
Fault-tolerance for Component-based Systems - An Automated
Middleware Specialization Approach

Sumant Tambe, Akshay Dabholkar, and Aniruddha Gokhale
Dept. of EECS, Vanderbilt University, Nashville
{sutambe,aky,gokhale}@dre.vanderbilt.edu

Abstract

General-purpose middleware, by definition, cannot
readily support domain-specific semantics without sig-
nificant manual efforts in specializing the middleware.
This paper presents GRAFT (GeneRative Aspects for
Fault Tolerance), which is a model-driven, automated,
and aspects-based approach for specializing general-
purpose middleware with failure handling and recov-
ery semantics imposed by a domain. Model-driven
techniques are used to specify the special fault toler-
ance requirements, which are then transformed into
middleware-level code artifacts using generative pro-
gramming. Since the resulting fault tolerance semantics
often crosscut the middleware architecture, GRAFT
uses aspect-oriented programming to weave them into
the original fabric of the general-purpose middleware.
We evaluate the capabilities of GRAFT using a repre-
sentative case study.

Keywords: Fault tolerance, middleware specializa-
tion, generative programming, aspects, model-based.

1 Introduction

Research in middleware over the past decade has
significantly advanced the quality and feature-richness
of contemporary general-purpose middleware (e.g.,
CORBA, J2EE and .NET ) that provides remoting ab-
stractions such as remote procedure call (RPC) and
events for interprocess communication. Support for
different non-functional properties, such as fault toler-
ance, real-time, transactions and security are now read-
ily available within the middleware and its services.
Application domains as diverse as industrial automa-
tion and business processing use these middleware for
reliable and robust coordination and communication
between software components.

Despite these advances, general purpose middleware

have limitations in how many diverse domain-specific
semantics can they readily support out-of-the-box. For
example, fault tolerant CORBA (FT-CORBA) defines
the infrastructure- and application-controlled styles of
consistency management. In the former, the middle-
ware provides consistency to the applications; however,
without knowing the semantics of the data, this style of
consistency management can at best be coarse grained.
On the other hand, in the application-controlled con-
sistency management style, the applications must pro-
vide all these capabilities thereby incurring additional
development efforts and maintenance costs. Often, it is
desirable for middleware to manage consistency based
on the data semantics requirements of the applications.

Since different application domains may impose dif-
ferent variations in fault tolerance (or for that mat-
ter, other forms of quality of service) requirements,
these semantics cannot be supported out-of-the-box in
general-purpose middleware since they are developed
with an aim to be broadly applicable to a wide range
of domains. Developing a proprietary middleware solu-
tion for each application domain is not a viable solution
due to the high development and maintenance costs.

Resolving this tension requires answering two im-
portant questions. First, how can solutions to domain-
specific fault tolerance requirements can be realized
while leveraging low cost, general-purpose middleware
without permanently modifying it? An approach based
on aspect-oriented programming (AOP) [10] can be
used to modularize the domain-specific semantics as
aspects, which can then be woven into general-purpose
middleware using aspect compilers. This creates spe-
cialized forms of general-purpose middleware that sup-
port the domain-imposed properties.

Many such solutions to specializing middleware ex-
ist [9, 11], however, these solutions are often hand-
crafted, which require a thorough understanding of the
middleware design and implementation. The second
question therefore is how can these specializations be

1



automated to overcome the tedious, error-prone, and
expensive manual approaches? Generative program-
ming [4] offers a promising choice to address this ques-
tion.

In this paper we present GRAFT (GeneRative As-
pects for Fault-Tolerance), which incorporates these so-
lutions to specialize general-purpose middleware with
domain-specific fault tolerance semantics. GRAFT
uses domain-specific modeling and model-driven engi-
neering (MDE) [3,15] techniques due to their ability to
intuitively capture and modularize domain-specific re-
quirements, and their inherent support for generative
programming.

GRAFT uses a two stage process. In the first stage,
domain-specific models, describing applications, their
structure, and their communications, are annotated
with fault-tolerance requirements of the domain us-
ing our domain-specific modeling language called the
Component Availability Modeling Language (CAML).
Aspect-oriented model weaving [6] is used to auto-
matically transform these annotated structural models
into refinements that incorporate the fault tolerance re-
quirements captured using CAML. In the second stage,
generators associated with CAML synthesize aspect
code that realizes the runtime fault tolerance behavior,
which is then woven into the middleware code using an
aspect compiler.

We show the feasibility of our approach in the
context of a representative case study taken from
a warehouse material handling system that uses the
Component-Integrated ACE ORB (CIAO) – a C++
implementation of Lightweight CORBA Component
Model (LwCCM) [12] – for implementing various soft-
ware components. Our empirical results demonstrate
the savings in efforts to specialize general-purpose mid-
dleware.

2 Motivational Case Study

To better present our GRAFT solution, we illus-
trate a case study that benefits from GRAFT to real-
ize its fault tolerance requirements. Our case study is
a warehouse material handling system (MHS). A MHS
provides automated monitoring, management, control,
and flow of warehouse goods and assets. A MHS repre-
sents a class of conveyor systems used by couriers (e.g.,
UPS, DHL, and Fedex), airport baggage handling, re-
tailers (e.g., Walmart and Target), food processing and
bottling.
Architecture. The software components in the MHS
architecture can be classified as (1) management com-
ponents, which make decisions such as where to store
incoming goods, (2) material flow control (MFC) com-

ponents, which provide support for warehouse man-
agement components by determining the routes the
goods have to traverse, and (3) hardware interface layer
(HIL) components, which control MHS hardware, such
as conveyor belts and flippers.

Figure 1 shows a subset of the MHS operations,
where a MFC component directs goods within the
warehouse using the route belt a→belt b or the route
belt a→belt c. Flippers F and F′ assist in directing
goods from belt a to belt b and belt c, respectively.
Further, as shown in Figure 1, HIL components, such as
Motor Controllers (MC1, MC2, MC1′, MC2′) and the
Flipper Controller (FC, FC′), control the belt motors
and flippers, respectively. The MFC component in-
structs the Flipper Controller component to flip, which
in turn instructs the Motor Controller components to
start the motors and begin transporting goods.

Figure 1. A Distributed Processing Unit Controlling
Conveyor Belts

Domain-specific Fault Model. As goods are trans-
ported using different conveyor belts, faults could oc-
cur. Two broad kinds of faults are possible in the MHS
system: (1) hardware faults, (e.g., jamming of the flip-
per) and (2) software faults, (e.g., MC or FC com-
ponent crashes). Hardware faults in the MHS system
are detected by their associated HIL components and
communicated using application-specific software ex-
ceptions. Software faults, such as software component
crashes, are detected by the clients of those compo-
nents using system-level software exceptions generated
by the underlying middleware. Both types of faults
affect the reliable and correct operation of the MHS
system, and are classified as catastrophic faults.
Domain-specific Failure Handling and Recovery
Semantics. Failure recovery actions in MHS are based
on warm-passive replication semantics. When catas-
trophic faults are detected in a MHS, the desired sys-

2



tem response is to shutdown the affected hardware as-
sembly and activate a backup hardware assembly au-
tomatically. For example, when one of the motors of
belt b or flipper F fails, the MFC component should
stop using the belt b and route the packages via
belt c instead. The consequence of such a decision
means that the HIL components associated with belt
b should be deactivated and those with belt c as well
as flipper F′ need to be activated.

The MHS thus imposes a group-based fault toler-
ance semantics on the software components controlling
the physical hardware. If any one component of the
group fails, the failure prevents the whole group from
functioning and warrants a failover to another group.
We call this group of components as a distributed pro-
cessing unit (DPU) – in this case MC1, MC2 and FC
for belt b. Further, the clients of a DPU (e.g., the
MFC component) must failover to an alternative DPU
if any of the components in the primary DPU fails.
System Design and Implementation Challenges.
The software components of MHS are built using
LwCCM and the associated CIAO middleware. De-
signing and implementing systems that support DPU
group failure recovery semantics of a MHS using
general-purpose middleware, such as LwCCM and its
support for fault tolerance via FT-CORBA, is chal-
lenging because it lacks out-of-the-box support for (1)
grouping multiple and distributed HIL components and
treating them as a single unit of failure, (2) recover-
ing a collection of HIL components together based on
the group recovery semantics and redirecting all client
MFC components to a replica group of HIL compo-
nents.

Realizing these capabilities at application level im-
pacts all the lifecycle phases of the application. First,
application developers must modify their interface de-
scriptions specified in IDL files to specify new types of
exceptions, which indicate domain-specific fault condi-
tions. Naturally, with changes in the interfaces, appli-
cation developers must reprogram their application to
conform to the modified interfaces. Modifying appli-
cation source code to support failure handling seman-
tics is not scalable as multiple components need to be
modified to react to failures and provision failure re-
covery behavior. Further, such an approach results in
crosscutting of failure handling code with that of the
normal behavior across several component implemen-
tation modules.

An alternative approach to realizing this capability
is to manually modify the general-purpose middleware
and enhance it to recognize fault conditions and enforce
failover by accounting for semantics, such as the DPU
failover. Such modifications, however, are seldom re-

stricted to a small portion of the middleware. Instead
they tend to impact multiple different parts of the mid-
dleware. Naturally, a manual approach consumes sig-
nificant development efforts and requires invasive and
permanent changes to the middleware.

Overcoming these challenges requires an approach
that automates middleware specialization and relieves
applications from having to incur extra development ef-
fort. In particular, the following properties are desired
of the proposed approach:
• Property 1: Application developers must not incur
extra effort at design and development time to change
IDL and system models to describe how application
components are assembled and deployed. Moreover,
any approach to capture the domain-specific require-
ments must be modularized to avoid scattering.
• Property 2: No manual efforts should be expended
to incorporate the crosscutting changes to middleware
while ensuring that no intrusive changes are made to
the existing middleware. This implies, the domain-
specific changes should remain decoupled from the orig-
inal middleware, yet they must be made available at
runtime.

3 GRAFT Process for Middleware
Specialization

This section describes how GRAFT automates
such domain-specific fault tolerance semantics within
general-purpose middleware, while satisfying the prop-
erties mentioned before.

3.1 Overview of GRAFT

GRAFT is a two stage process to specialize mid-
dleware for domain-specific fault tolerance properties.
Stage 1 in GRAFT leverages existing structural mod-
els of applications modeled as component assemblies,
and annotates them with domain-specific fault toler-
ance requirements using our CAML language. The C-
SAW [17] aspect-oriented model weaver is then used to
transform the annotated models into those comprising
new structural elements corresponding to the fault tol-
erance requirements (e.g., replica). This transforma-
tion step is necessary to obtain platform-specific meta-
data (e.g., XML deployment descriptors) for deploy-
ment and configuration engines from the output model
of the transformation (See Section 3.2 for a detailed
description.)

In stage 2, CAML models are used again to gen-
erated code that otherwise would have been written
manually to carry out specialization of the middle-
ware. The generated code is modularized using As-

3



pectC++ [18] language – an aspect-oriented extension
to the traditional C++ language. Finally, GRAFT
uses the AspectC++ [18] compiler to weave in the
specialized code into the CIAO middleware (See Sec-
tion 3.3 for a detailed description). The entire GRAFT
process is orchestrated within our CoSMIC [5] MDE
framework.

3.2 Stage 1: Design-time Support for Specializa-
tion

Specializing middleware for fault tolerance proper-
ties imposed by a domain requires means to externalize
the requirements so that an automated tool can process
them. Modifying IDL, application and/or middleware
code to specify the requirements is not the right level of
abstraction since all these approaches are crosscutting
and invasive, which require significant modifications to
and maintenance of different artifacts. Satisfying Prop-
erty 1 from Section 2 requires that the application de-
sign and its structure (i.e., the composition of its com-
ponents) be shielded from the domain-imposed fault
tolerance requirements.

Thus, it is desirable to specify these requirements
using approaches that are intuitive, non invasive, and
which promote automation. Model-driven engineering
(MDE) [15], which uses domain-specific modeling lan-
guages (DSML) [7], provides the right level of abstrac-
tion at which such domain-specific requirements can
be captured. Moreover, since MDE is a widely used
approach to designing large-scale applications, it be-
comes a natural choice to specify these domain-specific
requirements.
I. Specifying requirements using MDE: GRAFT
provides a DSML called the Component Availability
Modeling Language (CAML), which provides capabil-
ities to annotate application structural models1 with
domain-specific fault tolerance requirements. CAML
is developed using the Generic Modeling Environment
(GME) [2], which provides a meta-programmable de-
sign environment for developing domain-specific graph-
ical modeling languages. GME is capable of projecting
different parts of a model on different graphical views.
CAML leverages this capability to provide separation
of concerns where application structural models are vi-
sually separate from domain-specific fault tolerance re-
quirements. CAML’s fault tolerance requirements are
separated from the application’s structural models by
projecting them only in the QoS view but not in the
structural view as shown in Figure 2. This property
ensures that any domain-specific annotations of fault

1Structural models for component-based systems are built us-
ing our CoSMIC [5] modeling tool chain.

tolerance requirements to application structural mod-
els are represented as superimposition or an overlay,
which preserves the original design and structure of
the application.

Figure 2. Availability Annotation Metamodel of
CAML

To capture the DPU semantics of our case study
from Section 2, we developed an annotation metamodel
in CAML, which is shown in Figure 2. To modular-
ize the DPU fault-tolerance requirements at the mod-
eling level, CAML provides a key modeling abstrac-
tion called FailOverUnit that supports group recovery
semantics for the components associated with the re-
lation Participates. One or more components can be
grouped together and treated as a DPU when they are
associated with a single FailOverUnit.

FailOverUnit captures the degree of replication of a
DPU as a unit using an integer attribute called Replica.
Finally, the FailOverUnit also provides support for
modeling system level and application-specific catas-
trophic exceptions because group recovery semantics
are critically dependent on such observable exceptions.
Notice how CAML ensures that the FailOverUnit is
projected only within the QoS view while the structural
view continues to be part of the functional concerns.
II. Automating structural changes based on
modularized requirements:

Middleware specializations are required for all fault
tolerant component instances in the system including
replicas. Although CAML modularizes the domain-
specific fault tolerance requirements by providing the
annotation capabilities, these annotations by them-
selves do not produce extra component instances at
run-time. The model interpreters in CoSMIC that syn-
thesize deployment and configuration metadata for all
the components, do not understand the annotations ei-
ther. Therefore, from the perspective of the structural
view, the application model is not complete unless the
replicas of the protected components are made avail-
able. Thus the original structural models of the ap-

4



plication must be transformed using these annotated
requirements, however, without the developer expend-
ing any effort to satisfy Property 1 in Section 2.

In our case study, such a transformation requires
several steps including (1) duplicating models of the
primary components participating in a FailOverUnit,
and (2) duplicating their interconnections so that
the necessary connections can be established at de-
ployment time for the replica DPU. GRAFT uses
aspect-oriented model weaving [6] support provided
by the Constraint-Specification Aspect Weaver (C-
SAW) [17] tool to transform the annotated structural
models. The C-SAW weaver is a generalized model-to-
model transformation engine for manipulating domain-
specific models. C-SAW uses a language called Embed-
ded Constraint Language (ECL) to specify transforma-
tions.

As shown in Figure 3, we developed a model-
to-model transformation using C-SAW that takes a
CAML model having annotated fault tolerance require-
ments as an input model, and generates a structural
output model in response to the fault tolerance require-
ments. The new structural model is then traversed by
existing model interpreters to produce metadata for
packaging, assembling, deployment and configuration.

Figure 3. Automated Model Weaving Using C-SAW
and FailOverUnit Replication Specification in ECL

Step 1 in Figure 3 represents a CAML model, which
has fault-tolerance requirements modeled along with
the application’s structure. Step 2 in Figure 3 shows
how a CAML model is automatically enriched using a
transformation written using ECL. The transformation
specification is parameterized and accepts the number
of desired replicas as a parameter, which is specified as
an integer attribute of a FailOverUnit in Step 1. Step
3 then uses existing model interpreters, which operate
on the transformed models to produce platform-specific
metadata.

The transformation is divided into multiple ECL
strategies that perform two important steps. First,
it creates clones of the participant components of a
FailOverUnit. Second, it replicates the interconnec-
tions between the primary components into replica
components. The result of these two steps is that
structurally identical copies of the primary component
models are created. This is necessary because the de-
ployment and configuration tools do not distinguish be-
tween the primary components and the replica compo-
nents.

3.3 Stage 2: Runtime Support for Specialization

The MDE tools [5] deploy the entire system and
configure the middleware, however, they do not special-
ize the middleware. It is necessary for the middleware
to be specialized using the domain-specific fault toler-
ance semantics specified in the MDE tools, without ex-
pending any manual effort. To address this challenge,
GRAFT uses a deployment-time generative approach
that augments general-purpose middleware with the
desired specializations.

For our case study, GRAFT specializes the client-
side middleware stubs. Client-side middleware stubs
are used to communicate exceptions to client-side ap-
plications so that they can initiate appropriate recovery
procedure in response to that. As mentioned in Sec-
tion 2, these exceptions could be raised because of (1)
hardware faults detected by the server or (2) software
failure of the server side component itself. Both are ex-
amples of catastrophic exceptions, in response to which
clients must initiate group recovery. To simplify de-
velopers’ job, GRAFT generates code at deployment-
time that augments the behavior of the middleware-
generated stubs to catch failure exceptions, and initiate
domain-specific failure recovery actions.

GRAFT provides a model interpreter, which (1)
traverses the CAML model, (2) identifies the compo-
nents that participate in FailOverUnits, (3) identifies
the components that are clients of the FailOverUnit
participant components, and (4) generates modular-
ized source code that provides failure detection and
recovery as shown by Step 1 in Figure 4. Depending
upon the role of the component, two different types of
behaviors are generated by the interpreter.

We have identified two different roles of compo-
nents with respect to a FailOverUnit: (1) partici-
pants of a FailOverUnit (e.g., FC component) and
(2) non-participant client components that are directly
communicating with one or more participants of the
FailOverUnit (e.g., MFC component). The partici-
pants of a DPU do not failover, however, clients of

5



Figure 4. Automated Generation of Failure Detec-
tion and Handling Code

a DPU fail over to a replica FailOverUnit. To allow
this difference in the behavior, failover code is gener-
ated only for the client components whereas the code
for FailOverUnit participant components do not per-
form failover; instead they trigger failover in the client
components of the FailOverUnit.

GRAFT encodes this difference in behavior by gen-
erating different AspectC++ code for each compo-
nent associated with a FailOverUnit depending upon
whether the component is a participant or a client.
For participant components, for every method in the
interface that can potentially raise a catastrophic ex-
ception, an around advice is generated that catches ex-
ceptions representing catastrophic failure and initiates
a shutdown procedure for all the participant compo-
nents. For the client components, however, a differ-
ent around advice is generated that not only detects
the failure and initiates a group shutdown procedure
but also performs an automatic failover to a replica
FailOverUnit.

To modularize and transparently weave the fail-
ure detection and recovery functionality within the
stubs, GRAFT leverages Aspect-oriented Program-
ming (AOP) [10] support provided by the As-
pectC++ [18] compiler. The CAML model interpreter
generates AspectC++ code,2 which is then woven by
the AspectC++ compiler into stubs at the client side
producing specialized stub implementations as shown
by Step 2 in Figure 4. Finally, the specialized source
code of the stubs are compiled using a traditional C++
compiler.

2Due to space restrictions we are not showing the generated
aspect code.

4 Evaluation of GRAFT

We evaluate GRAFT by measuring the efforts saved
to specialize middleware in the context of the MHS case
study of Section 2. Additionally we also qualitatively
validate the runtime behavior of the specialized mid-
dleware in meeting the fault tolerance requirements of
the MHS case study.
Qualitative validation of runtime behavior. Fig-
ure 5 shows how the specialized stubs generated by
GRAFT react to failures at runtime and provide group
recovery semantics. To control the lifecycle of the com-
ponents, the aspect code communicates with domain
application manager (DAM), which is a standard de-
ployment and configuration infrastructure service de-
fined in LwCCM. It provides high-level application pro-
gramming interface (API) to manage lifecycle of appli-
cation components. Below, we describe the steps taken
by GRAFT when a catastrophic exception is raised.

Figure 5. Runtime Steps Showing Group Recovery
Using GRAFT

1. As shown in Figure 5, MFC component directly
communicates with the FC component, which in
turn communicates with MC1 and MC2 compo-
nents. Consider a scenario where FC makes a call
on MC1 and MC1 detects a motor failure and
raises MotorFailureException. The exception is
caught by the generated aspect code in FC indi-
cated by (1) in Figure 5.

2. The specialized stubs in FC, initiate shutdown
of the primary DPU by instructing the DAM to
remove participating components of the primary
DPU (FC, MC1, and MC2), including itself.

3. DAM instructs the containers hosting the primary
DPU components (FC, MC1, and MC2) to passi-
vate and remove the components.

6



Fault-tolerance Modeling Efforts Fault-tolerance Programming Efforts

Component # of original # of replica # of replica # of try # of catch Total # of
Name connections components connections blocks blocks lines

Material Flow Control 1 / 1 0 / 0 2 / 0 1 / 0 3 / 0 45 / 0

Flipper Controller 2 / 2 2 / 0 4 / 0 2 / 0 6 / 0 90 / 0

Motor Controller 1 1 / 1 2 / 0 2 / 0 0 / 0 0 / 0 0 / 0

Motor Controller 2 2 / 1 2 / 0 2 / 0 0 / 0 0 / 0 0 / 0

Table 1. Manual Efforts in Developing ITS Casestudy Without/With GRAFT

4. Removal of FC component triggers a system-level
exception at the MFC component, which is again
caught by the specialized stub at MFC-side.

5. The specialized stubs for MFC fetch a reference of
FC′ from the naming service. The naming service
is assumed to be pre-configured at deployment-
time with lookup information for all the compo-
nents in the system.

6. MFC successfully fails over to the replica DPU
(FC′, MC1′, and MC2′) and resumes the earlier
incomplete remote function call. Finally, FC′ com-
municates with MC1′ and MC2′ to drive the belt
motors of the backup belt c and continues the
operation of MHS system without interruption.

Evaluating savings in effort to specialize mid-
dleware. Table 1 shows the manual efforts saved by
adopting GRAFT’s approach in designing and develop-
ing the MHS case study described in Section 2. The ta-
ble shows that there is reduction in the efforts of mod-
eling replica components and connections for all the
four components. The declarative nature of CAML’s
FailOverUnit annotations and the automated model-
to-model transformation thereafter, obviates the need
for modeling the replica components and connections
explicitly, resulting in a modular design of the MHS
system.

A significant reduction in programming efforts is
achieved due to automatic generation of code that han-
dles failure conditions at runtime in the MHS system.
The generated code for each component is different de-
pending upon the number of remote interfaces used
by a component, the number of methods in each re-
mote interface, and the types of exceptions raised by
the methods. The number of try blocks in Table 1
corresponds to the number of remote methods whereas
the number of catch blocks correspond to the number
of exceptions.

For example, when MFC component invokes a
method of the FC component, 45 lines of aspect code
is generated to handle group recovery semantics for
that one function call alone. GRAFT’s approach yields
higher savings in modeling and programming efforts for
larger, more complex systems, which may have hun-

dreds of components with tens of them requiring fault-
tolerance capabilities.

5 Related Work

Polze et. al., [13], use AOP techniques to describe
fault-tolerance as a non-functional component property
and focus on the automatic generation and replica-
tion of protected components and fault tolerant middle-
ware services based on aspect information and demon-
strate service configuration through a graphical user-
interface. GRAFT’s approach overlaps considerably
with this approach, however, GRAFT provides auto-
matic support for domain-specific failure handling se-
mantics to applications as opposed to common middle-
ware services.

ACT [14] enables runtime adaptation by transpar-
ently weaving adaptive code in the ORBs at runtime,
which intercepts and adapts the requests, replies and
exceptions that pass through the ORBs. ACT uses a
runtime approach, which is based on portable intercep-
tors. Although ACT’s generic and rule-based intercep-
tor capabilities could be used to provide various failure
management semantics at runtime, it provides no sup-
port for capturing design-, deployment-time domain-
specific fault-tolerance requirements.

Sevilla et. al., [16] describe an automatic code gen-
eration approach for distribution, fault tolerance and
load balancing aspects of component based systems.
GRAFT on the other hand provides mechanisms that
specifically support group failure recovery semantics
based on the model- as well as code-based weaving of
component-based systems along with runtime monitor-
ing infrastructure support.

Afonso et. al., [1] propose a manual AOP-based ap-
proach for modularizing existing fault tolerance code
from the legacy threaded applications. But the modu-
larization and weaving must be done manually at ap-
plication level whereas GRAFT automatically weaves
the domain-specific failure handling code in general
purpose middleware to provide transparent recovery
through client-side failover.

JReplica [8] attempts to modularize the replication
aspect of fault tolerance using AOP. JReplica extends

7



UML with a replication language to define replica-
tion policies at a finer domain-independent granular-
ity whereas GRAFT supports domain-specific failure
semantics such as group failover. However JReplica
does not provide the middleware implementation for
fault recovery whereas GRAFT automatically gener-
ates and weaves the necessary failure recovery code
transparently in the middleware. A common feature
between JReplica and GRAFT is that they both en-
sure that only the required method invocation paths
are intercepted.

6 Conclusion

This paper presented GRAFT, which is a two stage
generative approach to specialize general purpose mid-
dleware with domain-specific fault tolerance semantics.
General purpose middleware are designed to support a
wide range of application domains and can only provide
generic solutions for non-functional properties, such as
fault tolerance. When the domain imposes a rich set of
fault tolerance requirements, GRAFT’s approach is to
automatically specialize the middleware using contem-
porary aspect-oriented languages to provide the desired
failure recovery semantics without any intrusive modi-
fications to the applications and middleware.

The capabilities of GRAFT were demonstrated in
the context of an automated material handling system
(MHS) case study for group-wide failure recovery se-
mantics. The MDE capabilities of GRAFT including
CAML are available in open source as part of our CoS-
MIC toolsuite at www.dre.vanderbilt.edu/cosmic.

References

[1] F. Afonso, C. Silva, N. Brito, S. Montenegro, and
A. Tavares. Aspect-oriented fault tolerance for real-
time embedded systems. In ACP4IS ’08: Proceedings
of the 7th workshop on Aspects, components, and pat-
terns for infrastructure software, 2008.

[2] Ákos Lédeczi, Árpád Bakay, M. Maróti, P. Völgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Compos-
ing domain-specific design environments. Computer,
34(11):44–51, 2001.

[3] C. Atkinson and T. Kuhne. Model-driven Develop-
ment: A Metamodeling Foundation. IEEE Software,
20(5):36–41, 2003.

[4] K. Czarnecki and U. W. Eisenecker. Generative
Programming: Methods, Tools, and Applications.
Addison-Wesley, Reading, Massachusetts, 2000.

[5] A. Gokhale, K. Balasubramanian, J. Balasubrama-
nian, A. S. Krishna, G. T. Edwards, G. Deng,
E. Turkay, J. Parsons, and D. C. Schmidt. Model
Driven Middleware: A New Paradigm for Deploying

and Provisioning Distributed Real-time and Embed-
ded Applications. The Journal of Science of Com-
puter Programming: Special Issue on Foundations and
Applications of Model Driven Architecture (MDA),
73(1):39–58, 2008.

[6] J. Gray, T. Bapty, S. Neema, D. C. Schmidt,
A. Gokhale, and B. Natarajan. An Approach for
Supporting Aspect-Oriented Domain Modeling. In
Proceedings of the 2nd International Conference on
Generative Programming and Component Engineering
(GPCE’03), 2003.

[7] J. Gray, J. Tolvanen, S. Kelly, A. Gokhale, S. Neema,
and J. Sprinkle. Domain-Specific Modeling. In CRC
Handbook on Dynamic System Modeling, (Paul Fish-
wick, ed.), pages 7.1–7.20. CRC Press, May 2007.

[8] J. Herrero, F. Sanchez, and M. Toro. Fault tolerance
aop approach. In Workshop on Aspect-Oriented Pro-
gramming and Separation of Concerns, 2001.

[9] J. Jin and K. Nahrstedt. On Exploring Performance
Optimizations in Web Service Composition. In Mid-
dleware, pages 115–134, 2004.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In Proceedings of the 11th Eu-
ropean Conference on Object-Oriented Programming,
pages 220–242, June 1997.

[11] S. Mohapatra, R. Cornea, H. Oh, K. Lee, M. Kim,
N. D. Dutt, R. Gupta, A. Nicolau, S. K. Shukla, and
N. Venkatasubramanian. A Cross-Layer Approach for
Power-Performance Optimization in Distributed Mo-
bile Systems. In IPDPS, 2005.

[12] Object Management Group. Lightweight CCM FTF
Convenience Document, ptc/04-06-10 edition, June
2004.

[13] A. Polze, J. Schwarz, and M. Malek. Automatic gener-
ation of fault-tolerant corba-services. In TOOLS ’00:
Proceedings of the Technology of Object-Oriented Lan-
guages and Systems (TOOLS 34’00), 2000.

[14] S. M. Sadjadi and P. K. McKinley. Act: An adaptive
corba template to support unanticipated adaptation.
In Proc. of ICDCS. (2004).

[15] D. C. Schmidt. Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

[16] D. Sevilla, J. M. Garcia, and A. Gomez. Aspect-
oriented programing techniques to support distribu-
tion, fault tolerance, and load balancing in the corba-
lc component model. nca, 00:195–204, 2007.

[17] Software Composition and Modeling (Softcom) Labo-
ratory. Constraint-Specification Aspect Weaver (C-
SAW). www.cis.uab.edu/ gray/Research/C-SAW,
University of Alabama, Birmingham, AL.

[18] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. As-
pectC++: An Aspect-Oriented Extension to C++. In
Proceedings of the 40th International Conference on
Technology of Object-Oriented Languages and Systems
(TOOLS Pacific 2002), 2002.

8


