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Abstract

This paper provides two contributions to the study of
quality of service (QoS)-enabled middleware that supports
the network QoS requirements of distributed real-time and
embedded (DRE) systems. First, we describe the design
and implementation of NetQoPE, which is a model-driven
component middleware framework that shields applications
from the details of network QoS mechanisms by (1) speci-
fying per-flow network QoS requirements, (2) performing
resource allocation and validation decisions (such as ad-
mission control), and (3) enforcing per-flow network QoS
at runtime. Second, we empirically evaluate NetQoPE’s
capabilities on a representative DRE system that deploys
reusable software code in a range of deployment con-
texts. Our results demonstrate that NetQoPE can pro-
vide network-level differentiated performance to each of
those application flows without modifying their program-
ming model or source code, thereby providing greater flex-
ibility and extensibility in leveraging network-layer mecha-
nisms.

1 Introduction

Emerging trends. Distributed real-time and embedded
(DRE) systems, such as as shipboard computing systems,
supervisory control and data acquisition (SCADA) systems,
and enterprise security and hazard sensing subsystems, con-
sist of multiple communication-intensive applications with
multiple end-to-end application flows. These systems have
network quality of service (QoS) requirements, such as low
end-to-end roundtrip latency and jitter, that must be satis-
fied under varying levels of network connectivity and band-
width availability. Network QoS mechanisms, such as in-
tegrated services (IntServ) [12] and differentiated services
(DiffServ) [2], help provide diverse network service levels
for applications in DRE systems.

For example, applications can use advanced network
QoS mechanisms (e.g., a DiffServ bandwidth broker [3]) to
(1) request a network service level and (2) allocate and man-
age network resources for their remote invocations. Appli-
cations invoke remote operations by adding a service level-
specific identifier (e.g., DiffServ codepoint (DSCP)) to the
IP packets. DiffServ-enabled network routers parse the IP

packets and provide the appropriate service level-specific
packet forwarding behavior.

Limitations with current approaches. Although ad-
vanced network QoS mechanisms are powerful, it is te-
dious and error-prone to develop applications that interact
directly with low-level network QoS mechanism APIs writ-
ten imperatively in third-generation languages, such as C++
or Java. To overcome this problem, middleware-based so-
lutions [22, 18, 16, 4] have been developed that allow ap-
plications to specify their coordinates (source and destina-
tion IP and port addresses) and per-flow network QoS re-
quirements via higher-level frameworks. The middleware
frameworks—rather than the applications—are responsible
for converting the higher-level QoS specifications into the
lower-level network QoS mechanism APIs.

Although middleware frameworks alleviate many acci-
dental complexities of low-level network QoS mechanism
APIs, they can still be hard to evolve and extend. In par-
ticular, application source code changes may be needed
whenever changes occur to the deployment contexts (source
and destination nodes of the applications), per-flow re-
quirements, IP packet identifiers, or the middleware APIs.
What is needed, therefore, are middleware-guided network
QoS provisioning solutions that (1) are not tied to a par-
ticular network QoS mechanism and (2) do not modify
application source code to specify and enforce network
QoS requirements. These solutions should ideally oper-
ate on well-defined system abstractions (e.g., per-flow re-
quirements and source/destination nodes) that are provided
without programmatically modifying the application source
code, thereby facilitating application reuse across a wide
range of deployment and network QoS contexts.

Solution approach → A model-driven component
middleware network QoS provisioning framework that
uses declarative domain-specific techniques [1] to raise the
level of abstraction of DRE system design higher than us-
ing imperative third-generation programming languages. A
model-driven framework allows system engineers and soft-
ware developers to perform deployment-time analysis (such
as schedulability analysis [10]) of non-functional system
properties (such as network QoS assurances for end-to-end
application flows) and helps provide deployment-time as-
surance that application QoS requirements will be satisfied.



This paper describes theNetwork QoS Provisioning Engine
(NetQoPE), which is a model-driven component middle-
ware framework that deploys and configures applications in
DRE systems and enforces their network QoS requirements
using the four-stage design-, pre-deployment-, deployment-
and runtime approach shown in Figure 1. The innovative

Figure 1: NetQoPE’s Four-stage Architecture

elements of NetQoPE’s four-stage architecture include the
following:

• The Network QoS Specification Language
(NetQoS), which is a domain-specific modeling lan-
guage (DSML) that supports design-time specification of
per-flow network QoS requirements, such as bandwidth
and delay across a flow. By allowing application devel-
opers to focus on functionality—rather than the different
deployment contexts (e.g., different bandwidth and delay
requirements) where they will be used—NetQoS simplifies
the deployment of applications in contexts that require dif-
ferent network QoS requirements,e.g., different bandwidth
requirements.

• TheNetwork Resource Allocation Framework(Ne-
tRAF), which is a middleware-based resource allocator
framework that uses the network QoS requirements cap-
tured byNetQoSas input at pre-deployment time to help
guide QoS provisioning requests on the underlying net-
work QoS mechanism at deployment time. By providing
application-transparent, per-flow resource allocation capa-
bilities at pre-deployment-time,NetRAFminimizes runtime
overhead and simplifies validation decisions, such as admis-
sion control.

• The Network QoS Configurator (NetCON), which
is a middleware-based network QoS configurator that pro-
vides deployment-time configuration of component middle-
ware containers, which at runtime add flow-specific identi-
fiers (e.g., DSCPs) to IP packets when applications invoke
remote operations. By providing container-mediated and
application-transparent capabilities to enforce runtimenet-
work QoS, NetCON allows DRE systems to leverage the
QoS services of configured routers without modifying ap-
plication source code. As shown in the Figure 1, the output
of each stage in NetQoPE serves as input for the next stage,

which helps automate the deployment and configuration of
DRE applications with network QoS support.

Paper organization. The remainder of the paper is or-
ganized as follows: Section 2 describes a case study to mo-
tivate common requirements associated with provisioning
network QoS for DRE systems; Section 3 explains how
NetQoPE addresses those requirements via a model-driven
component middleware framework; Section 4 empirically
evaluates the capabilities provided by NetQoPE; Section 5
compares our work on NetQoPE with related research; and
Section 6 presents concluding remarks and lessons learned.

2 Motivating NetQoPE’s Network QoS Pro-
visioning Capabilities

Figure 2 shows a representative DRE system in an of-
fice enterprise security and hazard sensing environment,
which we use as a case study to demonstrate and evaluate
NetQoPE’s model-driven, middleware-guided network QoS
provisioning capabilities. Enterprises often transport net-

Figure 2: Network Configuration in an Enterprise Security
and Hazard Sensing Environment

work traffic using an IP network over high-speed Ethernet.
Network traffic in an enterprise can be grouped into sev-
eral classes, including (1) e-mail, videoconferencing, and
normal business traffic, and (2) sensory and imagery traf-
fic of the safety/security hardware (such as fire/smoke sen-
sors) installed on office premises. Our case study makes
the common assumption that safety/security traffic is more
critical than other traffic, and thus focuses on model-driven,
middleware-guided mechanisms to assure the specified QoS
for this type of traffic in the presence of other traffic that
shares the same network.

As shown in Figure 2, our case study uses software
controllers to manage hardware devices, such as sensors
and monitors. Each sensor/camera software controller fil-
ters the sensory/imagery information and relays them to
the monitor software controllers that display the informa-
tion. These software controllers were developed using
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Lightweight CCM (LwCCM) [14] and the traffic between
these software controllers uses a bandwidth broker [3]
to manage network resources via DiffServ network QoS
mechanisms. Although this case study focuses on DiffServ
and LwCCM, NetQoPE is designed for use with other net-
work QoS mechanisms (e.g., IntServ) and component mid-
dleware technologies (e.g., J2EE).

Component-based applications in our case study obtain
the services of the bandwidth broker via the following
middleware-guided steps: (1) network QoS requirements
are specified on each application flow, along with informa-
tion on the source and destination IP and port addresses,
(2) the bandwidth broker is invoked to reserve network re-
sources along the network paths for each application flow,
configure the corresponding network routers, and obtain
per-flow DSCP values to help enforce network QoS, and
(3) remote invocations are made with appropriate DSCP
values added to the IP packets so that configured routers
can provide per-flow differentiated performance. Section 3
describes the challenges we encountered when implement-
ing these steps in the context of our case study and shows
how NetQoPE’s four-stage architecture shown in Figure 1
resolves these challenges.

3 NetQoPE’s Multistage Network QoS Provi-
sioning Architecture

As discussed in Section 1, conventional techniques for
providing network QoS to applications incur several key
limitations, including modifying application source codeto
(1) specify deployment context-specific network QoS re-
quirements, and (2) integrate functionality from network
QoS mechanisms at runtime. This section describes how
NetQoPE addresses these limitations via its model-driven,
middleware-guided network QoS provisioning architecture.

3.1 Challenge 1: Alleviating Complexities in QoS Re-
quirements Specification

Context. For each application flow, DRE systems must
specify a required level of service (e.g., high priority vs. low
priority), the source and destination IP and port addresses,
and bandwidth and delay requirements, so that network re-
sources are allocated and configured to provide the required
QoS.
Problem. Network QoS requirements (such as the band-
width and delay requirements mentioned above) can change
depending on a deployed context. For example, in our case
study from Section 2, multiple fire sensors are deployed at
different importance levels and each sensor sends its sen-
sory information to its corresponding monitors. A fire sen-
sor deployed in the parking lot has a lower importance than
those in the server room. The sensor-monitor flows thus
have different network QoS requirements, even though the
reusable software controllers managing the fire sensor and

the monitor have the same functionality.
The use of conventional techniques, such as hard-coded

API approaches [4], requires application source code mod-
ifications for each context. Writing this code manually to
specify network QoS requirements is tedious, error-prone,
and non-scalable. In particular, it is hard to envision at de-
velopment time all the contexts in which the source code
will be deployed.

Sidebar 1: Overview of Lightweight
CORBA Component Model (LwCCM)

Application functionality in LwCCM is provided through
componentswhich collaborate with other components via
ports to create componentassemblies. Assemblies in
LwCCM are described using XML descriptors (mainly the
deployment plandescriptor) defined by the OMG D&C [15]
specification. Thedeployment planincludes details about
the components, their implementations, and their connec-
tions with other components. Thedeployment planalso
has a placeholderconfigPropertythat is associated with ele-
ments (e.g., components, connections) to specify their prop-
erties (e.g., priorities) and resource requirements. Compo-
nents are hosted incontainers, which provide the appropri-
ate runtime operating environment (e.g., transactions sup-
port) for components to invoke remote operations.

Solution approach→ Model-driven visual network re-
quirements specification. NetQoPE provides a DSML
called theNetwork QoS Specification Language(NetQoS).
Using NetQoS, DRE system developers (1) model com-
ponent assemblies, (2) assign target node assignments for
components, and (3) declaratively specify the following de-
ployment context-specific network QoS requirements on the
modeled application flows: (a) network QoS classes, such
asHIGH PRIORITY (HP), HIGH RELIABILITY (HR), MUL -
TIMEDIA (MM ), andBEST EFFORT(BE), (b) bi-directional
bandwidth and delay requirements, and (c) selection of
transport protocol.

In the context of our case study, NetQoS’s network QoS
classes correspond to the DiffServ levels of service provided
by our Bandwidth Broker [3].1 For example, theHP class
represents the highest importance and lowest latency traf-
fic (e.g., fire sensing reporting in the server room). TheHR

class represents traffic with low drop rate (e.g., surveillance
data). NetQoS also supports theMM class for sending mul-
timedia data and theBE class for sending traffic with no
QoS requirements.

After a model has been created, NetQoS’s model in-
terpreter traverses the modeled application structure and
generates adeployment plan(described in Sidebar 1).

1NetQoS’s DSML capabilities can be extended to provide requirements
specification conforming to a different network QoS mechanism, such as
IntServ.
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Figure 3: NetQoS Capabilities

NetQoS’s model interpreter also traverses each modeled ap-
plication flow and augments thedeployment plan config-
Propertytags (also described in Sidebar 1) to express net-
work QoS requirement annotations on the component con-
nections. Section 3.2 describes how network resources are
allocated based on requirements specified in the deployment
plan descriptor.

Our case study has certain application flows (e.g., a
monitor requesting location coordinates from a fire sensor)
where the client (monitor) controls the network prioritiesat
which the requests and replies are sent. This capability en-
ables real-time actions irrespective of network congestion.
There are other examples (e.g., a temperature sensor sends
temperature sensory information to the monitors) where the
server controls the network priorities at which the requests
and replies are sent. This capability prevents misuse of Diff-
Serv priority classes by clients, thereby avoiding unneces-
sary network congestion.

To support these two models, NetQoS can assign
the following priority attributes to connections: (1)
CLIENT_PROPAGATEDnetwork priority model, that allows
the clients to dictate the bi-directional priorities, and (2)
SERVER_DECLARED network priority model, that allows
the server to dictate the bi-directional priorities. NetQoS’s
model interpreter updates the deployment plan with these
priority models for each of the flows, and Section 3.3 ex-
plains how NetQoPE’s runtime mechanisms honor these
priority models when applications invoke remote opera-
tions.
Application to the case study. Figure 3 shows a NetQoS
model highlighting many of its key capabilities. Multiple
instances of the same reusable application components (e.g.,
FireSensorParking and FireSensorServer components) can
be annotated with different QoS attributes using an intuitive
drag and drop technique. This method of specifying QoS
requirements is thus much simpler than modifying appli-
cation code for each deployment context, as demonstrated
in Section 4.2.1. Moreover, the same QoS attribute (e.g.,

HR_1000 in Figure 3) can potentially be reused across mul-
tiple connections. NetQoS thus increases the scalability of
expressing requirements for large numbers of connections
that are prevalent in large-scale DRE systems, such as our
case study.

3.2 Challenge 2: Alleviating Complexities in Network
Resource Allocation and Configuration

Context. DRE systems must allocate and configure net-
work resources based on the QoS requirements specified on
their application flows so that network QoS assurances can
be provided at runtime.
Problem. In our case study, the temperature sensory infor-
mation from the server room is more important than the in-
formation from a conference room. It is not desirable, how-
ever, to modify the temperature sensor software controller
code to directly interact with a middleware API or net-
work QoS mechanism API since certain deployment con-
texts (such as the deployment in a conference room) might
not require network QoS assurances. Moreover, if applica-
tion source code is modified to provide resource allocations,
decisions on whether to allocate resources or not cannot be
determined until the applications are deployed and opera-
tional. This approach forces DRE system deployers to stop
application components and deploy them on different nodes
if required resources cannot be allocated across the source
and destination nodes.

Figure 4: NetRAF’s Network Resource Allocation Capabil-
ities

Solution approach→ Middleware-based Resource Allo-
cator Framework. NetQoPE’sNetwork Resource Alloca-
tor Framework(NetRAF) is a resource allocator engine that
can provide network resource allocations for DRE systems
using a variety of network QoS mechanisms, such as Diff-
Serv and IntServ. As shown in Figure 4, the NetQoS DSML
described in Section 3.1 captures the modeled per-flow net-
work QoS requirements in the form of adeployment plan
that is input to NetRAF.

The modeled deployment context could have many in-
stances of the same reusable source code, such as the tem-
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perature sensor software controller is instantiated two times,
one for the server room, and one for the conference room.
When using NetQoS, however, application developers only
annotate the connection between the instance at the server
room and the monitor software controller. Since NetRAF
operates on thedeployment planthat captures this modeling
effort, network QoS mechanisms are used only for the con-
nection on which QoS attributes are added. NetRAF thus
improves conventional approaches [18] that modify appli-
cation source code to work with network QoS mechanisms,
which can become complex when source code is reused in
a wide range of deployment contexts.

NetRAF’sNetwork Resource Allocator Manageraccepts
application QoS requests at pre-deployment-time and de-
termines the network QoS mechanism (e.g., DiffServ or
IntServ) to use to serve the requests. As shown in Fig-
ure 4, NetRAF’s Network Resource Allocator Manager
works with QoS mechanism-specific allocators (e.g., Diff-
Serv Allocator), which shields it from interacting directly
with the complex network QoS mechanism (e.g., DiffServ
Bandwidth Broker) APIs, thereby enhancing NetQoPE’s
flexibility and extensibility.

Multiple allocators (e.g., IntServ Allocator and DiffServ
Allocator) can be used by NetRAF’s Network Resource
Allocator Manager to serve the needs of small-scale de-
ployments (where IntServ and DiffServ are both suitable)
and large-scale deployments (where DiffServ often pro-
vides better scalability). For example, the shaded cloud
connected to the Network Resource Allocator Manager in
Figure 4 shows how NetRAF can be extended to work with
other network QoS mechanisms, such as IntServ.
Application to the case study. Since our case study is
based on DiffServ, NetRAF uses theDiffServ Allocatorto
allocate network resources. This allocator invokes the ad-
mission control capabilities of the Bandwidth Broker [3]
by feeding it one application flow at a time. If all flows
cannotbe admitted, NetRAF allows developers an option
to change the deployment context since applications have
not yet been deployed. Example changes include changing
component implementations to consume fewer resources or
change the source and destination nodes. As demonstrated
in Section 4.2.3, this capability helps NetRAF incur lower
overhead than conventional approaches [22, 18] that per-
form validation decisions when applications are deployed
and operated at runtime.

NetRAF’s DiffServ Allocator instructs the Bandwidth
Broker to reserve bi-directional resources in the speci-
fied classes. The Bandwidth Broker determines the bi-
directional DSCPs and NetRAF encodes those values as
connection attributes in the deployment plan. In addition,
the Bandwidth Broker uses itsFlow Provisioner[3] to con-
figure the routers to provide appropriate per-hop behavior
when they receive IP packets with the specified DSCP val-

ues. Section 3.3 describes how component containers are
auto-configured to add these DSCPs when applications in-
voke remote operations.

3.3 Challenge 3: Alleviating Complexities in Network
QoS Settings Configuration

Context. After network resources are allocated and net-
work routers are configured, applications in DRE systems
need to invoke remote operations using the chosen network
QoS settings (e.g., DSCP markings) so that the network
layer can differentiate application traffic and provision ap-
propriate QoS to each of the flow.
Problem. Application developers have historically written
code that instructs the middleware to provide the appro-
priate runtime services,e.g., DSCP markings in IP pack-
ets [16]. For example, fire sensors in our case study from
Section 2 can be deployed in different QoS contexts that
are managed by reusable software controllers. Modifying
application code to instruct the middleware to add network
QoS settings is tedious, error-prone, and non-scalable be-
cause (1) the same application code could be used in differ-
ent contexts requiring different network QoS settings and
(2) application developers might not (and ideally should
not) know the different QoS contexts in which the applica-
tions are used during the development process. Application-
transparent mechanisms are therefore needed to configure
the middleware to add these network QoS settings depend-
ing on the deployment context in which applications are
used.

Figure 5: NetCON’s Container Auto-configurations

Solution approach → Deployment and runtime com-
ponent middleware mechanisms. Sidebar 1 describes
how LwCCM containers provide a runtime environment for
components. NetQoPE’sNetwork QoS Configurator(Net-
CON) provides capabilities to auto-configure these contain-
ers to add DSCPs to IP packets when applications invoke re-
mote operations. As shown in Figure 5, NetRAF performs
network resource allocations, determines the bi-directional
DSCP values to be used for each application flow, and en-
codes those DSCP values in the deployment plan.

During deployment, NetCON parses the deployment
plan and its connection tags to determine (1) source and des-
tination components, (2) the network priority model to be
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used for their communication, (3) the bi-directional DSCP
values, and (4) the target nodes on which the components
are deployed. NetCON deploys the components on their
respective containers, and creates the associated object ref-
erences that can be used by clients in a remote invocation.
When a component invokes a remote operation in LwCCM
its container’s context information provides it the object
reference of the destination component. Other component
middleware provide similar capabilities via containers,e.g.,
EJB applications interact with containers to obtain the right
runtime operating environment.

The NetCON container programming model can trans-
parently add DSCPs and enforce the network prior-
ity models described in Section 3.1. To support
SERVER_DECLARED network priority model, NetCON en-
codes aSERVER_DECLARED policy, and the associated re-
quest and reply DSCPs on the object reference of the server.
When a client invokes a remote operation with this object
reference, the client-side middleware checks the policy on
the object reference, decodes the request DSCP and sends
it on the request IP packets. In the server-side middleware,
before sending the reply, the policy is checked again, and
the reply DSCP is added on the IP packets.

To support CLIENT_PROPAGATED network priority
model, NetCON configures the containers to apply a
CLIENT_PROPAGATED policy at the point of binding an
object reference with the client. In contrast to the
SERVER_DECLARED policy, the CLIENT_PROPAGATED

policy can be changed at runtime and different clients can
access the servers with different network priorities. When
the source component invokes a remote operation using the
policy-applied object reference, NetCON adds the associ-
ated forward and reverse DSCP markings on the IP packets,
thereby providing network QoS to the application flow. A
container can therefore transparently add both forward and
reverse DSCP values when components invoke remote op-
erations using the container services.
Application to the case study.NetCON allows DRE sys-
tem developers to focus on their application business logic,
rather than wrestling with low-level mechanisms for provi-
sioning network QoS. Moreover, NetCON provides these
capabilities without having the applications to modify their
application code, which simplifies development without in-
curring runtime overhead, as described in Section 4.2.2.

4 Evaluating NetQoPE

This section empirically evaluates the flexibility and
overhead of using NetQoPE to provide network QoS assur-
ance to end-to-end application flows. We first validate that
NetQoPE’s automated model-driven approach can provide
differentiated network performance for a variety of appli-
cations in DRE systems, such as our case study. We then
demonstrate that NetQoPE’s network QoS provisioning ca-

pabilities significantly reduce application development ef-
fort incurred by conventional approaches.

4.1 Hardware/Software Testbed and Experiment Con-
figurations

The empirical evaluation of NetQoPE was conducted
at ISISlab (www.dre.vanderbilt.edu/ISISlab), which
consists of (1) 56 dual-CPU blades running 2.8 Gz XEONs
with 1 GB memory, 40 GB disks, and 4 NICs per blade, and
(2) 6 Cisco 3750G switches with 24 10/100/1000 MPS ports
per switch. As shown in Figure 6, our experiments were
conducted on 16 of dual CPU blades in ISISlab, where 8
blades hosted linux router software. The remaining 8 blades

Figure 6: Experimental Setup
hosted software controllers (e.g., a fire sensor controller)
developed using the CIAO middleware, which is an open-
source LwCCM implementation developed on top of TAO
real-time CORBA Object Request Broker (ORB). Our eval-
uations used DiffServ QoS and the associated Bandwidth
Broker [3] software was hosted on bladeC. All blades ran
Fedora Core 4 Linux distribution configured using the real-
time scheduling class. The blades were connected over a 1
Gbps LAN via virtual 100 Mbps links.

In our evaluation scenario, a number of sensory and im-
agery software controllers sent their monitored information
to monitor controllers so that appropriate control actions
could be performed by enterprise supervisors monitoring
abnormal events. For example, Figure 6 shows severalfire
sensor controllercomponents deployed on blades A and
B. These components sent their monitored information to
monitor controllercomponents deployed on blades D and
F. communication between these software controllers used
one of the traffic classes defined in Section 3.1 with the
following capacities on all links:HP = 20 Mbps,HR = 30
Mbps, andMM = 30 Mbps. TheBE class used the remaining
available bandwidth in the network.

To emulate the network traffic behavior of the software
controllers developed using NetQoPE, we developed the
TestNetQoPE performance test. This test creates a session
for component-to-component communication with config-
urable bandwidth consumption. High resolution timer

6



probes we used to measure roundtrip latency accurately for
each invocation made by a client.

4.2 Experimental Results and Analysis

Below we describe the experiments performed using the
ISISlab configuration described in Section 4.1 and analyze
the results.

4.2.1 Evaluating NetQoPE’s QoS Customization Ca-
pabilities

Rationale.NetQoPE’s model-driven approach provides the
flexibility of developing application source code once and
reusing it multiple times in different deployment contexts. It
can also address the QoS needs of a wide variety of applica-
tions by supporting multiple DiffServ classes and network
priority models. This experiment empirically evaluates the
benefits of these capabilities.
Methodology. We identified four flows from Figure 6 and
modeled them using NetQoS as follows: (1) a fire sen-
sor controller component on blade A uses the high reli-
ability (HR) class and sends potential fire alarms in the
parking lot to monitor controller component on blade D,
(2) a fire sensor controller component on blade B uses
the high priority (HP) class and sends potential fire alarms
in the server room to monitor controller component on
blade F, (3) a camera controller component on blade E
uses the multimedia (MM ) class and sends imagery infor-
mation of the break room to the monitor controller com-
ponent on blade G, and (4) a temperature sensor controller
component on blade A uses the best effort (BE) class and
sends temperature readings to the monitor controller com-
ponent on blade F.CLIENT_PROPAGATEDnetwork policy
was used for all flows,exceptfor the the temperature sen-
sor and monitor controller component flow, which used the
SERVER_DECLARED network policy.

We performed two variants of this experiment. The first
variant used TCP as the transport protocol and 20 Mbps of
forward and reverse bandwidth was requested for each type
of QoS traffic. For each application flow,TestNetQoPE was
configured to generate a load of 20 Mbps and the average
roundtrip latency over 200,000 iterations was calculated.
The second variant used UDP as the transport protocol and
TestNetQoPE was configured to makeonewayinvocations
with a payload of 500 bytes for 100,000 iterations. We used
high-resolution timer probes to measure the network delay
for each invocation on the receiver side of the communica-
tion.

At the end of the second experiment, at most 100,000
network delay values (in milliseconds) were recorded for
each network QoS class, if there were no invocation losses.
Those values were then arranged in increasing order, and
every value was subtracted from the minimum value in the
whole sample,i.e., they were normalized with respect to the
respective class minimum latency. The samples were di-

vided into fourteen buckets based on their resultant values.
For example, the 1 millisecond bucket contained only sam-
ples that are less than or equal to 1 millisecond in their resul-
tant value, the 2 millisecond bucket contained only samples
whose resultant values were less than or equal to 2 millisec-
ond but greater than 1 millisecond, etc.

In both the experiments, to evaluate application perfor-
mance in the presence of background network loads, sev-
eral other applications were run, as described in Table 1
(where TS stands for “temperature sensor controller,” MS
stands for “monitor controller”, FS stands for “fire sensor
controller,” and CS stands for “camera controller”). Ne-
tRAF allocated the network resources for each flow and
determined the DSCP values to use. After deploying the
applications, NetCON configured the containers to use the
appropriate network priority models to add DSCP values to
IP packets when applications invoke remote operations.

Background Traffic in MbpsTraffic Type
BE HP HR MM

BE (TS - MS) 85 to 100
HP (FS - MS) 30 to 40 28 to 33 28 to 33
HR (FS - MS) 30 to 40 12 to 20 14 to 15 30 to 31
MM (CS - MS) 30 to 40 12 to 20 14 to 15 30 to 31

Table 1: Application Background Traffic

Analysis of results. Figure 7a shows the results of experi-
ments when the deployed applications were configured with
different network QoS classes and were sending TCP traffic.
This figure shows that irrespective of the heavy background
traffic, the average latency experienced by the fire sensor
controller component using theHP network QoS class is
lower than the average latency experienced by all other
components. In contrast, the traffic from theBE class does
not get differentiated from the competing background traf-
fic and incurs a high latency (i.e., throughput is very low).
Moreover, the latency increases while using theHR andMM

classes when compared to theHP class.
Figure 7b shows the (1) cardinality of the network de-

lay groupings for different network QoS classes under dif-
ferent millisecond buckets and (2) losses incurred by each
network QoS class. These results show that the jitter values
experienced by the application using theBE class are spread
across all the buckets (i.e., are highly unpredictable). When
combined with packet or invocation losses, this property is
undesirable in DRE systems. In contrast, predictability and
loss-ratio improves when using theHP class as evidenced by
the spread of network delays across just two buckets. The
application’s jitter is almost constant and is not affectedby
heavy background traffic.

The results in Figure 7b also show that application using
the MM class experiences predictable latency than applica-
tions usingBE and HR class. Approximately 94% of the
MM class invocations had their normalized delays within 1
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Figure 7: Performance of NetQoPE

millisecond. This result occurs because the queue size at
the routers is smaller for theMM class than the queue size
for theHR class, so UDP packets sent by the invocations do
not experience as much queuing delay in the core routers as
packets belonging to theHR class. TheHR class provides
better loss-ratio, however.

These results demonstrate that NetQoPE’s automated
model-driven mechanisms (1) support the needs of a wide
variety of applications by simplifying the modeling of QoS
requirements via various DiffServ network QoS classes
and (2) provide those modeled applications with differen-
tiated network performance validating the automated net-
work resource allocation and configuration process. By us-
ing NetQoPE, applications can leverage the functionalities
of network QoS mechanisms with minimal effort (as de-
scribed in Section 4.2.3).

The results also demonstrated the following QoS cus-
tomization possibilities for a set of application communica-
tions (e.g., fire sensor and monitor controller component):
(1) different network QoS performance, e.g.,HP communi-
cation between blades A and D, andHR communication be-
tween blades B and F, (2)different transport protocols for
communication, e.g., TCP and UDP, and (3)different net-
work access models, e.g., monitor controller components
were accessed using theCLIENT_PROPAGATED network
priority model and theSERVER_DECLARED network pri-
ority model.

Taken together, these results demonstrate that
NetQoPE’s “write once, deploy multiple times for
different QoS” capabilities increase deployment flexibility
and extensibility for environments where many reusable
software components are deployed. To provide this flexibil-
ity, NetQoS generates XML-based deployment descriptors
that capture context-specific QoS requirements of appli-
cations. For our experiment, communication between fire
sensor and monitor controllers was deployed in multiple
deployment contexts,i.e., HR and HP QoS requirements.
In DRE systems like our case study, however, the same
communication patterns between components could occur
in many deployment contexts.

For example, the same communication patterns could

use any of the four network QoS classes (HP, HR, MM , and
BE). The communication patterns that use the same net-
work QoS class (e.g., HP) could make different forward and
reverse bandwidth reservations (e.g., 4, 8, 10 Mbps). In
such scenarios, as shown in Table 2, NetQoS auto generates
∼1,300 lines of XML code, which would otherwise need to
be handcrafted by application developers.

Deployment contextsNumber of communications
2 5 10 20

1 23 50 95 185
5 47 110 215 425
10 77 185 365 725
20 137 335 665 1325

Table 2: Generated Lines of XML Code

4.2.2 Evaluating the Overhead of NetQoPE for Nor-
mal Operations

Rationale.NetQoPE provides network QoS to applications
by using the four-stage architecture shown in Figure 1. This
experiment evaluates the overhead of using NetQoPE to en-
force network QoS.
Methodology. As described in Section 3.1, DRE system
developers can use NetQoPE at design time to specify net-
work QoS requirements on the application flows. Based on
the specified network QoS requirements, NetRAF interacts
with the Bandwidth Broker at pre-deployment time to al-
locate per-flow network resources. By providing design-
and pre-deployment-timecapabilities, NetQoS and NetRAF
thus incur no runtime overhead. In contrast, NetCON pro-
vides deployment-time configuration of component middle-
ware containers by adding DSCP markings to IP packets
when applications invoke remote operations, as described in
Section 3.3. There is thus the potential for runtime overhead
when containers apply one of the network policy models to
provide the the source application with an object reference
to the destination application.

To measure the runtime overhead incurred by Net-
CON, we ran an experiment to determine the runtime over-
head of the container when it performs extra work to ap-
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ply the policies to add DSCPs to IP packets. This ex-
periment had the following variants: (1) the client con-
tainer not configured by NetCON (no network QoS re-
quired), (2) the client container configured by NetCON to
apply theCLIENT_PROPAGATED network policy, and (3)
the client container configured by NetCON to apply the
SERVER_DECLARED network policy. All experiment vari-
ants had no background network load.

In our experiment, the network priority models were
configured with DSCP values of 0 for both the forward and
reverse direction flows, as there was no network congestion
and QoS support was not needed.TestNetQoPE was con-
figured to make 200,000 invocations that generated a load
of 6 Mbps, and average roundtrip latency was calculated for
each experiment variant. The routers were not configured
to perform DiffServ processing (provide routing behavior
based on the DSCP markings), and hence no edge router
processing overhead was incurred. We configured the ex-
periment to pinpoint only the overhead of the container and
not of any other entity in the path of the remote communi-
cation invoked by the clients.
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Figure 8: Overhead of NetQoPE’s Policy Framework

Analysis of results. Figure 8 (CP refers
to CLIENT_PROPAGATED and SD refers to
SERVER_DECLARED network priority models) shows
the different average roundtrip latencies experienced by
clients in the three different variants of the experiment. To
honor the network policy models, the NetQoPE middle-
ware added the request and reply DSCPs to the IP packets.
The latency results shown in Figure 8 are all similar,
which shows that NetCON is efficient and adds negligible
overhead to applications.

Since Network QoS was not needed for this experiment
the network resources were not allocated and a DSCP value
of 0 was used. If a different variant of the experiment is
run with background network loads—and network QoS is
required for some of the application flows—network re-
sources will be allocated and the appropriate DSCP values
will be used in those application flows. The middleware
overhead will remain the same, however, since the same
middleware infrastructure is used, only with different DSCP
values. This result thus shows that NetCON incurs minimal
runtime overhead when enforcing network QoS support for
applications.

4.2.3 Evaluating NetQoPE’s Model-driven QoS Provi-
sioning Capabilities

Rationale. As discussed in Section 3, a key design goal of
NetQoPE is to provide network QoS to applications in an
extensible manner. This experiment evaluates NetQoPE’s
application-transparent network QoS provisioning capabil-
ities.
Methodology. We first define a taxonomy for evaluating
technologies that provide network QoS assurances to end-
to-end DRE application flows. Conventional approaches
can be classified as being (1) object-oriented [8, 18, 22, 16],
(2) aspect-oriented [7], and (3) component middleware-
based [4, 19]. Below we describe how each approach pro-
vide the following functionalities needed to leverage net-
work QoS mechanism capabilities:

• Requirements Specification. In conventional ap-
proaches applications use (1) middleware-based APIs [8,
22], (2) contract definition languages [18, 16], (3) run-
time aspects [7], or (4) specialized component middleware
container interfaces [4] to specify network QoS require-
ments. Whenever the deployment context and the associ-
ated QoS requirements change, however, application source
code must also change, thereby limiting reusability. In con-
trast, as described in Section 3.1, NetQoS provides domain-
specific, declarative techniques that alleviate the need to
programmatically specify QoS requirements and increase
reusability across different deployment contexts.

• Network Resource Allocation. Conventional ap-
proaches require the deployment of applications before their
per-flow network resource requirements can be provisioned
by network QoS mechanisms. If those applications can-
not have their required resources allocated they must be
stopped, their source code must be modified to specify new
resource requirements, and the resource reservation process
needs to start again. This approach is tedious since it in-
volves deploying and re-deploying applications (potentially
in different nodes) multiple times. In contrast, NetRAF
handles deployment changes through NetQoS models, as
described in Section 3.2. This process occurs during pre-
deployment before applications have been deployed, which
reduces the efforts needed to change deployment topology
or application QoS requirements.

• Network QoS Enforcement. Conventional ap-
proaches modify application source code [16] or program-
ming model [4] to instruct the middleware to enforce run-
time QoS for their remote invocations. Applications must
therefore be designed to handle two different usecases—to
enforce QoS and when no QoS is required—thereby limit-
ing application reusability. In contrast, as described in Sec-
tion 3.3, NetCON uses a container programming model that
transparently enforces runtime QoS for applications without
changing their source code or programming model.

Using the conventional approaches and the NetQoPE ap-
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proach, we now compare the manual effort required to pro-
vide network QoS to the four end-to-end application flows
described in Section 4.2.1. We decompose the manual ef-
fort across the following general steps: (1)implementa-
tion, which involves software engineers writing code, (2)
deployment, which involves the system deployers to map
(or stop) application components to their target nodes, and
(3) modeling tool use, which involves the application devel-
opers to use NetQoPE to model a DRE application struc-
ture and specify per-flow QoS requirements. In the context
of our evaluation, a complete QoS provisioning lifecycle
consists specifying requirements, allocating resources,de-
ploying applications, and stopping applications when they
are finished.

To compare the manual efforts, we devised a realistic
scenario for the four end-to-end application flows described
in Section 4.2.1. In this scenario, three sets of experiments
are conducted with the following different deployment vari-
ants:

• In the first variant, all the four end-to-end application
flows are configured with the QoS requirements as specified
in Section 4.2.1.

• In the second variant, to demonstrate the effect of
changes in QoS requirements on manual efforts we mod-
ify bandwidth requirements from 20 Mbps to 12 Mbps for
each of the four end-to-end flows.

• In the third variant, we demonstrate the effect of
changes in QoS requirements and resource (re)reservations
taken together on manual efforts. We modify bandwidth re-
quirements of all the flows from 12 Mbps to 16 Mbps. We
also change temperature sensor controller component to use
the high reliability (HR) class instead of the best effortBE

class as described in Section 4.2.1. We also increased the
backgroundHR class traffic across the blades, so that the
resource reservation request for the flow between tempera-
ture sensor and monitor controller components fails. In re-
sponse, deployment contexts (e.g., bandwidth requirements,
source and destination nodes) were changed and resource
re-reservation was performed.

For the first deployment, the effort required using con-
ventional approaches is the following 10 steps: (1) modify
source code of each of the eight components to specify their
QoS requirements (8 implementation steps), (2) deploying
all the components (1 deployment step), and (3) shutdown
all the components (1 deployment step). The effort required
using NetQoPE involves the following 4 steps: (1) model
the DRE application structure of all the 4 end-to-end appli-
cation flows using NetQoS (1 modeling step), (2) annotate
QoS specifications on each of the end-to-end application
flow (1 modeling step), (3) deploying all the components
(1 deployment step), and (4) shutdown all the components
(1 deployment step).

For the second deployment, the effort required using

a conventional approach is also 10 steps because this ap-
proach require source code modifications as the deployment
contexts changed (in this case, the bandwidth requirements
changed across four different deployment contexts). In con-
trast, the effort required using NetQoPE is 3 steps and is
described as follows: (1) annotate QoS specifications on
each of the end-to-end application flow (1 modeling step),
(3) deploying all the components (1 deployment step), and
(4) shutdown all the components (1 deployment step). For
the second deployment, application developers reused the
NetQoS application structure model that was created for the
initial deployment and this helps reduce required efforts by
a step.

For the third deployment, the effort required using a con-
ventional approach is the following 13 steps: (1) modify
source code of each of the eight components to specify
their QoS requirements (8 implementation steps), (2) de-
ploying all the components (1 deployment step), (3) shut-
down the temperature sensor component (1 deployment step
– resource allocation failed for the component), (4) mod-
ify source code of temperature sensor component back to
useBE network QoS class (deployment context change) (1
implementation steps), (5) redeploy the temperature sensor
component (1 deployment step), and (6) shutdown all the
components (1 deployment step).

In contrast, the effort required using NetQoPE for the
third deployment is the following 4 steps: (1) annotate
QoS specifications on each of the end-to-end application
flow (1 modeling step), (2) re-annotate QoS requirements
for the temperature sensor component flow (1 deployment
step – NetRAF’s pre-deployment-time allocation capabili-
ties determined the resource allocation failure and prompted
NetQoPE application developer to change the QoS require-
ments) (3) deploying all the components (1 deployment
step), and (4) shutdown all the components (1 deployment
step).

Approaches # Steps in Experiment Variants
First Second Third

NetQoPE 4 3 4
Conventional 10 10 13

Table 3: Comparison of Manual Efforts Incurred in Con-
ventional and NetQoPE Approaches

As shown in Table 3, the results from this exercise
show that conventional approaches incur roughly an order
of magnitude more effort than NetQoPE to provide network
QoS assurance for end-to-end application flows. Closer ex-
amination shows that in conventional approaches, applica-
tion developers spend substantially more effort designing
and implementing software that can work across different
deployment contexts. Moreover, this process must be re-
peated as and when the deployment contexts and the asso-
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ciated QoS requirements change. Moreover, implementa-
tions are complex since the requirements are specified us-
ing external APIs, such as middleware-based APIs [22] or
network QoS mechanism APIs [12].

Further, application (re)deployments are required when-
ever reservation requests fail. In this experiment, only one
flow required re-reservation and that incurred additional ef-
fort of 3 steps. If there are large number of flows —and
enterprise DRE systems like our case study tend to have
dozens or hundreds of flows—the level of effort required is
significantly more than for conventional approaches.

5 Related Work
This section compares our R&D activities on NetQoPE

with related work on middleware-based QoS management
and model-based design tools.

Network QoS management in middleware. Prior
work on integrating network QoS mechanisms with mid-
dleware [22, 18, 16, 8] focused on providing middle-
ware APIs to shield applications from directly interacting
with complex network QoS mechanism APIs. Middleware
frameworks transparently converted the specified applica-
tion QoS requirements into lower-level network QoS mech-
anism APIs and provided network QoS assurances. These
approaches, however, modified applications to dictate QoS
behavior for the various flows. NetQoPE differs from these
approaches by providing application-transparent and au-
tomated solutions to leverage network QoS mechanisms,
thereby significantly reducing manual design and develop-
ment effort to obtain network QoS.

QoS management in middleware.Prior research has
focused on adding various types of QoS capabilities to mid-
dleware. For example, [11] describes J2EE container re-
source management mechanisms that provide CPU avail-
ability assurances to applications. Likewise, 2K [24] pro-
vides QoS to applications from varied domains using a
component-based runtime middleware. In addition, [4] ex-
tends EJB containers to integrate QoS features by provid-
ing negotiation interfaces which the application developers
need to implement to receive desired QoS support. Syn-
ergy [17] describes a distributed stream processing middle-
ware that provides QoS to data streams in real time by ef-
ficient reuse of data streams and processing components.
These approaches are restricted to CPU QoS assurances or
application-level adaptations to resource-constrained sce-
narios. NetQoPE differs by providing network QoS assur-
ances in a application-agnostic fashion.

Deployment-time resource allocation.Prior work has
focused on deploying applications at appropriate nodes so
that their QoS requirements can be met. For example, prior
work [13, 21] has studied and analyzed application commu-
nication and access patterns to determine collocated place-
ments of heavily communicating components. Other re-
search [6, 9] has focused on intelligent component place-

ment algorithms that maps components to nodes while satis-
fying their CPU requirements. NetQoPE differs from these
approaches by leveraging network QoS mechanisms to allo-
cate network resources at pre-deployment-time and enforc-
ing network QoS at runtime.

Model-based design tools. Prior work has been
done on model-based design tools. PICML [1] enables
DRE system developers to define component interfaces,
their implementations, and assemblies, facilitating deploy-
ment of LwCCM-based applications. VEST [20] and
AIRES [10] analyze domain-specific models of embedded
real-time systems to perform schedulability analysis and
provides automated allocation of components to processors.
SysWeaver [5] supports design-time timing behavior ver-
ification of real-time systems and automatic code genera-
tion and weaving for multiple target platforms. In contrast,
NetQoPE provides model-driven capabilities to specify net-
work QoS requirements on DRE system application flows,
and subsequently allocate network resources automatically
using network QoS mechanisms. NetQoPE thus helps as-
sure that application network QoS requirements are met at
deployment-time, rather than design-time or runtime.

6 Concluding Remarks

This paper describes the design and evaluation of
NetQoPE, which is a model-driven component middleware
framework that manages network QoS for applications in
DRE systems. The following is a summary of the lessons
we learned developing NetQoPE and applying it to a repre-
sentative DRE system case study:

• NetQoPE’s domain-specific modeling languages help
capture per-deployment network QoS requirements of ap-
plications so that network resources can be allocated ap-
propriately. Application business logic consequently need
not be modified to specify deployment-specific QoS re-
quirements, thereby increasing software reuse and flexibil-
ity across a range of deployment contexts.

• Programming network QoS mechanisms directly in
application code requires that applications are deployed
and running before they can determine if the required net-
work resources are available to meet QoS needs. Providing
these capabilities via NetQoPE’s model-driven middleware
framework helps to guide resource allocation strategiesbe-
foreapplication deployment, thereby simplifying validation
and adaptation decisions.

• NetQoPE’s model-driven deployment and configura-
tion tools help transparently configure the underlying com-
ponent middleware on behalf of applications to add context-
specific network QoS settings. These settings can be en-
forced by NetQoPE’s runtime middleware framework with-
out modifying the middleware programming model used by
applications. Applications consequently need not change
the way they communicate at runtime since network QoS
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settings can be added transparently.
• NetQoPE’s strategy of allocating network resources to

applications before they are deployed may be too limiting
for certain types of DRE systems. In particular, applica-
tions in open DRE systems [23] might not consume their re-
source allotment at runtime, which may underutilize system
resources. We are therefore extending NetQoPE to overpro-
vision resources for applications on the assumption that not
all applications will use their allotment. If runtime resource
contentions occur, we are also developing dynamic resource
management strategies that can provide predictable network
performance for mission-critical applications.

NetQoPE’s model-driven middleware platforms and
tools are available in open-source format fromwww.dre.
vanderbilt.edu/cosmic, and along with the CIAO com-
ponent middleware available atwww.dre.vanderbilt.
edu.
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