-
y_3 and query_1_3. For query_1, EventLoopScheduler
shows an average of 3%, NewThreadScheduler shows an
average of 27%, ThreadPoolScheduler shows an average
of 23%, TaskPoolScheduler shows an average of 25% and
Partitioner EventLoop shows an average of 25% increase
in throughput over single threaded implementation. For
query_3, EventLoopScheduler shows an average of 20%
lower performance, while NewThreadScheduler shows an
average of 3%, ThreadPoolScheduler shows an average of
2%, TaskPoolScheduler shows an average of .04% and Part-
itioner EventLoop shows an average of 1% increase in per-
formance over single threaded implementation. For query_1-
_3, EventLoopScheduler shows an average of 12%, NewThre-



adScheduler shows an average of 32%, ThreadPoolSchedul-
er shows an average of 33%, TaskPoolScheduler shows an
average of 30% and Partitioner EventLoop shows an av-
erage of 30% increase in performance over single threaded
solution.
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Figure 7: Performance of Different Rx schedulers
over Single Threaded implementation

Query_1 processes each player’s aggregate running data
for all four time-windows, i.e. 1 min, 5 mins, 20 mins
and full-game duration, which is updated for each input
PlayerData sample. Query_1 shows inherent parallelism
wherein each player’s data can be processed independently
of each other in parallel. The multi-threaded implemen-
tation of query_1 shows an increased performance with a
maximum performance gain of 35% over single threaded im-
plementation. Query_3, wherein each player’s heatmap is
calculated for all four time-windows(1min, 5mins, 10mins
and full-game duration), also shows inherent parallelism in
that each player’s heatmap information can be calculated
independently. However, query_3 is only required to fur-
nish an update after every 1 second (based on sensor times-
tamps) unlike query_1 which furnishes an update for each
input sample. Hence in case of query_3 we find that intro-
ducing parallelism imposes a greater overhead without sig-
nificant performance gain. Figure 8 presents the difference
in input and output data-rates for query_1 and query_3
in our Rx4DDS.NET based implementation parameterized
with ThreadPoolScheduler.

Table 3 compares the difference in the performance of Rx
schedulers over its corresponding imperative solution strat-
egy. While it is expected that the Rx library will impose
some overhead, it offers several advantages due to its declar-
ative approach towards system development, improved ex-
pressiveness and composability. Since Rx provides abstrac-
tions which make concurrency management declarative, test-
ing different concurrency options for an application requires
negligible effort. By changing a few lines of code we can test
whether introducing parallelism provides increased perfor-
mance gain (e.g., query 1) which is worth the added over-
head or degrades it due to greater overhead (e.g., query 3).
In contrast, gaining such insights by testing different imple-
mentation alternatives in the imperative approach was more
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Rx4DDS.NET implementation of Query 1 and
Query 3 with ThreadPoolScheduler

complex, requiring a fair amount of changes in the code.
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Figure 9: Throughput of Rx4DDS.NET implemen-
tation of Query 1 with different schedulers under
increasing number of cores.

To verify whether the performance of multi-threaded query
implementations scale with the availability of additional hard-
ware resources, we restricted the query-processor process to
run using a specified number of available cores. Figure 9
shows the throughput of query 1 configured with different
Rx schedulers under increasing number of cores assigned to
the query-processor process. In accordance with Amdhal’s
law, we observe that the throughput of query 1 increases ini-
tially as the number of assigned cores increases, but beyond
that we see no difference in the performance even if we keep
increasing the number of assigned cores. However, we note
some erratic behavior in the case of EventLoopScheduler
for 3-cores and Partitioner EventLoop for 2-cores, where
the performance drops sharply and we are investigating the



reason behind this.

5. CONCLUSIONS
Reactive programming is increasingly becoming impor-

tant in the context of real-time stream processing for big
data analytics. While reactive programming supports event-
driven design, most of the generated data must be dissem-
inated from a large variety of sources (i.e., publishers) to
numerous interested entities, called subscribers while main-
taining anonymity between them. These properties are pro-
vided by pub/sub solutions, such as the OMG DDS, which
is particularly suited towards performance-sensitive applica-
tions. Bringing these two technologies together helps solve
both the scale-out problem (i.e., by using DDS) and scale-
up using available multiple cores on a single machine (i.e.,
using reactive programming).

This paper describes a concrete realization of blending the
Rx .NET reactive programming framework with OMG DDS,
which resulted in the Rx4DDS.NET library. Our solution
was evaluated and compared against an imperative solution
we developed using DDS and C# in the context of the DEBS
2013 grand challenge problem. The following lessons were
learned from our team effort and alludes to future work we
plan to pursue in this space.

• The integration of Rx with DDS as done in the Rx4DD-
S.NET library unifies the local and distributed stream
processing aspects under a common dataflow program-
ming model. It allows highly composable and expres-
sive programs that achieve data distribution using DDS
and data processing using Rx with a seamless end-to-
end dataflow architecture that is closely reflected in
the code.

• Our quantitative results indicate that Rx parameter-
izes concurrency and avoids application-level shared
mutable state that makes multi-core scalability sub-
stantially easier. We showed increase (up to 35%)
in performance of Query_1 by simply configuring the
schedulers in Rx.

• Our future work includes enhancing Rx4DDS.NET li-
brary to map all available DDS features with Rx, to
identify most commonly used stream processing con-
structs which can be distilled to be a part of this
reusable library. Our goal is to utilize it in the con-
text of large-scale industrial IoT applications, such as
transportation, smart grid, medical, and industrial in-
ternet.

The Rx4DDS.Net framework and the implementation of
the case study queries are available for download from https:
//github.com/rticommunity/rticonnextdds-reactive.
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