
StreamCoCo: A DSL for Processing Data-Centric

Streams for Industrial IoT Edge Applications

[Industry Experience Report]

Sumant Tambe

Real-Time Innovations, Inc.

ABSTRACT
We report our experience of developing and using a simple

yet an effective flow-based programming language and its

distributed execution engine for detecting behavioral

anomalies in physical assets in industrial IoT systems. Our

stream processing systems is built using the Reactive

Extensions (Rx) library for composing asynchronous data

streams and the OMG Data Distribution Service (DDS) for

publish-subscribe communication over the network. Our

little language is called Stream Concatenation and

Coordination (StreamCoCo) due to its similarity to the

UNIX shell pipes-and-filter syntax. The novelty lies in the

simple declarative programming model baked into the

language that upon detection of anomalies in a stream, takes

snapshots of other streams which may be distributed.

Further, dynamic parallel pipelines of stateful stream

processing operators are trivial to implement using

StreamCoCo. We leverage the core capabilities of the

language for infrastructure health monitoring and data

analytics at the edge to assist remote human operators in

problem diagnosis.

Keywords

Stream processing, Dataflow, Publish-Subscribe, Reactive

Extensions (Rx), Data Distribution Service (DDS)

1. Introduction
The Industrial Internet of Things (IIoT) [1] is exponentially

expanding the reach of digital computing and IP networks

to the “edges” of large, geographically distributed systems.

Industrial IoT—separate from just IoT—promises to

deliver 80% of the economic value of the IoT hype [2] by

enabling smart transportation, smart power grids [3], smart

hospitals, smart cities, smart manufacturing, software-

defined machines, and cloud analytics. IIoT combines

physical machinery, networked sensors and software using

the Internet.

As these IIoT systems are part of critical infrastructure and

often deployed in remote, harsh environments, they are

heavily sensorized to enable telemetry, remote health and

condition monitoring for timely maintenance. The sensors

produce raw data that is extremely large in volume,

velocity, and variety. Not all the raw data can be sent to the

centralized, cloud-based big-data analytics primarily due to

bandwidth limitations and the cost of transmission. Instead,

a more hierarchical and distributed approach is preferred

where multiple streams of raw data are aggregated, reduced,

filtered, and analyzed locally to identify behavioral

anomalies in the fielded assets and escalate issues needing

human attention to the centralized monitoring stations as

needed.

Often the data streams representing physical values, such as

temperature, pressure, vibrations, power output, etc. tend to

be correlated. Known correlations have been exploited [4]

in developing Bayesian Belief Networks in complex

systems for health assessment of components and sensors.

However, automatic health monitoring has its limitations

and human intervention is necessary in many cases.

Instantaneous data values are insufficient for humans to

perform remote diagnosis because the overall context in

which the anomaly arises may be unavailable. I.e., upon

detection of divergent behavior, simply alerting a human is

not sufficient. What is really needed is an accurate

description of the detected situation along with the state of

the overall system in close temporal proximity of the

anomaly. It is important to understand the overall system

state right before and after the anomalous situation (which

may be transient or persistent).

The state of the system before the anomalous condition

often contains clues to diagnose the potential causes and the

state of the system after the anomalous condition contains

symptoms. The state, however, is not necessarily the

“program state”, which is often inaccessible in service-

oriented, loosely coupled systems. The state we refer to

here is simply the most recently observed data samples

across a number of distributed streams (dataflows) before

and after the anomalous condition. The clues often lie in

data streams separate (identity and space) from the one that

raised the alert. As a consequence, whenever an alert is

raised, snapshots from a number of parallel data streams

must be captured and sent to centralized location for

forensic analysis.

The snapshots also assist in understanding trends in closely

related data streams. For instance, temperatures reported by

a group of temperature sensors attached to a boiler must be

highly correlated. Each temperature sensor is independent

and forms a data stream in its own right. In our notion of

the snapshot, it is crucial to capture parallel instances of

same logical data stream (e.g., temperatures). A set of

consecutive data samples from a set of closely related

instances help identify trends.

As the rules of what constitutes an alert are highly domain-

specific, we needed a specification mechanism to codify the

rules that could be used by the subject matter experts

without any programming background. In our experience, a

dataflow abstraction works well in such situations due to its

inherently declarative nature and expressive power.

However, analytics at the “edge” must be light-weight and

must support platforms that are resource-constrained

(memory, CPU, and networking). COTS Complex Event

Processing (CEP) engines that offer declarative SQL-like

event processing languages are often too heavyweight.

We needed a lightweight, easy-to-use, easy-to-learn

distributed dataflow processing system that could be

scripted remotely. Scripting allows remote subject matter

experts to augment existing analytics and insert additional

flow processors without affecting existing dataflows.

To meet the above requirements, we developed a simple

flow-based programming language named Stream

Concatenation and Coordination (StreamCoCo), which has

the following novel capabilities/features.

 StreamCoCo provides plain-English syntax for operators

and a simple pipes-and-filter style for concatenating

processing operators, which is motivated by the I/O

redirection support in UNIX shells. It builds on the Data

Distribution Service (DDS) [6] standard for publish

subscribe communication and Reactive Extensions (Rx)

[5] for processing asynchronous data streams.

Background in both them is not necessary to be

productive in StreamCoCo, which we believe is a major

win for this language. As a consequence, non-

programmers can leverage many powerful capabilities

of DDS and Rx with little to no learning curve.

 StreamCoCo intelligently marries the concept of DDS

instances with Rx’s groupby operator and thereby

supports dynamic parallel pipelines of stateful stream

processing operators. Stateful processing is crucial for

instance-based data analysis and trending.

 The flow-based programming model of StreamCoCo

enables both local and remote propagation of alerts by

unifying the (inter-process) publish/subscribe model of

DDS and the (intra-process) subject-observer model of

Rx. As a consequence, in a StreamCoCo program,

distribution is a strictly deployment time decision and

does not affect program source code in any way.

In the following sections we discuss our experience of

developing StreamCoCo and its application to a on-demand

programmable, remote problem diagnosis application.

Secondary goal is to highlight suitability of Rx for DDS

data processing. Therefore, our findings are more generally

applicable regardless of StreamCoCo.

2. Overview of DDS and Rx
In this section we briefly describe DDS and Rx.

2.1 Data Distribution Service (DDS)
The OMG Data Distribution Service (DDS) [6] is a data-

centric publish/subscribe standard with support for a

number of QoS properties. DDS allows applications to

share data by publishing and subscribing typed data

samples to a topic. The name of the topic must be agreed

upon between application priori. Topics belong to a global

data space (a domain) governed by types specified using the

Interface Definition Language (IDL). The data type may be

keyed on one or more fields. Each key identifies an instance

(similar to a primary key in a database table) and DDS

provides APIs in C/C++/Java/C# to control the lifecycle of

instances. Instance lifecycle supports CRUD (create, read,

update, delete) operations, which are conceptually similar

to database operations. Complex delivery models can be

associated with data-flows by simply configuring the topic

QoS.

2.2 Reactive Extensions (Rx)
Rx [5] is a library for composing asynchronous data streams

based on the principles of Functional Reactive

Programming (FRP). FRP is a declarative approach for

program design wherein program specification amounts to

what (i.e., declaration of intent) as opposed to how

(looping, explicit state management, etc.). Declarative

programs written using the FRP style use the dataflow

abstraction because the state and control flow are hidden

from the programmers. FRP offers high-level abstractions

that avoid verbosity.

Rx represents asynchronous data streams using

Observables. For example, an IObservable<T>

produces values of type T. Observers subscribe to data

streams much like the Subject-Observer pattern. Each

Observer is notified whenever a stream has a new data

using the observer's OnNext method. If the stream

completes or has an error, the OnCompleted, and

OnError operations are called, respectively.

IObservable<T> supports chaining of functional

operators to create pipelines of processing stages. Some

common examples of operators in Rx are Select,

Where, SelectMany, Aggregate, Zip, etc. Since Rx

has first-class support for streams, Observables can be

passed and returned to/from functions. Additionally, Rx

supports streams of streams where every object produced

by an Observable is another Observable (e.g.,

IObservable<IObservable<T>>). Some Rx

operators, such as GroupBy, demultiplex a single stream

of T into a stream of keyed streams producing

IObservable<IGroupedObservable<Key, T>>.

The keyed streams (IGroupedObservable<Key, T>)

correspond directly to DDS instances.

3. Syntax and Semantics of SteamCoCo
StreamCoCo is a domain-specific scripting language for

stream processing and coordination. It embodies Save

Query; Run Data paradigm, which is inverse of the

traditional database approach. The current implementation

of the language is based on Node.js, it compiles just-in-time

to native code on Windows and Linux platforms.

StreamCoCo has a declarative English-like syntax and as a

consequence little/no programming experience necessary to

use it. StreamCoCo uses JavaScript Object Notation

(JSON) syntax. The smallest block of specification in

StreamCoCo is called a probe, which encapsulates a name,

a filter, and a set of human readable tags. Filters inspect

streams and raise alerts. Listing 1 shows an example of a

probe named TempAvgProbe.

{

 "name" : "TempAvgProbe",

 "filter" : “<see listing 2>”,

 "trigger" : true,

 "tags" : ["overheat", "heat_warning"]

}

Listing 1: A Probe in StreamCoCo

The filter section includes the core analytical logic of a

probe, which uses simple pipes-and-filter style syntax to

chain multiple processing stages—operators. StreamCoCo

allows composition of operators using pipes similar to the

UNIX I/O redirection facility. It supports a library of

operators including data sourcing, predicates, arithmetic,

time windows, conditionals, I/O, filtering, data partitioning,

throttling, join, staleness detection, etc.

Listing 2 shows an example of a filter in TempAvgProbe

(Listing 1).

source Temperature |

hastype temperature_readings |

has sensor_id |

has fahrenheit |

match { "host" : "climate_monitor" } |

insert eval((fahrenheit-32)*5/9) as celsius

delete fahrenheit |

groupby sensor_id |

insert avg(celsius) over 30 sec as

extra.degree_avg |

snapshot timerange(-60 sec,+60 sec) |

greater_than_equal extra.degree_avg 65 |

interval 120 sec

Listing 2: A filter for detecting out of range

temperature sensors (instances)

We use Listing 2 as an example to describe the semantics of

various operators and their relationship. Whenever a data

sample propagates through all the operators in a filter, it is

transformed in to an alert. An alert contains the data that

caused it, the name of the probe, and the tags. The alert is

simply forwarded to a well-known “Alerts” DDS topic that

all the DSP agents are subscribed to. As a consequence, any

alert produced anywhere in the system is propagated to all

DSP agent automatically. The snapshot operator

describes later makes use of alerts.

3.1 I/O Operators
The source operator subscribes a stream identified by a

name. It may be a previously defined probe or a DDS topic.

The source operator hides the true source of the data. The

keyed_dds_source operator is designed to work with

DDS source only and is described in subsection 3.4 due to

its built-in data partitioning behavior.

Data sourcing operators, such as mergesources,

combinesources, and zipsources use more than

one asynchronous data source (i.e., DDS topics or other

probes) and join them in some fashion. These operators

map to merge, combineLatest, and zip combinators

in Rx. All the multi-source operators produce a composite

structure from individual samples from the constituent

streams.

We use JSON for construction of composite structures from

the data samples received over individual streams. Thanks

to JSON’s dynamic, self-describing data representation.

Finally, output is an operator for publishing data samples

to a named DDS topic (which may be subscribed

elsewhere).

3.2 Predicate Operators
Operators, hastype, and has define predicates that

ensure that the incoming data samples have the necessary

structure. This step is often unnecessary when the true

source of data is a DDS topic as the schema of DDS topics

is always well-defined. It is useful when the true source of

data is a local stream or dynamic.

The match operator is also a predicate and uses a partial

JSON object for pattern matching. It filters data samples

that do not match the partial object. The

greater_than_equal is an operator in a family of

logical operators that filters samples that do not satisfy the

condition. Finally, the contains operators does a

substring search in a given property.

All the predicate operators are mapped to the Where

combinator in Rx.

3.3 Data Manipulation Operators
The insert operator is a data projection operator, which

allows computation of new data values and fields from

existing one. The new data values produce new key-value

pairs in the current data sample being processed. The

insert operator is quite flexible and supports counter

and time-based windows, arithmetic functions such as avg,

min, max, count (akin to SQL), and general-purpose tree

query language (e.g., JSONPath) for traversing and

extracting deeply nested elements from complex

hierarchically structured data samples. The insert

operator maps to Map or Select combinator in Rx.

StreamCoCo has a delete operator, which deletes a key-

value pair.

3.4 Data Partitioning Operator
The groupby operator in StreamCoCo partitions data

according to a key (e.g., sensor_id) in the data sample.

Keys are fundamental to data-centric communication

supported by DDS. Keys give rise to instances in DDS,

which are basically partitioned data streams. While DDS

handles distribution of instances, StreamCoCo allows us to

process instances by leveraging the Rx programming

model.

The groupby operator not only partitions data but also

lazily evaluates the subsequent stages for each new key. For

every new key, it instantiates a fresh copy of all the

subsequent stages allowing parallel stateful pipelines. As a

result, a single filter description in StreamCoCo manages

multiple DDS instances with ease. When the data stream

representing the instances completes (i.e., when DDS

instances are disposed), it reclaims the resources.

The keyed_dds_source is a data sourcing operator that

uses the grouping semantics directly supported by DDS in a

given keyed topic. As DDS supports CRUD operations on

instances, keyed_dds_source reacts to them by lazily

instantiating (or disposing) downstream operators for each

new (disposed) instance. In that regard the behavior of

keyed_dds_source is identical to the groupby

operator that partitions stream independent of DDS.

Both DDS and Rx have a steep learning curve, and despite

their suitability we do not expect operators (non-

programmers) to learn such rigorous distributed

programming methodology. StreamCoCo nearly eliminates

the learning curve of both DDS and Rx and enables non-

programmers to use intuitive chaining of operators for

analyzing DDS instances. Implementing equivalent

capability in vanilla DDS and Rx APIs requires proficiency

at least one major programming language supporting

lambdas (i.e., anonymous functions) and related

programming patterns. StreamCoCo, however, enables non-

programmers to use this complex feature with ease.

3.5 Rate Control Operators
The interval operator throttles the rate at which alerts

are produced. In Listing 2, two successive alerts are

separated by at least 2 minutes. This allows the It maps to

the Throttle combinator in Rx.

3.6 Distributed Snapshot Operator
The snapshot operator is a novel operator (not built-in in Rx

or DDS) and is key to the selection and propagation of

temporally correlated data samples in distributed streams.

Nominally, the snapshot operator subscribes to the

predefined “alerts” stream and in absence of any alerts has

no side effect on the behavior of the system.

Whenever an alert is produced, it causes all other probes

(that have a snapshot stage) to snapshot the streams they

are inspecting. A snapshot is a set of data samples in a

stream that fall within a window of time, such as –n to +p

minutes, from the time of reception of an alert. Such a set of

data samples forms the observable state of the system,

which perhaps contains clues to investigate the cause of the

deviation in the behavior. The key idea behind the probes is

to capture the observable state of the system around the

time of the alert event. Obviously, the state could be

distributed because the DSP agents are distributed. A

snapshot, therefore, can be thought of as a thin slice through

time and space that captures the system state in terms of the

monitored streams. Figure 1 is a schematic of data, alert,

and snapshot streams.

Figure 1: DSPs analyze data, produce alerts and

transmit snapshots (best viewed in color)

The snapshot stage in Listing 2 extracts 2 minutes worth of

data flowing through the filter when an alert is detected.

Note that the time-range indicates 1 minute into future so

data yet to be received is also “captured” by the snapshots.

If/when a probe (including itself) produces an alert, the

snapshot operators of all the probes forward the buffered

data samples to a snapshot stream, which is the only non-

alert data sent to human operators for detailed forensic

analysis. The data samples in every snapshot are tagged

with the same tags reported in an alert. This allows

operators to classify data samples based on what caused it

to be captured. A data sample may be tagged with multiple

alerts coinciding a time window.

3.7 Operator for Joining Multiple Streams
StreamCoCo provides the until_next operator that

joins data samples from two asynchronous data streams. For

example, consider the following listing.

until_next join p from Pressure select

p.pascal as Pa, celsius

The keyword join is only to improve readability. The

until_next operator has an implicit stream that the

operator is part of. The second stream is specified as “p

from Pressure” where “Pressure” is a DDS topic name

or another probe. Subsequently, the select part of the

operator selects the properties from either of the streams.

Optionally, the name of the new projected property can be

specified using as. As a result, the example produces a

stream of structures containing Pa and celsius

properties, which are copies of pascal and celsius

from the secondary and primary streams respectively.

Clearly, the until_next operator is motivated by the

SQL JOIN statement. However, there are significant

differences. A SQL JOIN would nominally join each row

from one table with every row from the other table. It is a

cartesian product. SQL allows optional WHERE in a JOIN

which may prune the overall result set. For infinite data

streams, such semantics of join would require unbounded

amount of resources as both streams could be infinite.

The until_next operator suggests a notion of time,

which executes join with the second stream only until the

next data sample in the primary stream is received. For

example, if the data rate of the “Pressure” topic is two times

higher than the “Temperature” topic, the output of

until_next is as follows.

Input Streams

T=Temperature, P=Pressure

until_next

output1

T 0-1-2-3-4-5...

P ABCDEFGHIJK...

0,A

0,B

1,C

1,D

2,E

2,F ...

As a result, until_next operator always uses a bounded

amount of storage while executing a join. The behavior of

until_next operator is quite suitable for edge

applications in IIoT as nearly all streams are updated

continuously and periodically, at fixed rates ranging from

KHz frequencies to multi-second periods. Suitable delivery

quality-of-service are best-effort reliability with low

latencies and jitter. In our target systems, stale data is often

unimportant.

4. The StreamCoCo Virtual Machine
The virtual machine that executes StreamCoCo programs—

probes—is called a Dynamic Stream Probing (DSP) agent.

DSP agents are dynamic because they can receive new

probes dynamically and launch them without disrupting

existing dataflows. Moreover, DSP agents can be easily

distributed and new instances join existing agents as long as

they all use a preconfigured DDS domain. Each DSP agent

automatically subscribes to the “Alerts” DDS topic and

makes it available to the probes. Probes either subscribe to

1 The combineLatest combinator in Rx is similar but has

more non-deterministic behavior. I.e, 1,B is a possible output.

However, until_next joins a data sample from the primary

stream with only subsequent data samples from the secondary

stream—unlike combineLatest.

any topic visible in the DDS domain or an existing probe

that is running in a given DSP instance.

The existing DSP agent implementation is in JavaScript

using the Node.js service-side JavaScript VM. DDS

integration is supported using the Node.js connector [8].

Despite its reliance on the JSON syntax and internal JSON

data representation, StreamCoCo is not inherently tied to

JavaScript or Node.js in any way. These choices were a

consequence of the available technology at the time we

started with the project.

In the current implementation, StreamCoCo is just-in-time-

compiled to native code because the JavaScript engine

underlying Node.js—the Google V8 engine—just-in-time-

compiles JavaScript to native code. DSP agents translate

probe filters to JavaScript code before launching them. The

process of translation amounts to chaining Rx combinators

to produce a dataflow. Each probe translates to a single

dataflow of chained Rx combinators. Some operators, such

as groupby are dynamic and instantiate downstream

operators lazily for every unique key. Rx combinators

corresponding to StreamCoCo operators are configured by

passing closures (i.e., instances of JavaScript anonymous

functions). The translator produces the right closure

instances at run-time. Inherent composibility of Rx

combinators allows chains of arbitrary length with ease.

StreamCoCo can be implemented efficiently in other

languages that implement the Rx library, which include C#,

JavaScript, C++, Java, Scala, and more. Even though

StreamCoCo probes are akin to scripting languages, they

are not interpreted at run-time except the expression in

eval.

The probes are descriptions of dataflows that are translated

in to chains of Rx combinators at run-time. An Rx dataflow

is just a data structure (like a tree) that is executable using a

scheduler, such as a single-threaded scheduler that we use

in our implementation. A StreamCoCo VM implemented in

a statically safe compiled language would simply construct

an equivalent dataflow by composing multiple Rx

operators. Execution of it would be delegated to the

language’s native scheduler, if any. As StreamCoCo does

not allow adding your own combinators, it is a closed

language. I.e., each operator in StreamCoCo is akin to a

keyword. The closed nature of the language is instrumental

to its efficiency.

5. Related Work
StreamCoCo has similarities with a number of Complex

Event Processing (CEP) and Continuous Query Language

(CQL) products and research languages. We’re not aware

of any comparable stream processing language that is

suitable for edge-level applications in IIoT where resources

are constrained and server-based solutions are often not

deployable. StreamCoCo VM is light-weight and can be

embedded in traditional C/C++ programs. We believe our

use of the groupby operator is novel as it easily supports

parallel pipelines of stateful operators.

Our objective in StreamCoCo is to allow remote human

operators to add probes on-demand without any

programming background. SQL, despite its declarative

nature, tend to get complex due to its tendency to nest

subqueries and projections. In StreamCoCo, subqueries are

just separate probes that do not generate alerts (only

intermediate results). As a result, it is more gradually

composable (like a pipeline) than SQL and alleviates

learning curve among non-programmers.

DDS specification [10] describes syntax and semantics of

content-based query and filters that are akin to SQL.

Specifically, DDS allows MultiTopic expressions, which

joining more than one topics with SQL-style projections

and predicates. At the time of this writing we are unaware

of any DDS implementation that supports MultiTopic. Our

research in StreamCoCo is a firm step towards supporting

MultiTopic for RTI Connext DDS. Our research suggests

that operators such as until_next may be more suitable

in the domain of IIoT than true relational join semantics.

Our prior work in the Rx4DDS.NET [9] project first

explored the integration of Rx with DDS. The objective in

Rx4DDS.NET is to expose the suitability of Rx for DDS

data processing in general-purpose languages. The project

focuses on scalable concurrency for DDS applications.

For more related work, readers are directed to [9].

6. Conclusion
Edge applications in the Industrial Internet of Things (IIoT)

offers new opportunities to improve the reliability of

industrial assets, enabling stake-holders to progress toward

higher overall uptime. Remote problem diagnosis is an

important subset of IIoT edge applications where human

operators must monitor asset conditions in real-time and

assess likely root causes when divergent behavior is

observed.

To rapidly build edge-level analytics, we developed a DSL

called StreamCoCo and a virtual machine to execute

StreamCoCo programs, which we call probes. StreamCoCo

is a declarative dataflow language for analyzing and

snapshotting periodic distributed streams. It is designed to

be used by remote human operators (non-programmers) and

therefore has fluid, English-like syntax and simple pipes-

and-filter style composition.

The StreamCoCo VM uses DDS to subscribe to raw data

streams, and publishes alerts and snapshots of streams when

one or more probes fire. StreamCoCo achieves

composability by using the Rx library, which supports

chaining of combinators for asynchronous data processing.

Our experience strongly suggests that Rx is a highly

suitable model DDS data processing. It directly supports

dataflow-oriented design, which is inherently compatible

with DDS’s data-centric publish-subscribe communication

model. Adoption of Rx in IIoT is likely to face friction due

to its use of the functional programming paradigm, which

requires significant learning and a mental shift compared to

traditional procedural thinking.

StreamCoCo, on the other hand, does not require a

background in functional programming and instead uses a

much more familiar pipes-and-filter-style composition for

building complex dataflow programs from basic building

blocks. It allows users to leverage non-trivial DDS

capabilities, such as keys, instances, filters, and multi-topic

with ease.

Our planned future work includes C++ implementation of

StreamCoCo for authoring data model transformations for

integrating disparate IIoT subsystems. We are exploring

visual programming for authoring probes. Remote lifecycle

management of DSP instances and controlling probe

execution (i.e., alerts, snapshots, queues) is also of interest.

7. References
[1] The Industrial Internet Consortium (IIC),

http://iiconsortium.org/

[2] Gartner Hype Cycle for Emerging Technologies,

http://www.gartner.com/newsroom/id/2819918

published Aug 2014.

[3] Stuart Laval, Bill Godwin, “Duke Energy Distributed

Intelligence Platform Reference Architecture”,

Volume 1, 2015

[4] Sumant Tambe, Fernando Garcia Aranda, Joe

Schlesselman, “An Extensible Architecture for

Avionics Sensor Health Assessment Using Data

Distribution Service”, AIAA Infotech@Aerospace,

Boston 2013

[5] Rx: An API for Asynchronous Programming with

Observable Streams, http://reactivex.io/

[6] OMG Data Distribution Service,

http://portals.omg.org/dds/

[7] Extensible and Dynamic Topic Types for DDS (DDS-

XTypes). http://www.omg.org/spec/DDS-XTypes/

[8] Connecting DDS Apps to Web Services using

Javascript and Node.js,

http://blogs.rti.com/2015/01/14/connecting-your-dds-

apps-to-web-services-using-javascript-and-node-js/

[9] Shweta Khare, Sumant Tambe, Kyoungho An,

Aniruddha Gokhale, “Functional Reactive Stream

Processing for Data-centric Publish/Subscribe

Systems” In the 9th Distributed Event Based Systems

Conference (DEBS 2015), Oslo, Norway

[10] DDS 1.2 Specification,

http://www.omg.org/spec/DDS/1.2/

http://iiconsortium.org/
http://www.gartner.com/newsroom/id/2819918
http://reactivex.io/
http://portals.omg.org/dds/
http://www.omg.org/spec/DDS-XTypes/
http://blogs.rti.com/2015/01/14/connecting-your-dds-apps-to-web-services-using-javascript-and-node-js/
http://blogs.rti.com/2015/01/14/connecting-your-dds-apps-to-web-services-using-javascript-and-node-js/
http://www.omg.org/spec/DDS/1.2/

