
Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

1

A C++ Template Library for Data-Centric Type Modeling for DDS

Sumant Tambe, Ph.D.

Real-Time Innovations, Inc.

(sumant@rti.com)

EXECUTIVE SUMMARY

This paper describes a powerful C++ template library to allow users to describe their types in plain C++

and use those types directly for data-centric communication over DDS. The library transforms C++ types

into equivalent run-time TypeObject representation as specified in the DDS-XTypes [4] standard. The

library obviates the need to describe application-level data-types in external representations, such as IDL,

XSD, and XML. The users of the library can use the full expressive power of native C++ to encapsulate

the application-level data-types and use the same data-types for data distribution over DDS. The types

may include all the standard template library containers (e.g., vector, list, map, unordered containers,

etc.), raw pointers, smart pointers, and many more. The restrictions imposed by popular

serialization/deserialization tools are eliminated. The application-level data are written directly using

DDS. At the receiver side, the library populates application-level data structures in-place. No copies are

necessary.

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

2

Table of Contents

EXECUTIVE SUMMARY .. 1

Table of Contents .. 2

1 Background ... 3

2 A Generic Data-Centric Type Modeling Library in C++.. 3

2.1 Example from Scientific Computing .. 4

2.2 The Design of the Generic Data-Centric Type Modeling Library .. 5

3 Embedding vs Code Generation ... 7

4 Bibliography ... 7

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

3

1 Background

Over the period of last two decades, the C++ users’ community in the scientific domain has learned to

cope with the restrictions imposed by popular tools (e.g., ROOT [1]). C++, however, has evolved

significantly since and the C++11 standard [2] is now available with a number of improvements for

efficiency, safety, succinctness, productivity, and simplicity. Users must be able to make use of the new

language capabilities and libraries to simplify programs and improve productivity and robustness.

Existing tools, however, limit what they can use from the language in describing application-level data-

types. The scientific workflow frameworks often need to rely on file-based data sharing as a consequence.

Therefore, the data distribution infrastructure must substantially alleviate, if not eliminate the application-

level restrictions on data-types.

Data analysis applications in scientific computing are often written by teams of scientists collaborating on

a scientific endeavor. To test scientific hypotheses, scientific groups often develop new data types, which

need to evolve quickly as scientists refine the algorithms and data structures for data processing modules.

Typically, multiple data processing modules are assembled into a workflow forming a directed graph. The

data that flows through the graph is often both large in volume and complex in nature. The individual

components are often built in C++ programming language for native efficiency. For example, ROOT

Toolkit [1] is widely used in the scientific domain to share and store complex C++ data structures in files.

The scientists strongly prefer to write their types in C++ as opposed to alternative type description

languages (e.g., IDL, XSD).

Current scientific systems exchange data through in-memory object models or through files. Both models

have limitations because the prior requires communicating elements of the workflow to exist in the same

process memory space whereas the later requires that the data have a persistent representation. Two

independently developed components running in the same process must use the exact same data structure,

which tightly couples the components, hinders quick evolution of types, and delays scientific discoveries.

Although some support for schema evolution is available in the existing tools, the file-based approach

incurs expensive disk I/O due to use of files. Furthermore, ROOT toolkit enforces several restrictions on

the data types as it supports a narrow set of features available in the C++ type system.

2 A Generic Data-Centric Type Modeling Library in C++

To address these challenges, we

developed an innovative approach

that allows scientist to use a wide

range of features from the C++11

type system to define datatypes

with little or no restrictions. We use

the same type definition and

translate it into an equivalent

TypeObject representation as

defined by the DDS-XTypes [4]

specification. The translation is

done at program compilation time

using advanced C++ template programming techniques and does not require separate code generation

step. The generated TypeObject is automatically registered and can be later used by DDS endpoints to

communicate with each other. An example is in order.

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

4

2.1 Example from Scientific Computing

Listing 2 shows an example type definition in C++ borrowed from the Fermilab’s darkart project. The

example has been adapted for brevity. Left hand side in Listing 2 defines a top-level EventInfo datatype

with members of other structured types. One of the nested types, VetoTDCHits, is an alias for C++

standard library vector<T> instantiated with VetoTDCHit. EventInfo also includes a member of

enumeration type: STATUS_FLAGS.

The right hand side of Listing 2 shows the equivalent TypeObject synthesized at runtime based on the

XTypes type system standardized by the Object Management Group (OMG). Structures and enumerations

are mapped to “extensible” structures and enumerations respectively. Extensible structures and

enumerations allow addition of new members retroactively and enables interoperability with old versions

of the type. The “key” member event_id is described in the next subsection.

C++ Type Definition

(adapted from Fermilab’s darkart repository)

Equivalent TypeObject Synthesized at Run-time

(IDL syntax)

struct VetoTDCHit {

 int32_t hit_index;

 int32_t pmt_index;

 float pmt_theta;

 double pmt_phi;

};

typedef std::vector<VetoTDCHit>
VetoTDCHits;

struct VetoTruth {

 int32_t sim_event;

 VetoTDCHits hits;

};

enum STATUS_FLAGS { NORMAL=0,

 ID_MISMATCH=1,

 BAD_TIMESTAMP=2
};

struct EventInfo {

 VetoTruth truth;

 int32_t event_id;

 STATUS_FLAGS status;

};

enum STATUS_FLAGS {

 NORMAL = 0,

 ID_MISMATCH = 1,

 BAD_TIMESTAMP = 2,

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

struct VetoTDCHit {

 long hit_index;

 long pmt_index;

 float pmt_theta;

 double pmt_phi;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

struct VetoTruth {

 long sim_event;

 sequence<VetoTDCHit, 256> hits;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

struct EventInfo {

 VetoTruth truth;

 long event_id; //@key

 STATUS_FLAGS status;

}; //@Extensibility EXTENSIBLE_EXTENSIBILITY

Listing 2: Left: original C++ type definition. Right: Equivalent TypeObject synthesized at run-time

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

5

The std::vector<VetoTDCHit> maps to a sequence<VetoTDCHit, 256>. Note that any C++ data

structure with support for STL-like iterators can be mapped to a sequence. Such data structures include

std::list, std::map, etc. In fact, any custom data structures are supported as long as STL-

compatible iterators are available.

The TypeObject synthesis library bounds the sequence to 256 because the current implementation of the

RTI DDS sequences require a statically know limit. C++ std::vector has no way to specify the bound

statically. The TypeObject synthesis library uses 256 as the default static limit. It can be configured to be

arbitrarily high (actually INT_MAX). We plan to remove the limitation of RTI DDS sequences and

support truly unbounded sequences in near future.

2.2 The Design of the Generic Data-Centric Type Modeling Library

The TypeObject synthesis library is declarative in nature because no procedural code is required to enable

translation of a C++ type to its equivalent XTypes TypeObject. However, the programmer must provide

compile-time meta-information about the user-defined type because C++ has no built-in support for

reflection at compile-time
*
. The meta-information is used by the TypeObject synthesis library to obtain

struct name, member names, enumeration element names, enumeration ordinal values, and whether the

member is a key or not. The specification of meta-information is greatly simplified using

RTI_ADAPT_STRUCT macro as shown below.

C++ Type Definition

(same as before)

Meta Information Specification at Compile-time

using the RTI_ADAPT_STRUCT Macro

struct VetoTDCHit {

 int32_t hit_index;

 int32_t pmt_index;

 float pmt_theta;

 double pmt_phi;

};

typedef std::vector<VetoTDCHit>
VetoTDCHits;

struct VetoTruth {

 int32_t sim_event;

 VetoTDCHits hits;

};

enum STATUS_FLAGS { NORMAL=0,

 ID_MISMATCH=1,

 BAD_TIMESTAMP=2
};

struct EventInfo {

 VetoTruth truth;

 int32_t event_id;

 STATUS_FLAGS status;

RTI_ADAPT_STRUCT(

 VetoTDCHit,

 (int32_t, hit_index)

 (int32_t, pmt_index)

 (float, pmt_theta)

 (double, pmt_phi))

RTI_ADAPT_STRUCT(

 VetoTruth,

 (int32_t, sim_event)

 (VetoTDCHits, hits))

RTI_ADAPT_ENUM(

 STATUS_FLAGS,

 (NORMAL, 0)

 (ID_MISMATCH, 1)

 (BAD_TIMESTAMP, 2))

RTI_ADAPT_STRUCT(

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

6

}; EventInfo,

 (VetoTruth, truth)

 (int32_t, event_id, KEY)

 (STATUS_FLAGS, status))

Listing 3: Left: Original C++ type definition. Right: Specification of meta-information for

RTI_ADAPT_STRUCT macro

The RTI_ADAPT_STRUCT macro expands the parameters such that the TypeObject synthesis library

can make use of the meta-data. That is, the RTI_ADAPT_STRUCT macro is a substitute for the lack of

compile-time reflection capability in C++.

We now describe the architecture of the declarative TypeObject synthesis library. The figure below shows

the layered architecture.

Figure: The layered architecture of the declarative TypeObject synthesis library

The applications use the top-level GenericDataReader<T> and GenericDataWriter<T> entities.

The generic DDS entities are a thin wrapper on top of the underlying DynamicDataReader and

DynamicDataWriter entities respectively. The dynamic DDS entities are designed to publish and

subscribe to DDS topics of arbitrarily complex types that are not known at compile-time. When using

these entities, the TypeObject and the DynamicData instances must be created by the programmer,

which is extremely cumbersome and error-prone.

The declarative TypeObject synthesis library uses advanced C++ template programming (a.k.a. compile-

time template meta-programming) that synthesizes the TypeObject and DynamicData objects from the

user-defined C++ types and instances, respectively. MakeTypeCode(), FillDD(), and ExtractDD()

functions provide the top-level API for this functionality. These functions use the programmer-specified

meta-information (i.e., RTI_ADAPT_STRUCT) to synthesize the TypeObject and the runtime instances

of the DynamicData. TypeObject and DynamicData API are part of the DDS XTypes standard.

The library supports a broad range of C++ type system features and its corresponding XTypes type

system equivalent. Specifically, we support the following:

Copyright © 2013 Real-Time Innovations, Inc. All Rights Reserved. RTI Proprietary. Limited Distribution.

7

Supported features in the C++ point of view Supported features in the XTypes type system

point of view

 Fundamental types, arrays, enumerations

 Struct (with public members)

 Classes (with setter/getters)

 Nested struct/classses

 Standard Template Library (STL)

string, vector, list, set, map,
array, tuple, pair, iterators, etc.

 All combinations of the above

 Smart pointers

 User-defined/custom containers

 Lazy container adapters (e.g.,

boost.Iterators)

 Basic types/enumerations/strings

 Arrays

 Sequences of strings/basic

types/enumerations

 Bounded sequences/strings

 Structures

 Unions (including cases with defaults,

multiple discriminators, and enumerations)

 Optional members (sparse types)

 Sequences of sequences (of sequences…

and so on…)

 Sequences of structures

 Multidimensional arrays of strings,

structures, sequences,…

 Nested structures, unions

More information about the library is available at [5].

3 Embedding vs Code Generation

An alternative approach is to generate type descriptions from the existing C++ source code. Specifically,

a C++ parser tool that would generate (1) type descriptions in IDL, (2) serialized representation of types

using the XTypes standard, and (3) C++ code for serialization and deserialization of native C++ objects.

Our approach, however, is substantially more powerful, easier to use, easier to integrate incrementally,

and also easier to maintain. Development of a C++ parser, although simplified substantially due to the

Clang/LLVM tool chain, is an extremely complex endeavor. Furthermore, integrating user-written code

with tool-generated code is a challenge.

Our new approach is completely library-based. Library-based approach allows programmers to use their

existing source code and other third party libraries (if any) with the new declarative TypeObject synthesis

library. Library based approach is substantially more extensible and maintainable compared to code

generation approach.

4 Bibliography

[1] ROOT—A Data Analysis Framework. http://root.cern.ch/drupal/

[2] The C++ Programming Language; http://isocpp.org/

[3] The Data Distribution Service specification, v1.2, http://www.omg.org/spec/DDS/1.2

[4] Extensible And Dynamic Topic Types (XTypes) Specification v1.0 FTF 2,

http://www.omg.org/spec/DDS-XTypes/1.0/Beta2/ Retrieved October 4, 2012

[5] Sumant Tambe; Overloading in Overdrive: A Generic Data-Centric Messaging Library for DDS;

 http://www.slideshare.net/SumantTambe/overloading-in-overdrive-a-generic-datacentric-library-for

http://root.cern.ch/drupal/
http://isocpp.org/
http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/DDS-XTypes/1.0/Beta2/
http://www.slideshare.net/SumantTambe/overloading-in-overdrive-a-generic-datacentric-library-for

