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ABSTRACT 
We report our experience of developing and using a simple 

yet an effective flow-based programming language and its 

distributed execution engine for detecting behavioral 

anomalies in physical assets in industrial IoT systems. Our 

stream processing systems is built using the Reactive 

Extensions (Rx) library for composing asynchronous data 

streams and the OMG Data Distribution Service (DDS) for 

publish-subscribe communication over the network. Our 

little language is called Stream Concatenation and 

Coordination (StreamCoCo) due to its similarity to the 

UNIX shell pipes-and-filter syntax. The novelty lies in the 

simple declarative programming model baked into the 

language that upon detection of anomalies in a stream, takes 

snapshots of other streams which may be distributed. 

Further, dynamic parallel pipelines of stateful stream 

processing operators are trivial to implement using 

StreamCoCo. We leverage the core capabilities of the 

language for infrastructure health monitoring and data 

analytics at the edge to assist remote human operators in 

problem diagnosis.  
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1. Introduction 
The Industrial Internet of Things (IIoT) [1] is exponentially 

expanding the reach of digital computing and IP networks 

to the “edges” of large, geographically distributed systems. 

Industrial IoT—separate from just IoT—promises to 

deliver 80% of the economic value of the IoT hype [2] by 

enabling smart transportation, smart power grids [3], smart 

hospitals, smart cities, smart manufacturing, software-

defined machines, and cloud analytics. IIoT combines 

physical machinery, networked sensors and software using 

the Internet. 

As these IIoT systems are part of critical infrastructure and 

often deployed in remote, harsh environments, they are 

heavily sensorized to enable telemetry, remote health and 

condition monitoring for timely maintenance. The sensors 

produce raw data that is extremely large in volume, 

velocity, and variety. Not all the raw data can be sent to the 

centralized, cloud-based big-data analytics primarily due to 

bandwidth limitations and the cost of transmission. Instead, 

a more hierarchical and distributed approach is preferred 

where multiple streams of raw data are aggregated, reduced, 

filtered, and analyzed locally to identify behavioral 

anomalies in the fielded assets and escalate issues needing 

human attention to the centralized monitoring stations as 

needed. 

Often the data streams representing physical values, such as 

temperature, pressure, vibrations, power output, etc. tend to 

be correlated. Known correlations have been exploited [4] 

in developing Bayesian Belief Networks in complex 

systems for health assessment of components and sensors. 

However, automatic health monitoring has its limitations 

and human intervention is necessary in many cases. 

Instantaneous data values are insufficient for humans to 

perform remote diagnosis because the overall context in 

which the anomaly arises may be unavailable. I.e., upon 

detection of divergent behavior, simply alerting a human is 

not sufficient. What is really needed is an accurate 

description of the detected situation along with the state of 

the overall system in close temporal proximity of the 

anomaly. It is important to understand the overall system 

state right before and after the anomalous situation (which 

may be transient or persistent).  

The state of the system before the anomalous condition 

often contains clues to diagnose the potential causes and the 

state of the system after the anomalous condition contains 

symptoms. The state, however, is not necessarily the 

“program state”, which is often inaccessible in service-

oriented, loosely coupled systems. The state we refer to 

here is simply the most recently observed data samples 

across a number of distributed streams (dataflows) before 

and after the anomalous condition. The clues often lie in 

data streams separate (identity and space) from the one that 

raised the alert. As a consequence, whenever an alert is 

raised, snapshots from a number of parallel data streams 

must be captured and sent to centralized location for 

forensic analysis. 

The snapshots also assist in understanding trends in closely 

related data streams. For instance, temperatures reported by 

a group of temperature sensors attached to a boiler must be 

highly correlated. Each temperature sensor is independent 

and forms a data stream in its own right. In our notion of 

the snapshot, it is crucial to capture parallel instances of 

same logical data stream (e.g., temperatures). A set of 

consecutive data samples from a set of closely related 

instances help identify trends. 



As the rules of what constitutes an alert are highly domain-

specific, we needed a specification mechanism to codify the 

rules that could be used by the subject matter experts 

without any programming background. In our experience, a 

dataflow abstraction works well in such situations due to its 

inherently declarative nature and expressive power. 

However, analytics at the “edge” must be light-weight and 

must support platforms that are resource-constrained 

(memory, CPU, and networking). COTS Complex Event 

Processing (CEP) engines that offer declarative SQL-like 

event processing languages are often too heavyweight.  

We needed a lightweight, easy-to-use, easy-to-learn 

distributed dataflow processing system that could be 

scripted remotely. Scripting allows remote subject matter 

experts to augment existing analytics and insert additional 

flow processors without affecting existing dataflows.  

To meet the above requirements, we developed a simple 

flow-based programming language named Stream 

Concatenation and Coordination (StreamCoCo), which has 

the following novel capabilities/features. 

 StreamCoCo provides plain-English syntax for operators 

and a simple pipes-and-filter style for concatenating 

processing operators, which is motivated by the I/O 

redirection support in UNIX shells. It builds on the Data 

Distribution Service (DDS) [6] standard for publish 

subscribe communication and Reactive Extensions (Rx) 

[5] for processing asynchronous data streams. 

Background in both them is not necessary to be 

productive in StreamCoCo, which we believe is a major 

win for this language. As a consequence, non-

programmers can leverage many powerful capabilities 

of DDS and Rx with little to no learning curve. 

 StreamCoCo intelligently marries the concept of DDS 

instances with Rx’s groupby operator and thereby 

supports dynamic parallel pipelines of stateful stream 

processing operators. Stateful processing is crucial for 

instance-based data analysis and trending. 

 The flow-based programming model of StreamCoCo 

enables both local and remote propagation of alerts by 

unifying the (inter-process) publish/subscribe model of 

DDS and the (intra-process) subject-observer model of 

Rx. As a consequence, in a StreamCoCo program, 

distribution is a strictly deployment time decision and 

does not affect program source code in any way.  

In the following sections we discuss our experience of 

developing StreamCoCo and its application to a on-demand 

programmable, remote problem diagnosis application. 

Secondary goal is to highlight suitability of Rx for DDS 

data processing. Therefore, our findings are more generally 

applicable regardless of StreamCoCo.  

2. Overview of DDS and Rx 
In this section we briefly describe DDS and Rx. 

2.1 Data Distribution Service (DDS)  
The OMG Data Distribution Service (DDS) [6] is a data-

centric publish/subscribe standard with support for a 

number of QoS properties. DDS allows applications to 

share data by publishing and subscribing typed data 

samples to a topic. The name of the topic must be agreed 

upon between application priori. Topics belong to a global 

data space (a domain) governed by types specified using the 

Interface Definition Language (IDL). The data type may be 

keyed on one or more fields. Each key identifies an instance 

(similar to a primary key in a database table) and DDS 

provides APIs in C/C++/Java/C# to control the lifecycle of 

instances. Instance lifecycle supports CRUD (create, read, 

update, delete) operations, which are conceptually similar 

to database operations. Complex delivery models can be 

associated with data-flows by simply configuring the topic 

QoS. 

2.2 Reactive Extensions (Rx) 
Rx [5] is a library for composing asynchronous data streams 

based on the principles of Functional Reactive 

Programming (FRP). FRP is a declarative approach for 

program design wherein program specification amounts to 

what (i.e., declaration of intent) as opposed to how 

(looping, explicit state management, etc.). Declarative 

programs written using the FRP style use the dataflow 

abstraction because the state and control flow are hidden 

from the programmers. FRP offers high-level abstractions 

that avoid verbosity.  

Rx represents asynchronous data streams using 

Observables. For example, an IObservable<T> 

produces values of type T. Observers subscribe to data 

streams much like the Subject-Observer pattern. Each 

Observer is notified whenever a stream has a new data 

using the observer's OnNext method. If the stream 

completes or has an error, the OnCompleted, and 

OnError operations are called, respectively. 

IObservable<T> supports chaining of functional 

operators to create pipelines of processing stages. Some 

common examples of operators in Rx are Select, 

Where, SelectMany, Aggregate, Zip, etc. Since Rx 

has first-class support for streams, Observables can be 

passed and returned to/from functions. Additionally, Rx 

supports streams of streams where every object produced 

by an Observable is another Observable (e.g., 

IObservable<IObservable<T>>). Some Rx 

operators, such as GroupBy, demultiplex a single stream 

of T into a stream of keyed streams producing 

IObservable<IGroupedObservable<Key, T>>. 

The keyed streams (IGroupedObservable<Key, T>) 

correspond directly to DDS instances.  

3. Syntax and Semantics of SteamCoCo  
StreamCoCo is a domain-specific scripting language for 

stream processing and coordination. It embodies Save 

Query; Run Data paradigm, which is inverse of the 



traditional database approach. The current implementation 

of the language is based on Node.js, it compiles just-in-time 

to native code on Windows and Linux platforms.  

StreamCoCo has a declarative English-like syntax and as a 

consequence little/no programming experience necessary to 

use it. StreamCoCo uses JavaScript Object Notation 

(JSON) syntax. The smallest block of specification in 

StreamCoCo is called a probe, which encapsulates a name, 

a filter, and a set of human readable tags. Filters inspect 

streams and raise alerts. Listing 1 shows an example of a 

probe named TempAvgProbe. 

{ 

 "name"     : "TempAvgProbe", 

 "filter"   : “<see listing 2>”, 

 "trigger"  : true, 

 "tags"     : [ "overheat", "heat_warning" ] 

} 

Listing 1: A Probe in StreamCoCo 

The filter section includes the core analytical logic of a 

probe, which uses simple pipes-and-filter style syntax to 

chain multiple processing stages—operators. StreamCoCo 

allows composition of operators using pipes similar to the 

UNIX I/O redirection facility. It supports a library of 

operators including data sourcing, predicates, arithmetic, 

time windows, conditionals, I/O, filtering, data partitioning, 

throttling, join, staleness detection, etc.  

Listing 2 shows an example of a filter in   TempAvgProbe 

(Listing 1). 

source Temperature                   | 

hastype temperature_readings         | 

has sensor_id                        | 

has fahrenheit                       | 

match { "host" : "climate_monitor" } | 

insert eval((fahrenheit-32)*5/9) as celsius 

delete fahrenheit                      | 

groupby sensor_id                      | 

insert avg(celsius) over 30 sec as 

extra.degree_avg                       | 

snapshot timerange(-60 sec,+60 sec)    | 

greater_than_equal extra.degree_avg 65 | 

interval 120 sec 

Listing 2: A filter for detecting out of range 

temperature sensors (instances) 

We use Listing 2 as an example to describe the semantics of 

various operators and their relationship. Whenever a data 

sample propagates through all the operators in a filter, it is 

transformed in to an alert. An alert contains the data that 

caused it, the name of the probe, and the tags. The alert is 

simply forwarded to a well-known “Alerts” DDS topic that 

all the DSP agents are subscribed to. As a consequence, any 

alert produced anywhere in the system is propagated to all 

DSP agent automatically. The snapshot operator 

describes later makes use of alerts.  

3.1 I/O Operators 
The source operator subscribes a stream identified by a 

name. It may be a previously defined probe or a DDS topic. 

The source operator hides the true source of the data. The 

keyed_dds_source operator is designed to work with 

DDS source only and is described in subsection 3.4 due to 

its built-in data partitioning behavior. 

Data sourcing operators, such as mergesources, 

combinesources, and zipsources use more than 

one asynchronous data source (i.e., DDS topics or other 

probes) and join them in some fashion. These operators 

map to merge, combineLatest, and zip combinators 

in Rx. All the multi-source operators produce a composite 

structure from individual samples from the constituent 

streams.  

We use JSON for construction of composite structures from 

the data samples received over individual streams. Thanks 

to JSON’s dynamic, self-describing data representation.  

Finally, output is an operator for publishing data samples 

to a named DDS topic (which may be subscribed 

elsewhere). 

3.2 Predicate Operators  
Operators, hastype, and has define predicates that 

ensure that the incoming data samples have the necessary 

structure. This step is often unnecessary when the true 

source of data is a DDS topic as the schema of DDS topics 

is always well-defined. It is useful when the true source of 

data is a local stream or dynamic.  

The match operator is also a predicate and uses a partial 

JSON object for pattern matching. It filters data samples 

that do not match the partial object. The 

greater_than_equal is an operator in a family of 

logical operators that filters samples that do not satisfy the 

condition. Finally, the contains operators does a 

substring search in a given property. 

All the predicate operators are mapped to the Where 

combinator in Rx. 

3.3 Data Manipulation Operators 
The insert operator is a data projection operator, which 

allows computation of new data values and fields from 

existing one. The new data values produce new key-value 

pairs in the current data sample being processed. The 

insert operator is quite flexible and supports counter 

and time-based windows, arithmetic functions such as avg, 

min, max, count (akin to SQL), and general-purpose tree 

query language (e.g., JSONPath) for traversing and 

extracting deeply nested elements from complex 

hierarchically structured data samples. The insert 

operator maps to Map or Select combinator in Rx. 



StreamCoCo has a delete operator, which deletes a key-

value pair.  

3.4 Data Partitioning Operator 
The groupby operator in StreamCoCo partitions data 

according to a key (e.g., sensor_id) in the data sample. 

Keys are fundamental to data-centric communication 

supported by DDS. Keys give rise to instances in DDS, 

which are basically partitioned data streams. While DDS 

handles distribution of instances, StreamCoCo allows us to 

process instances by leveraging the Rx programming 

model.  

The groupby operator not only partitions data but also 

lazily evaluates the subsequent stages for each new key. For 

every new key, it instantiates a fresh copy of all the 

subsequent stages allowing parallel stateful pipelines. As a 

result, a single filter description in StreamCoCo manages 

multiple DDS instances with ease. When the data stream 

representing the instances completes (i.e., when DDS 

instances are disposed), it reclaims the resources.  

The keyed_dds_source is a data sourcing operator that 

uses the grouping semantics directly supported by DDS in a 

given keyed topic. As DDS supports CRUD operations on 

instances, keyed_dds_source reacts to them by lazily 

instantiating (or disposing) downstream operators for each 

new (disposed) instance. In that regard the behavior of 

keyed_dds_source is identical to the groupby 

operator that partitions stream independent of DDS. 

Both DDS and Rx have a steep learning curve, and despite 

their suitability we do not expect operators (non-

programmers) to learn such rigorous distributed 

programming methodology. StreamCoCo nearly eliminates 

the learning curve of both DDS and Rx and enables non-

programmers to use intuitive chaining of operators for 

analyzing DDS instances. Implementing equivalent 

capability in vanilla DDS and Rx APIs requires proficiency 

at least one major programming language supporting 

lambdas (i.e., anonymous functions) and related 

programming patterns. StreamCoCo, however, enables non-

programmers to use this complex feature with ease.  

3.5 Rate Control Operators 
The interval operator throttles the rate at which alerts 

are produced. In Listing 2, two successive alerts are 

separated by at least 2 minutes. This allows the It maps to 

the Throttle combinator in Rx. 

3.6 Distributed Snapshot Operator 
The snapshot operator is a novel operator (not built-in in Rx 

or DDS) and is key to the selection and propagation of 

temporally correlated data samples in distributed streams. 

Nominally, the snapshot operator subscribes to the 

predefined “alerts” stream and in absence of any alerts has 

no side effect on the behavior of the system.  

Whenever an alert is produced, it causes all other probes 

(that have a snapshot stage) to snapshot the streams they 

are inspecting. A snapshot is a set of data samples in a 

stream that fall within a window of time, such as –n to +p 

minutes, from the time of reception of an alert. Such a set of 

data samples forms the observable state of the system, 

which perhaps contains clues to investigate the cause of the 

deviation in the behavior. The key idea behind the probes is 

to capture the observable state of the system around the 

time of the alert event. Obviously, the state could be 

distributed because the DSP agents are distributed. A 

snapshot, therefore, can be thought of as a thin slice through 

time and space that captures the system state in terms of the 

monitored streams. Figure 1 is a schematic of data, alert, 

and snapshot streams. 

 

Figure 1: DSPs analyze data, produce alerts and 

transmit snapshots (best viewed in color) 

The snapshot stage in Listing 2 extracts 2 minutes worth of 

data flowing through the filter when an alert is detected. 

Note that the time-range indicates 1 minute into future so 

data yet to be received is also “captured” by the snapshots. 

If/when a probe (including itself) produces an alert, the 

snapshot operators of all the probes forward the buffered 

data samples to a snapshot stream, which is the only non-

alert data sent to human operators for detailed forensic 

analysis. The data samples in every snapshot are tagged 

with the same tags reported in an alert. This allows 

operators to classify data samples based on what caused it 

to be captured. A data sample may be tagged with multiple 

alerts coinciding a time window. 

3.7 Operator for Joining Multiple Streams 
StreamCoCo provides the until_next operator that 

joins data samples from two asynchronous data streams. For 

example, consider the following listing.  

until_next join p from Pressure select 

p.pascal as Pa, celsius 

The keyword join is only to improve readability. The 

until_next operator has an implicit stream that the 

operator is part of. The second stream is specified as “p 

from Pressure” where “Pressure” is a DDS topic name 

or another probe. Subsequently, the select part of the 

operator selects the properties from either of the streams. 

Optionally, the name of the new projected property can be 



specified using as. As a result, the example produces a 

stream of structures containing Pa and celsius 

properties, which are copies of pascal and celsius 

from the secondary and primary streams respectively. 

Clearly, the until_next operator is motivated by the 

SQL JOIN statement. However, there are significant 

differences. A SQL JOIN would nominally join each row 

from one table with every row from the other table. It is a 

cartesian product. SQL allows optional WHERE in a JOIN 

which may prune the overall result set. For infinite data 

streams, such semantics of join would require unbounded 

amount of resources as both streams could be infinite.  

The until_next operator suggests a notion of time, 

which executes join with the second stream only until the 

next data sample in the primary stream is received. For 

example, if the data rate of the “Pressure” topic is two times 

higher than the “Temperature” topic, the output of 

until_next is as follows. 

Input Streams 

T=Temperature, P=Pressure 

until_next 

output1 

T 0-1-2-3-4-5... 

P ABCDEFGHIJK... 

0,A 

0,B 

1,C 

1,D 

2,E 

2,F ... 

As a result, until_next operator always uses a bounded 

amount of storage while executing a join. The behavior of 

until_next operator is quite suitable for edge 

applications in IIoT as nearly all streams are updated 

continuously and periodically, at fixed rates ranging from 

KHz frequencies to multi-second periods. Suitable delivery 

quality-of-service are best-effort reliability with low 

latencies and jitter. In our target systems, stale data is often 

unimportant. 

4. The StreamCoCo Virtual Machine 
The virtual machine that executes StreamCoCo programs—

probes—is called a Dynamic Stream Probing (DSP) agent. 

DSP agents are dynamic because they can receive new 

probes dynamically and launch them without disrupting 

existing dataflows. Moreover, DSP agents can be easily 

distributed and new instances join existing agents as long as 

they all use a preconfigured DDS domain.  Each DSP agent 

automatically subscribes to the “Alerts” DDS topic and 

makes it available to the probes. Probes either subscribe to 

                                                           

1 The combineLatest combinator in Rx is similar but has 

more non-deterministic behavior. I.e, 1,B is a possible output. 

However, until_next joins a data sample from the primary 

stream with only subsequent data samples from the secondary 

stream—unlike combineLatest. 

any topic visible in the DDS domain or an existing probe 

that is running in a given DSP instance. 

The existing DSP agent implementation is in JavaScript 

using the Node.js service-side JavaScript VM. DDS 

integration is supported using the Node.js connector [8].  

Despite its reliance on the JSON syntax and internal JSON 

data representation, StreamCoCo is not inherently tied to 

JavaScript or Node.js in any way. These choices were a 

consequence of the available technology at the time we 

started with the project.  

In the current implementation, StreamCoCo is just-in-time-

compiled to native code because the JavaScript engine 

underlying Node.js—the Google V8 engine—just-in-time-

compiles JavaScript to native code. DSP agents translate 

probe filters to JavaScript code before launching them. The 

process of translation amounts to chaining Rx combinators 

to produce a dataflow. Each probe translates to a single 

dataflow of chained Rx combinators. Some operators, such 

as groupby are dynamic and instantiate downstream 

operators lazily for every unique key. Rx combinators 

corresponding to StreamCoCo operators are configured by 

passing closures (i.e., instances of JavaScript anonymous 

functions). The translator produces the right closure 

instances at run-time. Inherent composibility of Rx 

combinators allows chains of arbitrary length with ease. 

StreamCoCo can be implemented efficiently in other 

languages that implement the Rx library, which include C#, 

JavaScript, C++, Java, Scala, and more. Even though 

StreamCoCo probes are akin to scripting languages, they 

are not interpreted at run-time except the expression in 

eval. 

The probes are descriptions of dataflows that are translated 

in to chains of Rx combinators at run-time. An Rx dataflow 

is just a data structure (like a tree) that is executable using a 

scheduler, such as a single-threaded scheduler that we use 

in our implementation. A StreamCoCo VM implemented in 

a statically safe compiled language would simply construct 

an equivalent dataflow by composing multiple Rx 

operators. Execution of it would be delegated to the 

language’s native scheduler, if any. As StreamCoCo does 

not allow adding your own combinators, it is a closed 

language. I.e., each operator in StreamCoCo is akin to a 

keyword. The closed nature of the language is instrumental 

to its efficiency. 

5. Related Work 
StreamCoCo has similarities with a number of Complex 

Event Processing (CEP) and Continuous Query Language 

(CQL) products and research languages. We’re not aware 

of any comparable stream processing language that is 

suitable for edge-level applications in IIoT where resources 

are constrained and server-based solutions are often not 

deployable. StreamCoCo VM is light-weight and can be 

embedded in traditional C/C++ programs. We believe our 



use of the groupby operator is novel as it easily supports 

parallel pipelines of stateful operators. 

Our objective in StreamCoCo is to allow remote human 

operators to add probes on-demand without any 

programming background. SQL, despite its declarative 

nature, tend to get complex due to its tendency to nest 

subqueries and projections. In StreamCoCo, subqueries are 

just separate probes that do not generate alerts (only 

intermediate results). As a result, it is more gradually 

composable (like a pipeline) than SQL and alleviates 

learning curve among non-programmers.  

DDS specification [10] describes syntax and semantics of 

content-based query and filters that are akin to SQL. 

Specifically, DDS allows MultiTopic expressions, which 

joining more than one topics with SQL-style projections 

and predicates. At the time of this writing we are unaware 

of any DDS implementation that supports MultiTopic. Our 

research in StreamCoCo is a firm step towards supporting 

MultiTopic for RTI Connext DDS. Our research suggests 

that operators such as until_next may be more suitable 

in the domain of IIoT than true relational join semantics. 

Our prior work in the Rx4DDS.NET [9] project first 

explored the integration of Rx with DDS. The objective in 

Rx4DDS.NET is to expose the suitability of Rx for DDS 

data processing in general-purpose languages. The project 

focuses on scalable concurrency for DDS applications.  

For more related work, readers are directed to [9]. 

6. Conclusion 
Edge applications in the Industrial Internet of Things (IIoT) 

offers new opportunities to improve the reliability of 

industrial assets, enabling stake-holders to progress toward 

higher overall uptime. Remote problem diagnosis is an 

important subset of IIoT edge applications where human 

operators must monitor asset conditions in real-time and 

assess likely root causes when divergent behavior is 

observed.  

To rapidly build edge-level analytics, we developed a DSL 

called StreamCoCo and a virtual machine to execute 

StreamCoCo programs, which we call probes. StreamCoCo 

is a declarative dataflow language for analyzing and 

snapshotting periodic distributed streams. It is designed to 

be used by remote human operators (non-programmers) and 

therefore has fluid, English-like syntax and simple pipes-

and-filter style composition. 

The StreamCoCo VM uses DDS to subscribe to raw data 

streams, and publishes alerts and snapshots of streams when 

one or more probes fire. StreamCoCo achieves 

composability by using the Rx library, which supports 

chaining of combinators for asynchronous data processing.   

Our experience strongly suggests that Rx is a highly 

suitable model DDS data processing. It directly supports 

dataflow-oriented design, which is inherently compatible 

with DDS’s data-centric publish-subscribe communication 

model. Adoption of Rx in IIoT is likely to face friction due 

to its use of the functional programming paradigm, which 

requires significant learning and a mental shift compared to 

traditional procedural thinking.   

StreamCoCo, on the other hand, does not require a 

background in functional programming and instead uses a 

much more familiar pipes-and-filter-style composition for 

building complex dataflow programs from basic building 

blocks. It allows users to leverage non-trivial DDS 

capabilities, such as keys, instances, filters, and multi-topic 

with ease.  

Our planned future work includes C++ implementation of 

StreamCoCo for authoring data model transformations for 

integrating disparate IIoT subsystems. We are exploring 

visual programming for authoring probes. Remote lifecycle 

management of DSP instances and controlling probe 

execution (i.e., alerts, snapshots, queues) is also of interest. 
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