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Abstract packets and provide the appropriate service level-specific
packet forwarding behavior.

This paper provides two contributions to the study of  Limitations with current approaches. Although ad-
quality of service (QoS)-enabled middleware that supports vanced network QoS mechanisms are powerful, it is te-
the network QoS requirements of distributed real-time and dious and error-prone to develop applications that interac
embedded (DRE) systems. First, we describe the designlirectly with low-level network QoS mechanism APIs writ-
and implementation of NetQoPE, which is a model-driven ten imperatively in third-generation languages, such as C+
component middleware framework that shields applications or Java. To overcome this problem, middleware-based so-
from the details of network QoS mechanisms by (1) speci-lutions [22, 18, 16, 4] have been developed that allow ap-
fying per-flow network QoS requirements, (2) performing plications to specify their coordinates (source and dastin
resource allocation and validation decisions (such as ad- tion IP and port addresses) and per-flow network QoS re-
mission control), and (3) enforcing per-flow network QoS quirements via higher-level frameworks. The middleware
at runtime. Second, we empirically evaluate NetQoPE’s frameworks—rather than the applications—are responsible
capabilities on a representative DRE system that deploysfor converting the higher-level QoS specifications into the
reusable software code in a range of deployment con-lower-level network QoS mechanism APIs.
texts. Our results demonstrate that NetQOPE can pro-  Although middleware frameworks alleviate many acci-
vide network-level differentiated performance to each of gental complexities of low-level network QoS mechanism
those application flows without modifying their program- aApjs, they can still be hard to evolve and extend. In par-
ming model or source code, thereby providing greater flex- ticular, application source code changes may be needed
ibility and extensibility in leveraging network-layer nfi2e  whenever changes occur to the deployment contexts (source
nisms. and destination nodes of the applications), per-flow re-

: quirements, IP packet identifiers, or the middleware APIs.
1 Introduction What is needed, therefore, are middleware-guided network

Emerging trends. Distributed real-time and embedded QoS provisioning solutions that (1) are not tied to a par-
(DRE) systems, such as as shipboard computing systemsijcular network QoS mechanism and (2) do not modify
supervisory control and data acquisition (SCADA) systems, application source code to specify and enforce network
and enterprise security and hazard sensing subsystems, corQoS requirements. These solutions should ideally oper-
sist of multiple communication-intensive applicationgtwi  ate on well-defined system abstractioesg( per-flow re-
multiple end-to-end application flows. These systems havequirements and source/destination nodes) that are pravide
network quality of service (QoS) requirements, such as low without programmatically modifying the application soerrc
end-to-end roundtrip latency and jitter, that must be satis code, thereby facilitating application reuse across a wide
fied under varying levels of network connectivity and band- range of deployment and network QoS contexts.
width availability. Network QoS mechanisms, such as in-  Solution approach — A model-driven component
tegrated services (IntServ) [12] and differentiated se#®i  middleware network QoS provisioning framework that
(DiffServ) [2], help provide diverse network service lesel uses declarative domain-specific techniques [1] to raise th
for applications in DRE systems. level of abstraction of DRE system design higher than us-

For example, applications can use advanced networking imperative third-generation programming languages. A
QoS mechanism®(g, a DiffServ bandwidth broker [3]) to  model-driven framework allows system engineers and soft-
(1) request a network service level and (2) allocate and man-ware developers to perform deployment-time analysis (such
age network resources for their remote invocations. Appli- as schedulability analysis [10]) of non-functional system
cations invoke remote operations by adding a service level-properties (such as network QoS assurances for end-to-end
specific identifier €.g, DiffServ codepoint (DSCP)) to the  application flows) and helps provide deployment-time as-
IP packets. DiffServ-enabled network routers parse the IPsurance that application QoS requirements will be satisfied



This paper describes tidetwork QoS Provisioning Engine  which helps automate the deployment and configuration of
(NetQoPE), which is a model-driven component middle- DRE applications with network QoS support.

ware framework that deploys and configures applicationsin  Paper organization. The remainder of the paper is or-
DRE systems and enforces their network QoS requirementgyanized as follows: Section 2 describes a case study to mo-
using the four-stage design-, pre-deployment-, deploymen tivate common requirements associated with provisioning
and runtime approach shown in Figure 1. The innovative network QoS for DRE systems; Section 3 explains how
NetQoPE addresses those requirements via a model-driven

P Pl s’ component middleware framework; Section 4 empirically
ey N evaluates the capabilities provided by NetQoPE; Section 5
requirements Deployment ime compares our work on NetQoPE with related research; and
?;I’EE':’Z e Section 6 presents concluding remarks and lessons learned.
re T solutions
B componer 2 Motivating NetQoPE’s Network QoS Pro-

Deployment visioning Capabilities
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coares ore A58 Figure 2 shows a representative DRE system in an of-
A i Relcol fice enterprise security and hazard sensing environment,

Add network QoS

settings which we use as a case study to demonstrate and evaluate
. , ] NetQoPE’s model-driven, middleware-guided network QoS
Figure 1: NetQoPE's Four-stage Architecture provisioning capabilities. Enterprises often transpat-n

elements of NetQoPE's four-stage architecture include the
following:

e The Network QoS Specification Language
(NetQoS), which is a domain-specific modeling lan-
guage (DSML) that supports design-time specification of  conference
per-flow network QoS requirements, such as bandwidth - gf‘ﬁ;emrpﬁse - ke
and delay across a flow. By allowing application devel- T Network TTee—
opers to focus on functionality—rather than the different
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deployment contextse(g, different bandwidth and delay - ‘:']
requirements) where they will be used—NetQoS simplifies analyzers [ 7

Office Data
Center
(databases)
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the deployment of applications in contexts that require dif
ferent network QoS requirementsg, different bandwidth
requirements.

e TheNetwork Resource Allocation Framework(Ne-
tRAF), which is a middleware-based resource allocator Figure 2: Network Configuration in an Enterprise Security
framework that uses the network QoS requirements cap-and Hazard Sensing Environment
tured by NetQoSas input at pre-deployment time to help
guide QoS provisioning requests on the underlying net- work traffic using an IP network over high-speed Ethernet.
work QoS mechanism at deployment time. By providing Network traffic in an enterprise can be grouped into sev-
application-transparent, per-flow resource allocatiopaca  eral classes, including (1) e-mail, videoconferencing] an
bilities at pre-deployment-tim&letRAFminimizes runtime  normal business traffic, and (2) sensory and imagery traf-
overhead and simplifies validation decisions, such as admis fic of the safety/security hardware (such as fire/smoke sen-
sion control. sors) installed on office premises. Our case study makes

e The Network QoS Configurator (NetCON), which the common assumption that safety/security traffic is more
is a middleware-based network QoS configurator that pro- critical than other traffic, and thus focuses on model-drjve
vides deployment-time configuration of component middle- middleware-guided mechanisms to assure the specified QoS
ware containers, which at runtime add flow-specific identi- for this type of traffic in the presence of other traffic that
fiers (e.g, DSCPs) to IP packets when applications invoke shares the same network.
remote operations. By providing container-mediated and As shown in Figure 2, our case study uses software
application-transparent capabilities to enforce runtimee controllers to manage hardware devices, such as sensors
work QoS, NetCON allows DRE systems to leverage the and monitors. Each sensor/camera software controller fil-
QoS services of configured routers without modifying ap- ters the sensory/imagery information and relays them to
plication source code. As shown in the Figure 1, the output the monitor software controllers that display the informa-
of each stage in NetQoPE serves as input for the next stagetion. These software controllers were developed using




Lightweight CCM (LwCCM) [14] and the traffic between the monitor have the same functionality.

these software controllers uses a bandwidth broker [3]  The use of conventional techniques, such as hard-coded
to manage network resources via DiffServ network QoS API approaches [4], requires application source code mod-
mechanisms. Although this case study focuses on DiffServifications for each context. Writing this code manually to
and LwCCM, NetQoPE is designed for use with other net- specify network QoS requirements is tedious, error-prone,

work QoS mechanisme(g, IntServ) and component mid-
dleware technologie®(g, J2EE).

and non-scalable. In particular, it is hard to envision at de
velopment time all the contexts in which the source code

Component-based applications in our case study obtainwill be deployed.

the services of the bandwidth broker via the following
middleware-guided steps: (1) network QoS requirements
are specified on each application flow, along with informa-
tion on the source and destination IP and port addresses
(2) the bandwidth broker is invoked to reserve network re-
sources along the network paths for each application flow,
configure the corresponding network routers, and obtain
per-flow DSCP values to help enforce network QoS, and
(3) remote invocations are made with appropriate DSCP
values added to the IP packets so that configured routers
can provide per-flow differentiated performance. Section 3
describes the challenges we encountered when implement
ing these steps in the context of our case study and show
how NetQoPE’s four-stage architecture shown in Figure 1
resolves these challenges.

Sidebar 1: Overview of Lightweight
CORBA Component Model (LWCCM)

Application functionality in LwCCM is provided through
componentsvhich collaborate with other components via
ports to create componenassemblies Assemblies in

LwCCM are described using XML descriptors (mainly th
deployment pladescriptor) defined by the OMG D&C [15]
specification. Theleployment plarincludes details about
the components, their implementations, and their connec-
tions with other components. Thideployment plaralso

has a placeholderonfigPropertythat is associated with ele-|
ments €.g, components, connections) to specify their prop
erties €.g, priorities) and resource requirements. Compo
nents are hosted icontainers which provide the appropri-

1%

ate runtime operating environmerg.¢, transactions sup-
port) for components to invoke remote operations.

3 NetQoPE's Multistage Network QoS Provi-
sioning Architecture

As discussed in Section 1, conventional techniques for Selution approach — Model-driven visual network re-
providing network QoS to applications incur several key duirements specification. NetQoPE provides a DSML
limitations, including modifying application source cose  Called theNetwork QoS Specification Langua@¢etQosS).

(1) specify deployment context-specific network QoS re- Using NetQoS, DRE system developers (1) model com-
quirements, and (2) integrate functionality from network Ponent assemblies, (2) assign target node assignments for
QoS mechanisms at runtime. This section describes howcomponents, and (3) declaratively specify the following de
NetQoPE addresses these limitations via its model-driven,Ployment context-specific network QoS requirements on the

middleware-guided network QoS provisioning architecture Modeled application flows: (a) network QoS classes, such
asHIGH PRIORITY (HP), HIGH RELIABILITY (HR), MUL-

TIMEDIA (MM), andBEST EFFORT(BE), (b) bi-directional
bandwidth and delay requirements, and (c) selection of

3.1 Challenge 1: Alleviating Complexities in QoS Re-
guirements Specification

Context. For each application flow, DRE systems must transportprotocol. '
specify a required level of service.g, high priority vs. low In the context of our case study, NetQoS's network QoS
priority), the source and destination IP and port addresses ¢lasses corres_pondto the DiffServ levels of service prewid
and bandwidth and delay requirements, so that network re-by our Bandwidth Broker [3f. For example, theiP class
sources are allocated and configured to provide the required®Presents the highest importance and lowest latency traf-
QoS. fic (e.q, fire sensing reporting in the server room). T
Problem. Network QoS requirements (such as the band- class represents traffic with low drop rated, survgillance
width and delay requirements mentioned above) can changéj,ata)', NetQosS also supports titel clasg for Se”,d'”q mul-
depending on a deployed context. For example, in our casdimedia d_ata and thee class for sending traffic with no
study from Section 2, multiple fire sensors are deployed at Q0S requirements. , _
different importance levels and each sensor sends its sen- Aftér a model has been created, NetQoS’s model in-
sory information to its corresponding monitors. A fire sen- (€rpreter traverses the modeled application structure and
sor deployed in the parking lot has a lower importance than 9enerates aleployment plan(described in Sidebar 1).
thhosedl.?f the server riom' The §ensor-monltor fLOWS ;hﬂs INetQoS’s DSML capabilities can be extended to provide reguénts

ave different network QoS requ”'em.emsv even though thegpecification conforming to a different network QoS meckanisuch as
reusable software controllers managing the fire sensor andntServ.
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HR_1000 in Figure 3) can potentially be reused across mul-
tiple connections. NetQoS thus increases the scalability o

expressing requirements for large numbers of connections
‘ that are prevalent in large-scale DRE systems, such as our
l case study.
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be provided at runtime.

Problem. In our case study, the temperature sensory infor-
mation from the server room is more important than the in-
formation from a conference room. It is not desirable, how-
ever, to modify the temperature sensor software controller
code to directly interact with a middleware API or net-

Propertytags (also described in Sidebar 1) to express net—\tNO;k QoShme(iEan(;sml AP S'?Pe certa;n deployment C(')nr;t
work QoS requirement annotations on the component con- e)f[ S (SU_C ast N kep oSymen n a conMerence ro_(;m) rrll_lg
nections. Section 3.2 describes how network resources aré °" €quiré networ QoS assurances. Moreover, If applica-

allocated based on requirements specified in the depIoymengzz_z%ul:gi?dﬁéfhrgfg;fgﬁ) tcc;{)ercgl:: rrise(;uc:rcigt”ggﬁgg?f)e
plan descriptor. ISI W u

. I determined until the applications are deployed and opera-
Our case study has certain application flovesg( a . .
. ! . . ) tional. This approach forces DRE system deployers to stop
monitor requesting location coordinates from a fire sensor)

. : o application components and deploy them on different nodes
where the client (monitor) controls the network priorites . pplica P ploy
) . . - if required resources cannot be allocated across the source
which the requests and replies are sent. This capability en-

) : . : .~ and destination nodes.
ables real-time actions irrespective of network congestio
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Figure 3: NetQoS Capabilities

NetQoS’s model interpreter also traverses each modeled ap
plication flow and augments th@eployment plan config-

System ¢
There are other examples.§, a temperature sensor sends Dosigner A DREE NOtRAL
. . . t
temperature sensory information to the monitors) where the Y by I e
server controls the network priorities at which the regsiest D&C concerns — _Parsers ’“‘n“°°a‘°f
. . . . . - anager
and replies are sent. This capability prevents misuse & Dif Erfie per-flow QoS 9 «

requirements

Serv priority classes by clients, thereby avoiding unneces
sary network congestion.
To support these two models, NetQoS can assign

create D&C
profile

NetQoS - . - .

i DiffServ
‘ network QoS

per-flow
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Allocator

the following priority attributes to connections: (1) ( o8 L J mechanier APIer-row( ffmc'»w\%
CLIENT_PROPAGATEDNetwork priority model, that allows MDE with NetQoS | | et DSC:” L

the clients to dictate the bi-directional priorities, arf) ( confgur7 ; ?
SERVER DECLARED network priority model, that allows ';f’f'«;%é;ﬁk 4 " IntServy Jj

the server to dictate the bi-directional priorities. Ne8X " Network e e

model interpreter updates the deployment plan with these_ ] S o ,
priority models for each of the flows, and Section 3.3 ex- Figure 4: NetRAF's Network Resource Allocation Capabil-

plains how NetQoPE's runtime mechanisms honor these!'tl€s

priority models when applications invoke remote opera- Solution approach— Middleware-based Resource Allo-
tions. cator Framework. NetQoPE’'sNetwork Resource Alloca-
Application to the case study. Figure 3 shows a NetQoS tor Framework(NetRAF) is a resource allocator engine that
model highlighting many of its key capabilities. Multiple can provide network resource allocations for DRE systems
instances of the same reusable application componegts (  using a variety of network QoS mechanisms, such as Diff-
FireSensorParking and FireSensorServer components) ca®erv and IntServ. As shown in Figure 4, the NetQoS DSML
be annotated with different QoS attributes using an inteiti  described in Section 3.1 captures the modeled per-flow net-
drag and drop technique. This method of specifying QoS work QoS requirements in the form ofdeployment plan
requirements is thus much simpler than modifying appli- that is input to NetRAF.

cation code for each deployment context, as demonstrated The modeled deployment context could have many in-
in Section 4.2.1. Moreover, the same QoS attribete,( stances of the same reusable source code, such as the tem-



perature sensor software controller is instantiated tmes, ues. Section 3.3 describes how component containers are
one for the server room, and one for the conference room.auto-configured to add these DSCPs when applications in-
When using NetQoS, however, application developers only voke remote operations.

annotate the connection between the instance at the serv
room and the monitor software controller. Since NetRAF
operates on thdeployment plathat captures this modeling
effort, network QoS mechanisms are used only for the con- Context.  After network resources are allocated and net-
nection on which QoS attributes are added. NetRAF thusWwork routers are configured, applications in DRE systems
improves conventional approaches [18] that modify appli- Need to invoke remote operations using the chosen network
cation source code to work with network QoS mechanisms, Q0S settings€.g, DSCP markings) so that the network
which can become complex when source code is reused idayer can differentiate application traffic and provisiqm a

a wide range of deployment contexts. propriate QoS to each of the flow.

NetRAF’'sNetwork Resource Allocator Managazcepts Problem. Application deve]opers have historjcally written
application QoS requests at pre-deployment-time and de-CO_de that _mstructs_the middleware to provu_je the appro-
termines the network QoS mechanismg, DiffServ or ~ Priaté runtime servicess.g, DSCP markings in IP pack-
IntServ) to use to serve the requests. As shown in Fig- &tS [16]. For example, fire sensors in our case study from
ure 4, NetRAF's Network Resource Allocator Manager S€ction 2 can be deployed in different QoS contexts that
works with QoS mechanism-specific allocatoesy, Diff- are mar!aged by re_usable softwgre controllers. Modifying
Serv Allocator), which shields it from interacting directl ~ @Pplication code to instruct the middleware to add network
with the complex network QoS mechaniseng, DiffServ QoS settings is tedious, error-prone, and non-scalable be-

Bandwidth Broker) APIs, thereby enhancing NetQoPE’s Cause (1) the same application code could be used in differ-
flexibility and extensibility. ent contexts requiring different network QoS settings and

Multiple allocators €.g, IntServ Allocator and DiffServ (2) application _developers might nOt. (and_ ideally shguld
Allocator) can be used by NetRAF’s Network Resource qot) know the dn‘f(_arent QoS contexts in which the applpa-
Allocator Manager to serve the needs of small-scale de_tlons are used durlng_the development process. Appllcat_|on
ployments (where IntServ and DiffServ are both suitable) transparent mechanisms are therefore neede(_ll to configure
and large-scale deployments (where DiffServ often pro- the middleware to add these network QoS settings depend-

vides better scalability). For example, the shaded clouding on the deployment context in which applications are
connected to the Network Resource Allocator Manager in used.

Figure 4 shows how NetRAF can be extended to work with ~ Component Server _ ‘ NetRAF
other network QoS mechanisms, such as IntServ. i e c:mmu“iwim —
Application to the case study. Since our case study is e "{ iy }'\\)rallflows

based on DiffServ, NetRAF uses tBaffServ Allocatorto ZSem !

%3 Challenge 3: Alleviating Complexities in Network
QoS Settings Configuration

c

CCMContext

A ) DSCP values for

allocate network resources. This allocator invokes the ad- componentsin | NetCON
. . - . thi: tai
mission control capabilities of the Bandwidth Broker [3] — s container
. . . . . equests \)\/\
by feeding it one application flow at a time. If all flows Middleware Bus { Remotenos;m
cannotbe admitted, NetRAF allows developers an option IP packets with DSCP Requests | [ Lwcem
P Applicati

to change the deployment context since applications have Arkings (Apptcaton)

not yet been deployed. Example changes include changing
component implementations to consume fewer resources or
change the source and destination nodes. As demonstrategolution approach — Deployment and runtime com-
in Section 4.2.3, this capability helps NetRAF incur lower ponent middleware mechanisms. Sidebar 1 describes
overhead than conventional approaches [22, 18] that per-how LwCCM containers provide a runtime environment for
form validation decisions when applications are deployed components. NetQoPENetwork QoS ConfiguratdiNet-
and operated at runtime. CON) provides capabilities to auto-configure these contain
NetRAF’s DiffServ Allocator instructs the Bandwidth ersto add DSCPs to IP packets when applications invoke re-
Broker to reserve bi-directional resources in the speci- mote operations. As shown in Figure 5, NetRAF performs
fied classes. The Bandwidth Broker determines the bi- network resource allocations, determines the bi-dir@etio
directional DSCPs and NetRAF encodes those values aDSCP values to be used for each application flow, and en-
connection attributes in the deployment plan. In addition, codes those DSCP values in the deployment plan.
the Bandwidth Broker uses ildow Provisioner3] to con- During deployment, NetCON parses the deployment
figure the routers to provide appropriate per-hop behavior plan and its connection tags to determine (1) source and des-
when they receive IP packets with the specified DSCP val-tination components, (2) the network priority model to be

Figure 5: NetCON'’s Container Auto-configurations



used for their communication, (3) the bi-directional DSCP pabilities significantly reduce application developmefit e
values, and (4) the target nodes on which the componentdort incurred by conventional approaches.

are deployed. NetCON deploys the components on their
respective containers, and creates the associated obfect r
erences that can be used by clients in a remote invocation.
When a component invokes a remote operation in LwCCM  The empirical evaluation of NetQoPE was conducted
its container’s context information provides it the object at ISISlab . dre. vanderbilt.edu/ ISl Sl ab), which
reference of the destination component. Other componentconsists of (1) 56 dual-CPU blades running 2.8 Gz XEONs

4.1 Hardware/Software Testbed and Experiment Con-
figurations

middleware provide similar capabilities via containers, with 1 GB memory, 40 GB disks, and 4 NICs per blade, and
EJB applications interact with containers to obtain thétrig  (2) 6 Cisco 3750G switches with 24 10/100/1000 MPS ports
runtime operating environment. per switch. As shown in Figure 6, our experiments were

parently add DSCPs and enforce the network prior- Plades hosted linux router software. The remaining 8 blades

ity models described in Se_cti_on 3.1. To support (s camera _ccdnamee
SERVER DECLARED network priority model, NetCON en- controller| ' . = TS, FS| -
codes sSERVER DECLARED policy, and the associated re-
quest and reply DSCPs on the object reference of the server. \ ‘ A
When a client inyokes_ a rer_note operation with this quect : =P V w.\\
reference, the client-side middleware checks the policy on
the object reference, decodes the request DSCP and sends
it on the request IP packets. In the server-side middleware,

- Routers

Component
.. Server

before sending the reply, the policy is checked again, and |gs .. Fire sensor _Temperature
the reply DSCP is added on the IP packets. °°“t'°!'e’ _ : Bt
To support CLIENT_PROPAGATED network priority Be.. Bandwidth (R " | s .. Monitor

model, NetCON configures the containers to apply a D eontoller
CLIENT_PROPAGATED policy at the point of binding an Figure 6: Experimental Setup

object reference with the client. In contrast to the p,gteq software controllere.g, a fire sensor controller)
SERVER DECLARED policy, the CLIENT_PROPAGATED developed using the CIAO middleware, which is an open-
policy can be changed at runtime and different clients can source LWCCM implementation developed on top of TAO
access the servers with different network priorities. When o4 1.time CORBA Object Request Broker (ORB). Our eval-
the source component invokes a remote operation using thiions ysed DiffServ QoS and the associated Bandwidth

policy-applied object reference, NetC_ON adds the associ-g yer [3] software was hosted on blage All blades ran
ated forward and reverse DSCP markings on the IP packetsgeqora Core 4 Linux distribution configured using the real-

thereby providing network QoS to the application flow. A {jme scheduling class. The blades were connected over a 1
container can therefore transparently add both forward andGbps LAN via virtual 100 Mbps links.

reverse DSCP values when components invoke remote op- In our evaluation scenario, a number of sensory and im-

eratlgns.usmg the container services. agery software controllers sent their monitored informati
Application to the case study.NetCON allows DRE sys- {5 monitor controllers so that appropriate control actions
tem developers to focus on their application business Jogic ¢qyid be performed by enterprise supervisors monitoring
rather than wrestling with low-level mechanisms for provi- gpnormal events. For example, Figure 6 shows sevieeal
sioning network QoS. Moreover, NetCON provides these sensor controllercomponents deployed on blades A and
capabilities without having the applications to modifyithe g These components sent their monitored information to
application code, which simplifies development withoutin- yonitor controllercomponents deployed on blades D and
curring runtime overhead, as described in Section 4.2.2. £ communication between these software controllers used
: one of the traffic classes defined in Section 3.1 with the
4 Bvaluating NetQoPE following capacities on all linksHpP = 20 Mbps,HR = 30
This section empirically evaluates the flexibility and Mbps, andum =30 Mbps. TheE class used the remaining
overhead of using NetQoPE to provide network QoS assur-available bandwidth in the network.
ance to end-to-end application flows. We first validate that To emulate the network traffic behavior of the software
NetQoPE’s automated model-driven approach can providecontrollers developed using NetQoPE, we developed the
differentiated network performance for a variety of appli- Test Net QOPE performance test. This test creates a session
cations in DRE systems, such as our case study. We therfior component-to-component communication with config-
demonstrate that NetQoPE’s network QoS provisioning ca- urable bandwidth consumption. High resolution timer



probes we used to measure roundtrip latency accurately forvided into fourteen buckets based on their resultant values
each invocation made by a client. For example, the 1 millisecond bucket contained only sam-
ples that are less than or equal to 1 millisecond in theirl¥resu

tant value, the 2 millisecond bucket contained only samples

Below we describe the experiments performed using the\yhose resultant values were less than or equal to 2 millisec-
ISISlab configuration described in Section 4.1 and analyzeond put greater than 1 millisecond, etc.

the results.

4.2 Experimental Results and Analysis

In both the experiments, to evaluate application perfor-

4.2.1 Evaluating NetQoPE’s QoS Customization Ca- mance in the presence of background network loads, sev-
pabilities eral other applications were run, as described in Table 1

(where TS stands for “temperature sensor controller,” MS

Rationale. NetQoPE's model-driven approach provides the stands for “monitor controller”, FS stands for “fire sensor

flexibility of developing application source code once and controller” and CS stands for “camera controller’). Ne-

reusing it multiple times in d|fferentdepl_oymen.tconteth . _tRAF allocated the network resources for each flow and
can also address the QoS needs of a wide variety of applica-

tions by supporting multiple DiffServ classes and network determined the DSCP values to use. After deploying the

priority models. This experiment empirically evaluates th apphcat!ons, NetCON _co_nﬁgured the containers to use the
benefits of these capabilities. appropriate network priority models to add DSCP values to

Methodology. We identified four flows from Figure 6 and IP packets when applications invoke rer.n(_)te operations.
modeled them using NetQoS as follows: (1) a fire sen-| Traffic Type Background Traffic in Mbps
sor controller component on blade A uses the high reli- BE [ HP [ HR | MM
ability (HR) class and sends potential fire alarms in the | _BE (TS-MS) | 85to 100
parking lot to monitor controller component on blade D, | HP (FS-MS) | 301040 281033 )| 281033
(2) a fire sensor controller component on blade B uses| HR(FS-MS) | 301040 | 121020 14t0 15| 30to 31
the high priority @P) class and sends potential fire alarms MM (CS-MS) | 301040 | 121020 | 141015 30t0 31
in the server room to monitor controller component on
blade F, (3) a camera controller component on blade E
uses the multimediav(M) class and sends imagery infor- Analysis of results. Figure 7a shows the results of experi-
mation of the break room to the monitor controller com- ments when the deployed applications were configured with
ponent on blade G, and (4) a temperature sensor controlledifferentnetwork QoS classes and were sending TCP traffic.
component on blade A uses the best effet)(class and  This figure shows that irrespective of the heavy background
sends temperature readings to the monitor controller com-traffic, the average latency experienced by the fire sensor
ponent on blade FELIENT_PROPAGATEDNetwork policy ~ controller component using theP network QoS class is
was used for all flowsexceptfor the the temperature sen- lower than the average latency experienced by all other
sor and monitor controller component flow, which used the components. In contrast, the traffic from tBe class does
SERVER DECLARED network policy. not get differentiated from the competing background traf-

We performed two variants of this experiment. The first fic and incurs a high latency.€., throughput is very low).
variant used TCP as the transport protocol and 20 Mbps ofMoreover, the latency increases while using#eandmm
forward and reverse bandwidth was requested for each typeclasses when compared to the class.
of QoS traffic. For each application floWgst Net QPE was Figure 7b shows the (1) cardinality of the network de-
configured to generate a load of 20 Mbps and the averagday groupings for different network QoS classes under dif-
roundtrip latency over 200,000 iterations was calculated. ferent millisecond buckets and (2) losses incurred by each
The second variant used UDP as the transport protocol anchetwork QoS class. These results show that the jitter values
Test Net QoPE was configured to makenewayinvocations experienced by the application using #&eclass are spread
with a payload of 500 bytes for 100,000 iterations. We used across all the buckets €., are highly unpredictable). When
high-resolution timer probes to measure the network delay combined with packet or invocation losses, this property is
for each invocation on the receiver side of the communica- undesirable in DRE systems. In contrast, predictability an
tion. loss-ratio improves when using the class as evidenced by

At the end of the second experiment, at most 100,000the spread of network delays across just two buckets. The
network delay values (in milliseconds) were recorded for application’s jitter is almost constant and is not affedigd
each network QoS class, if there were no invocation losses.heavy background traffic.
Those values were then arranged in increasing order, and The results in Figure 7b also show that application using
every value was subtracted from the minimum value in the the MM class experiences predictable latency than applica-
whole samplei,e., they were normalized with respect to the tions usingBe and HR class. Approximately 94% of the
respective class minimum latency. The samples were di-MM class invocations had their normalized delays within 1

Table 1: Application Background Traffic
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Figure 7: Performance of NetQoPE

millisecond. This result occurs because the queue size ause any of the four network QoS classeg,(HR, MM, and

the routers is smaller for them class than the queue size BE). The communication patterns that use the same net-

for the HR class, so UDP packets sent by the invocations do work QoS classd.g, HP) could make different forward and

not experience as much queuing delay in the core routers aseverse bandwidth reservations.d, 4, 8, 10 Mbps). In

packets belonging to thier class. ThedR class provides  such scenarios, as shown in Table 2, NetQoS auto generates

better loss-ratio, however. ~1,300 lines of XML code, which would otherwise need to
These results demonstrate that NetQoPE’s automatede handcrafted by application developers.

model-driven mechanisms (1) support the needs of a wide

varie_ty of applic_ations_ by sim_plifying the modeling of QoS Number of communications__ 2€Ployment contexts

requirements via various DiffServ network QoS classes 2 | 5 ]J10] 20

and (2) provide those modeled applications with differen- 1 23 | 50 | 95 | 185
tiated network performance validating the automated net- 5 47 | 110 | 215 | 425
work resource allocation and configuration process. By us- 10 77 | 185|365 | 725
ing NetQoPE, applications can leverage the functionalitie 20 137 ] 335 | 665 | 1325
of network QoS mechanisms with minimal effort (as de- Table 2: Generated Lines of XML Code

scribed in Section 4.2.3).

The results also demonstrated the following QoS cus-
tomization possibilities for a set of application commumic
tions (e.g, fire sensor and monitor controller component):
(1) different network QoS performancag.,HP communi- Rationale. NetQoPE provides network QoS to applications
cation between blades A and D, and communication be- by using the four-stage architecture shown in Figure 1. This
tween blades B and F, (2ifferent transport protocols for  experiment evaluates the overhead of using NetQoPE to en-
communicatione.g, TCP and UDP, and (3jifferent net- force network QoS.
work access modegl®.g, monitor controller components  Methodology. As described in Section 3.1, DRE system
were accessed using tRELIENT_PROPAGATED network developers can use NetQoPE at design time to specify net-
priority model and theSERVER DECLARED network pri- work QoS requirements on the application flows. Based on
ority model. the specified network QoS requirements, NetRAF interacts

Taken together, these results demonstrate thatwith the Bandwidth Broker at pre-deployment time to al-
NetQoPE’'s “write once, deploy multiple times for locate per-flow network resources. By providing design-
different QoS” capabilities increase deployment flextpili  and pre-deployment-time capabilities, NetQoS and NetRAF
and extensibility for environments where many reusable thus incur no runtime overhead. In contrast, NetCON pro-
software components are deployed. To provide this flexibil- vides deployment-time configuration of component middle-
ity, NetQoS generates XML-based deployment descriptorsware containers by adding DSCP markings to IP packets
that capture context-specific QoS requirements of appli- when applications invoke remote operations, as described i
cations. For our experiment, communication between fire Section 3.3. There is thus the potential for runtime ovedhea
sensor and monitor controllers was deployed in multiple when containers apply one of the network policy models to
deployment contextd,e., HR and HP QO0S requirements.  provide the the source application with an object reference
In DRE systems like our case study, however, the sameto the destination application.
communication patterns between components could occur To measure the runtime overhead incurred by Net-
in many deployment contexts. CON, we ran an experiment to determine the runtime over-

For example, the same communication patterns couldhead of the container when it performs extra work to ap-

4.2.2 Evaluating the Overhead of NetQoPE for Nor-
mal Operations



ply the policies to add DSCPs to IP packets. This ex-
periment had the following variants: (1) the client con-
tainer not configured by NetCON (no network QoS re-
quired), (2) the client container configured by NetCON to
apply theCLIENT_PROPAGATED network policy, and (3)
the client container configured by NetCON to apply the
SERVER DECLARED network policy. All experiment vari-
ants had no background network load.

In our experiment, the network priority models were
configured with DSCP values of 0 for both the forward and
reverse direction flows, as there was no network congestion
and QoS support was not needd@st Net QQPE was con-
figured to make 200,000 invocations that generated a load
of 6 Mbps, and average roundtrip latency was calculated for
each experiment variant. The routers were not configured
to perform DiffServ processing (provide routing behavior
based on the DSCP markings), and hence no edge route
processing overhead was incurred. We configured the ex
periment to pinpoint only the overhead of the container and
not of any other entity in the path of the remote communi-
cation invoked by the clients.
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Figure 8:

Analysis of results. Figure 8 P refers
to CLIENT_PROPAGATED and sb refers to
SERVER DECLARED network priority models) shows
the different average roundtrip latencies experienced by

4.2.3 Evaluating NetQoPE’s Model-driven QoS Provi-
sioning Capabilities

Rationale. As discussed in Section 3, a key design goal of
NetQoPE is to provide network QoS to applications in an
extensible manner. This experiment evaluates NetQoPE'’s
application-transparent network QoS provisioning capabi
ities.

Methodology. We first define a taxonomy for evaluating
technologies that provide network QoS assurances to end-
to-end DRE application flows. Conventional approaches
can be classified as being (1) object-oriented [8, 18, 22, 16]
(2) aspect-oriented [7], and (3) component middleware-
based [4, 19]. Below we describe how each approach pro-
vide the following functionalities needed to leverage net-
work QoS mechanism capabilities:

e Requirements Specification. In conventional ap-
roaches applications use (1) middleware-based APIs [8,
22], (2) contract definition languages [18, 16], (3) run-
time aspects [7], or (4) specialized component middleware
container interfaces [4] to specify network QoS require-
ments. Whenever the deployment context and the associ-
ated QoS requirements change, however, application source
code must also change, thereby limiting reusability. In-con
trast, as described in Section 3.1, NetQoS provides domain-
specific, declarative techniques that alleviate the need to
programmatically specify QoS requirements and increase
reusability across different deployment contexts.

e Network Resource Allocation. Conventional ap-
proaches require the deployment of applications befoiie the
per-flow network resource requirements can be provisioned
by network QoS mechanisms. If those applications can-
not have their required resources allocated they must be
stopped, their source code must be modified to specify new
resource requirements, and the resource reservationggoce
needs to start again. This approach is tedious since it in-

r
P

clients in the three different variants of the experimerd. T volves deploying and re-deploying applications (potdiytia

honor the network policy models, the NetQoPE middle-

in different nodes) multiple times. In contrast, NetRAF

ware added the request and reply DSCPs to the IP packetdhandles deployment changes through NetQoS models, as

The latency results shown in Figure 8 are all similar,
which shows that NetCON is efficient and adds negligible
overhead to applications.

Since Network QoS was not needed for this experiment

the network resources were not allocated and a DSCP value

of 0 was used. If a different variant of the experiment is
run with background network loads—and network QoS is

described in Section 3.2. This process occurs during pre-
deployment before applications have been deployed, which
reduces the efforts needed to change deployment topology
or application QoS requirements.

e Network QoS Enforcement. Conventional ap-
proaches modify application source code [16] or program-
ming model [4] to instruct the middleware to enforce run-

required for some of the application flows—network re- time QoS for their remote invocations. Applications must
sources will be allocated and the appropriate DSCP valuestherefore be designed to handle two different usecases—to

will be used in those application flows. The middleware e

nforce QoS and when no QoS is required—thereby limit-

overhead will remain the same, however, since the sameing application reusability. In contrast, as describedeéc-S

middleware infrastructure is used, only with different DSSC

tion 3.3, NetCON uses a container programming model that

values. This result thus shows that NetCON incurs minimal transparently enforces runtime QoS for applications witho

runtime overhead when enforcing network QoS support for ¢

applications.

hanging their source code or programming model.
Using the conventional approaches and the NetQoPE ap-



proach, we now compare the manual effort required to pro- a conventional approach is also 10 steps because this ap-
vide network QoS to the four end-to-end application flows proach require source code modifications as the deployment
described in Section 4.2.1. We decompose the manual efcontexts changed (in this case, the bandwidth requirements
fort across the following general steps: (Dplementa-  changed across four different deployment contexts). In con
tion, which involves software engineers writing code, (2) trast, the effort required using NetQoPE is 3 steps and is
deploymentwhich involves the system deployers to map described as follows: (1) annotate QoS specifications on
(or stop) application components to their target nodes, andeach of the end-to-end application flow (1 modeling step),
(3) modeling tool usewhich involves the application devel-  (3) deploying all the components (1 deployment step), and
opers to use NetQoPE to model a DRE application struc- (4) shutdown all the components (1 deployment step). For
ture and specify per-flow QoS requirements. In the contextthe second deployment, application developers reused the
of our evaluation, a complete QoS provisioning lifecycle NetQoS application structure model that was created for the
consists specifying requirements, allocating resourdes,  initial deployment and this helps reduce required effoyts b
ploying applications, and stopping applications when they a step.
are finished. For the third deployment, the effort required using a con-
To compare the manual efforts, we devised a realistic ventional approach is the following 13 steps: (1) modify
scenario for the four end-to-end application flows desatibe source code of each of the eight components to specify
in Section 4.2.1. In this scenario, three sets of experiment their QoS requirements (8 implementation steps), (2) de-
are conducted with the following different deploymentvari  ploying all the components (1 deployment step), (3) shut-
ants: down the temperature sensor component (1 deployment step
e In the first variant, all the four end-to-end application — resource allocation failed for the component), (4) mod-
flows are configured with the QoS requirements as specifiedify source code of temperature sensor component back to
in Section 4.2.1. useBE network QoS class (deployment context change) (1
e In the second variant, to demonstrate the effect of IMPlementation steps), (5) redeploy the temperature senso
changes in QoS requirements on manual efforts we mod-component (1 deployment step), and (6) shutdown all the

ify bandwidth requirements from 20 Mbps to 12 Mbps for components (1 deploymentstep).
each of the four end-to-end flows. In contrast, the effort required using NetQoPE for the

f third deployment is the following 4 steps: (1) annotate

e In the third variant, we demonstrate the effect o AR o
%os specifications on each of the end-to-end application

changes in QoS requirements and resource (re)reservation . .
taken together on manual efforts. We modify bandwidth re- 1oW (1 modeling step), (2) re-annotate QoS requirements
quirements of all the flows from 12 Mbps to 16 Mbps. We for the temperature sensor compo_nent flow (; deploym_e_nt
also change temperature sensor controller component to usé_tep - NetRAFs pre-deployment-tl_me al_locat|on capabili-
the high reliability (iR) class instead of the best eff@t ties determlneq thg resource allocation failure and prenhp_t
class as described in Section 4.2.1. We also increased thé\lethpE application developer to change the QoS require-

backgroundHRr class traffic across the blades, so that the ments) (3) deploying all the components (1 deployment

resource reservation request for the flow between temperaSteP). and (4) shutdown all the components (1 deployment

ture sensor and monitor controller components fails. In re- step).
sponse, deployment contexésd, bandwidth requirements,
source and destination nodes) were changed and resource
re-reservation was performed.

For the first deployment, the effort required using con-
ventional approaches is the following 10 steps: (1) modify - _
source code of each of the eight components to specify theirT@Ple 3: Comparison of Manual Efforts Incurred in Con-
QoS requirements (8 implementation steps), (2) deploying Ventional and NetQoPE Approaches
all the components (1 deployment step), and (3) shutdown
all the components (1 deployment step). The effortrequired As shown in Table 3, the results from this exercise
using NetQoPE involves the following 4 steps: (1) model show that conventional approaches incur roughly an order
the DRE application structure of all the 4 end-to-end appli- of magnitude more effort than NetQoPE to provide network
cation flows using NetQoS (1 modeling step), (2) annotate QoS assurance for end-to-end application flows. Closer ex-
QoS specifications on each of the end-to-end applicationamination shows that in conventional approaches, applica-
flow (1 modeling step), (3) deploying all the components tion developers spend substantially more effort designing
(1 deployment step), and (4) shutdown all the componentsand implementing software that can work across different
(1 deployment step). deployment contexts. Moreover, this process must be re-

For the second deployment, the effort required using peated as and when the deployment contexts and the asso-

U

Approaches | # Steps in Experiment Variants
First | Second]  Third

NetQoPE 4 3 4
Conventional| 10 10 13

10



ciated QoS requirements change. Moreover, implementa-ment algorithms that maps components to nodes while satis-
tions are complex since the requirements are specified us{fying their CPU requirements. NetQoPE differs from these
ing external APls, such as middleware-based APIs [22] or approaches by leveraging network QoS mechanisms to allo-
network QoS mechanism APIs [12]. cate network resources at pre-deployment-time and enforc-
Further, application (re)deployments are required when- ing network QoS at runtime.

ever reservation requests fail. In this experiment, onlg on Model-based design tools. Prior work has been
flow required re-reservation and that incurred additiofial e  done on model-based design tools. PICML [1] enables
fort of 3 steps. If there are large number of flows —and DRE system developers to define component interfaces,
enterprise DRE systems like our case study tend to havetheir implementations, and assemblies, facilitating dgpl
dozens or hundreds of flows—the level of effort required is ment of LwCCM-based applications. VEST [20] and
significantly more than for conventional approaches. AIRES [10] analyze domain-specific models of embedded
5 Related Work real-time systems to perform schedulability analysis and
g Provides automated allocation of components to processors
tSysWeaver [5] supports design-time timing behavior ver-
and model-based design tools. ification of real-time systems and automatic code genera-

Network QoS management in middleware. Prior tion and weavi_ng formultiple_ target pla'gf_o_rms. In contyast
work on integrating network QoS mechanisms with mid- NetQoPE provu_;les model-driven capabilities t(.) sp_eufy net
dleware [22, 18, 16, 8] focused on providing middle- work QoS requirements on DRE system application flqws,
ware APIs to shield applications from directly interacting anq subsequently allocate nfetwork resources automaticall
with complex network QoS mechanism APIls. Middleware using network QoS mechanisms. NetQOPE thus helps as-

frameworks transparently converted the specified applica-Sure that app_llcanon network QO.S reqwrements_are met at
tion QoS requirements into lower-level network QoS mech- deployment-time, rather than design-time or runtime.
anism APIs and provided n_e_twork Q_oS assurances. Theses Concluding Remarks
approaches, however, modified applications to dictate QoS
behavior for the various flows. NetQoPE differs from these ~ This paper describes the design and evaluation of
approaches by providing application-transparent and au-NetQoPE, which is a model-driven component middleware
tomated solutions to leverage network QoS mechanisms framework that manages network QoS for applications in
thereby significantly reducing manual design and develop-DRE systems. The following is a summary of the lessons
ment effort to obtain network QoS. we learned developing NetQoPE and applying it to a repre-
QoS management in middleware. Prior research has ~ sentative DRE system case study:
focused on adding various types of QoS capabilities to mid- ¢ NetQoPE’s domain-specific modeling languages help
dleware. For example, [11] describes J2EE container re-capture per-deployment network QoS requirements of ap-
source management mechanisms that provide CPU availplications so that network resources can be allocated ap-
ability assurances to applications. Likewise, 2K [24] pro- propriately. Application business logic consequentlychee
vides QoS to applications from varied domains using a not be modified to specify deployment-specific QoS re-
component-based runtime middleware. In addition, [4] ex- quirements, thereby increasing software reuse and flexibil
tends EJB containers to integrate QoS features by provid-ity across a range of deployment contexts.
ing negotiation interfaces which the application devetepe e Programming network QoS mechanisms directly in
need to implement to receive desired QoS support. Syn-application code requires that applications are deployed
ergy [17] describes a distributed stream processing middle and running before they can determine if the required net-
ware that provides QoS to data streams in real time by ef-work resources are available to meet QoS needs. Providing
ficient reuse of data streams and processing componentghese capabilities via NetQoPE'’s model-driven middleware
These approaches are restricted to CPU QoS assurances ramework helps to guide resource allocation stratebees
application-level adaptations to resource-constraired s fore application deployment, thereby simplifying validation
narios. NetQoPE differs by providing network QoS assur- and adaptation decisions.
ances in a application-agnostic fashion. e NetQoPE’s model-driven deployment and configura-
Deployment-time resource allocation.Prior work has  tion tools help transparently configure the underlying com-
focused on deploying applications at appropriate nodes sgponent middleware on behalf of applications to add context-
that their QoS requirements can be met. For example, priorspecific network QoS settings. These settings can be en-
work [13, 21] has studied and analyzed application commu- forced by NetQoPE’s runtime middleware framework with-
nication and access patterns to determine collocated-placeout modifying the middleware programming model used by
ments of heavily communicating components. Other re- applications. Applications consequently need not change
search [6, 9] has focused on intelligent component place-the way they communicate at runtime since network QoS

This section compares our R&D activities on NetQoP
with related work on middleware-based QoS managemen
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settings can be added transparently.

e NetQoPE's strategy of allocating network resources to
applications before they are deployed may be too limiting
for certain types of DRE systems. In particular, applica-
tions in open DRE systems [23] might not consume their re-
source allotment at runtime, which may underutilize system

resources. We are therefore extending NetQoPE to overpro-

[10]

[11]

vision resources for applications on the assumption that no [12]
all applications will use their allotment. If runtime resoa

contentions occur, we are also developing dynamic resource

management strategies that can provide predictable nletwor
performance for mission-critical applications.

NetQoPE’s model-driven middleware platforms and

tools are available in open-source format fromw. dre.
vander bi | t. edu/ cosm ¢, and along with the CIAO com-
ponent middleware available aww. dre.vanderbilt.

edu.
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