VANDERBILT UNIVERSITY

7 Z 7 Z

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

Institute for Software Integrated Systems
Vanderbilt University
Nashville, Tennessee, 37212

Real-time Sensor Data Analysis Processing of a Soccer Game Using
OMG DDS Publish/Subscribe Middleware

Kyoungho An, Sumant Tambe, Andrea Sorbini, Sheeladitya Mukherjee,
Javier Povedano-Molina, Michael Walker, Nirjhar Vermani,

Aniruddha Gokhale, Paul Pazandak

TECHNICAL REPORT
[SIS-13-102

June, 2013

Real-time Sensor Data Analysis Processing of a Soccer Game
Using OMG DDS Publish/Subscribe Middleware

Kyoungho An', Sumant Tambe?, Andrea Sorbini?, Sheeladitya Mukherjee!, Javier Povedano-Molina?,
Michael Walker!, Nirjhar Vermani', Aniruddha Gokhale!, and Paul Pazandak?

! Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37212, USA
2 Real-Time Innovations
Sunnyvale, CA 94089, USA
® CITIC-UGR
18071 Granada, Spain

Abstract. This paper describes a real-time event-based system to distribute and analyze high-velocity
sensor data collected from a soccer game case study used in the DEBS 2013 Grand Challenge. Our
approach uses the OMG Data Distribution Service (DDS) for data dissemination and we combine
it with algorithms to provide the necessary real-time analytics. We implemented the system using
the Real-Time Innovations (RTI) Connext™DDS implementation, which provides a novel platform
for Quality-of-Service (QoS)-aware distribution of data and real-time event processing. We evaluated
latency and update rates of one of the queries in our solution to show the scalability and benefits of
configurable QoS provided by DDS.

1 DEBS Grand Challenge Problem

The ACM International Conference on Distributed Event-based Systems (DEBS) Grand Challenge problem
comprises real-life data and queries in event-based systems. The goal of the DEBS 2013 Grand Challenge
is to implement an event-based system for real-time, complex event processing of high velocity sensor data
collected from a soccer game [1]. The real-time analytics for the DEBS Grand Challenge comprises continuous
statistics gained by processing raw sensor data such as running analysis, ball possession, heat map, and shot
on goal. Contemporary approaches to gathering data for soccer matches utilizes a complex system of 16
cameras to record every part of a soccer field and computers to process the feed from the cameras. The
DEBS Grand Challenge adopts a different approach by using inertial sensors to collect all data.

The sensor data is collected by a real-time localization system from an actual soccer game. The data
is recorded in a file and provided to the DEBS Grand Challenge teams. The sensors are located near each
player’s shoe, in the ball, and attached to each goal keeper’s hands. The sensors attached to players generate
data at 200Hz while the ball sensor outputs data at 2,000Hz. Each data sample contains the sensor 1D, a
timestamp in picoseconds, and three-dimensional coordinates of location, velocity, and acceleration.

The challenge problem requires that every team must address the four different queries it includes.
Query 1 has two sub-queries: current running statistics and aggregate running statistics. The streamed
result of current running statistics should include distance, speed, and intensity of each player. The intensity
describes the running state of a player and is classified into 6 states (stop, trot, low, medium, high, and
sprint) depending on the speed of that player. The aggregate running statistics are calculated and streamed
per player over four different time windows: 1 minute, 5 minutes, 20 minutes, and the whole game duration.
Multiple metrics are collected in these statistics.

The aim of query 2 is to calculate the ball possession time for each player and for each team. We calculate
the total time of the ball possession and the number of hits for each players. For team ball possession, the
total time of the ball possession and percentage of ball possession for a specified team are generated. Like
query 1, the team ball possession statistics must be provided for four different time windows. Finally the
statistics for these queries need to be updated with at 50Hz.

Query 3 provides heat map statistics capturing how long each player stays in various regions of the field.
The soccer field is divided into defined grids with z rows and y columns (8x13, 16x25, 32x50, 64x100) and

results should be generated for each grid size. Moreover, distinct calculations need to be provided for different
time windows like query 1 and query 2. As a result, query 3 must output 16 result streams, a combination
of 4 different grid sizes and 4 time windows, in total. Fach stream includes the percentage of time that a
player spends in each user-defined cell boundary.

Query 4 provides statistics for a shots on goal, which is defined as a player attempting to score a goal.
It needs to keep track of shots scored or saved by the goalkeeper or other players. The result stream of the
query includes the player ID and the ball sensor data.

The rest of the paper describes our solution to the challenge problem. Section 2 describes the details
of our solution; Section 3 presents experimental evaluations of our implementation; and Section 4 presents
concluding remarks including lessons learned.

2 Our Solution Using the OMG DDS-based Query Implementation

Query 1

T T T T T !

Current 1min 5min 20 min Whole |

| | | | | |

Player Sensors N |

N N Sensor Data | Players | Average Players Current | Players | Aggregate Running ||

37;'05;’;‘5“)“ Generator (50Hz) Processor (50Hz) Running Analyzer | (50H2) Analyzer
2
Players | QUerY3
(50Hz) 16 streams
Accumulating Players (4 time windows * 4 grid sizes)
— — Heat Map Processor
Heat Map Processor (1H2) P
Ball H
(50Hz) I T T T) Client

Query 2 ‘ } ‘
Current 1min 5min 20 min Whole |
| L1 |
Players and Ball Player Ball Possession L Players N Team Ball Possession
(50Hz) Processor (when possession updated) Processor |

T
N Players
Ball In Field (when a hit occurs)
Processor Query 4 l
Ball Shot On Goal L current
(S0Hz) Processor |

Fig. 1. High Level Data Flow Architecture

This section describes our OMG DDS-based solution to the DEBS 2013 Challenge Problem. We provide
an overview of DDS and an overview of the solution with the DDS features used in our system. Finally, we
present a detailed description of each query implementation.

2.1 Overview of OMG DDS

The OMG Data Distribution Service (DDS) specification defines a distributed communications middleware
standard that is useful in a wide variety of environments [2]. The core DDS specification defines a data-
centric publish-subscribe architecture for connecting anonymous information providers with information
consumers. DDS promotes loose coupling between system components. The information consumers and
providers are decoupled with respect to time (i.e., they may not be present at the same time), space (i.e., they
may be anywhere), flow (i.e., information providers must offer equivalent or better quality-of-service (QoS)
than required by the consumers), behavior (i.e., business logic independent), platforms, and programming
languages. A data provider publishes typed data-flows, identified by names called Topics. The coupling is
expressed only in terms of topic name, data type schema, and the required and offered QoS attributes of
consumers and producers respectively. In the following subsection, DDS concepts used in our solution are
briefly introduced.

Data-Centric Architecture Using DDS, applications share a global data space (or domain) governed by
schema specified using the XTypes [3] standard. Each topic schema is described as a structured datatype (an
Interface Definition Language struct). The datatype can be keyed on one or more fields. Each key identifies
an instance (similar to a primary key in a database table) and DDS provides mechanisms to control the
lifecycle of instances. Instance lifecycle supports CRUD (create, read, update, delete) operations. Complex
delivery models can be associated with data flows by simply configuring the topic QoS.

DataWriter and DataReader DataWriters and DataReaders are end-points applications used to write
and read typed data messages (samples) from the global data space. DDS ensures that the end-points are
compatible with respect to the topic name, datatype, and the QoS. Creating a DataReader with a known topic
and datatype implicitly crates a subscription, which may or may not match with a DataWriter depending
upon the QoS.

Data Caching Data received by the DataReader is stored in a local cache. The application accesses this
data using one of two methods: read() and take(); read() leaves the data in middleware cache until it is
removed by either calling take() or it is overwritten by the subsequent data samples. The Resource Limits
QoS prevents the middleware caches from growing out of bounds. Finally, query conditions provide a powerful
mechanism to write SQL-like expressions on the datatype members and retrieve data samples that satisfy
the predicates.

Content-Filtered Topics Content-filters refine topic subscription and filter samples that do not match
the defined application-specified predicate. The predicate is a string encoded SQL-like expression based on
the fields of the datatype. The query expression and the parameters may change at run-time. Data filtering
may be performed by the DataWriter or DataReader.

DDS Quality-of-Service DDS supports multiple QoS policies. Most QoS policies have requested /offered
semantics and can configure the dataflow between each pair of DataReader and DataWriter. We used the
following QoS policies in our solution.

— Reliability: controls the reliability of the data flow between DataWriters and DataReaders. BEST_EFFORT
and RELIABLE are two possible alternatives. BEST_EFFORT reliability does not use any cpu/memory
resource to ensure delivery of samples. RELIABLE, on the other hand, uses an ack/nack based protocol
to provide a spectrum of reliability guarantees from strict (i.e., fully reliable) to BEST EFFORT. The
reliability can be tuned using the History QoS policy.

— History: This QoS policy specifies how much data must be stored (in DDS caches) by a DataWriter or
DataReader. It controls whether DDS should deliver only the most recent value (i.e., history-depth=1),
attempt to deliver all intermediate values (i.e., history depth=unlimited), or anything in between.

— Time-based Filter: High rate data flows can be throttled using the time-based filter QoS policy.
A minimum separation configuration parameter specifies the minimum period between two successive
arrivals of data samples. When configured, the DataReader receives only a subset of data.

— Resource Limits: This QoS policy controls the memory used to cache samples. Maximum number of
samples, maximum number of samples-per-instance and maximum number of instances can be specified.

2.2 DDS-based Architecture

Our implementation of the four queries uses a DDS-based solution. The key architectural pieces of our
solution, illustrated in Figure 1, comprise processing blocks and a high-level data flow. Each processing block
consists of one or more DDS DataWriters and DataReaders to publish or subscribe to data, respectively, where
the data flow in the network is logically partitioned by Topics. Using DDS, application developers do not
need to consider the network connections of each data flow between DataWriters and DataReaders because
it is handled by the underlying middleware. DataReaders and DataWriters and their QoS configurations in
our system are defined in XML files that make it convenient to manage them and separate implementation

concerns of the middleware and business logic of processing blocks. The architectural setup is geared towards
solving all four queries of the DEBS challenge problem.

We defined data structures in IDL for each dataflow as well as its point-to-point segments. Key attributes,
such as sensor_id and player_id, define unique instances to group the updates for the same physical entity
(e.g., a sensor). Through the grouping mechanisms enabled by defining a key in DDS, a processor can easily
distinguish between multiple players. The keys also help in partitioning the dataflow(s) across multiple
processors to exploit inherent parallelism in the per-player data streams. Each DataReader in the processing
blocks has a (in-memory) cache to store and access the samples when needed. For instance, we utilized the
cache data to implement the historical statistics required in some queries, such as aggregated data for the
specified number of minutes. Cached data was also used for calculating distances between the ball and players
to find the closest player to the ball for query 2 at a certain time.

In our solution, DDS QoS has been utilized for obtaining benefits of efficient implementation as well
as satisfying the real-time requirements of the DEBS Challenge Problem. Since the queries have different
characteristics in terms of the required update rates and processing data sizes, we needed to apply the
appropriate QoS configurations for each query according to its characteristics. We set BEST_EFFORT as
Reliability QoS for periodic queries like query 1 and 3, and RELTABILITY for aperiodic queries like query 2
and 4. Consequently, our system can guarantee faster update rates for periodic queries while assuring accuracy
for aperiodic queries. Additionally, we utilized Time-based Filter QoS to manage resources efficiently and
guarantee a query’s requirement by configuring different minimum separation values. The details on how
each query is implemented is presented in the rest of this section.

2.3 Implementing Query 1

The SensorDataGenerator processing block publishes sensor data in a real-time manner. The published data
is sent to multiple processing blocks to be processed in parallel. In the case of query 1, a processor named
AwverageProcessor merges the data of two sensors attached to a player by averaging the sensor values. In
the processing block, ball data is filtered because only the player’s information is needed for query 1. We
utilized Time-based Filter QoS supported by DDS to efficiently manage constrained resources and follow
the required update interval of 50Hz. The next processing block for Query 1 is CurrentRunningAnalyzer in
which a player’s running state, speed and distance are calculated, and the results are published to clients
and the AggregateRunningAnalyzer. Finally, in the AggregateRunningAnalyzer, the accumulated values of
distance and speed categorized by a player’s running states are streamed as a result, which is divided into
multiple streams for the given time windows.

When a new sample arrives at the DataReader of a processor, a callback function, on_data_available()
provided by the DataReader’s listener interface is invoked. Since the processor of the query computes required
statistics when a new sample arrives, we implement our business logic in the call back function.

By using z and y coordinates of a previous sample kept in a processor, distance is calculated. The
timestamp of the previous sample is designated as the starting time of the calculation and the timestamp of
the current sample is assigned as the ending time. The speed is obtained by the velocity value of the current
sample and the unit of speed needs to be converted from pm/s to km/h.

However, the raw sensor data obtained from a real soccer game is not always accurate. Erroneous distance
or speed values are possibly attained based on incorrect sensor data. To avoid the problem, we compare three
speed values at the current timestamp obtained using three different ways: velocity of the current sample,
velocity of the previous sample, and distance and time of the current sample. If outliers exist, these are
removed by a filtering process.

Figure 2 presents distance in millimeters between each timestamp of a player and shows improvement
of data accuracy by applying the filtering process. If differential between the speed values determined by
different sources of sensor data at the same timestamp is larger than 20 km/h, which is configurable for
different physical context, it can be marked as a sensor data error and needs to be fixed to a proper value
from a correct source. Once speed and distance values are accurately evaluated, a player’s intensity is classified
by the speed value. If all of the required information is successfully calculated and stored, we call the write
operation to let the middleware publish the outcome for clients.

For aggregate running analysis, we maintain a separate processor called Aggregate RunningAnalyzer, which
subscribes to the result stream of the current running analysis. The aim of the query for aggregate running

Player Distance without Filtering
100 T T T T

60 b

TN e T ansaaah s YN

0
1.0754 1.0755 1.0756 1.0757 1.0758 1.0759 1.076 1.0761 1.0762 1.0763 1.0764 1.0765
Time (picosecond) x10'

Player Distance with Filtering
100 T T T T

Distance (millimeter)

60 b

40 1

Distance (millimeter)

0 1 1 1 1 1 1 1 1 1 1
1.0754 1.0755 1.0756 1.0757 1.0758 1.0759 1.076 1.0761 1.0762 1.0763 1.0764 1.0765
Time (picosecond) %10

Fig. 2. Comparing Player Distance with Filtering Outliers

analysis is to accumulate the time duration of classified intensities of players for 4 different time windows.
Since the query incorporates the four time windows, the processor publishes four result streams by different
data writers.

The main challenge of this query is managing historical sample data effectively. We applied an incremental
algorithm which avoids redundant computation that will occur when a new sample arrives. The algorithm
keeps adding duration values of a new sample to a cache in the processor, and subtracting the time duration
values of samples from the cache which are no longer included in the specified time windows because of newly
arrived samples.

2.4 Implementing Query 2

The statistics needed for query 2 are ball possession of players and teams. To acquire these statistics,
we created two processing blocks: PlayerBallPossessionProcessor and TeamBallPossessionProcessor. In the
PlayerBallPossessionProcessor, the sensor data of players and balls are subscribed from SensorDataGener-
ator to find a ball possessing player by computing the distance between players and the ball, and the ball’s
acceleration. The detailed state diagram and algorithm for the player ball possession is described below and
shown in Figure 3.

According to the state diagram described in Figure 3, possession for each player is calculated as follows.
First, all the players are in the initial state which indicates the player does not possess the ball. The player
closest to the ball within a 0.3 meter radius at a certain timestamp is calculated using the z and y coordinates
of the ball and the players’ data. This player has possession of the ball starting at that timestamp and is in
possession state.

The player gets his last hit while entering the states below as follows:

1. Hit: when the distance to the ball is over two meters. When the distance to the ball from the player
who possessed the ball is over the limit, it can be assumed that the player passed or shot the ball with
the last touch.

2. Intercepted: if the player that possessed the ball previously is still in the possession state and is not
able to reach the hit state, and the closest player to the ball is changed, we can interpret this to mean
that the ball has been intercepted by another player.

P
} Hit
\%k

Distance to the ball over 2m /
Last hit++

v Closest to the ball / Ball acceleration

First hit++ 4 . over 55 m/s? . -
Possession ‘ Hit Transition

Closest player changed /
Last hit++

—
—{ Intercepted
T Game stopped / Last hit++
GameStopped Ball leaves the field / Last hit++

Fig. 3. State Diagram for PlayerBallPossessionProcessor

3. GameStopped: the game is stopped (including when the ball leaves the field) when the z and y coor-
dinates of the ball are not in the field or when the ball’s sensor timestamp is not in the time range of
first or second half.

Moreover, if the ball’s height exceeds 1 meter, then subsequent players that may be closest are ignored, i.e,
if the ball is in flight, no one has possession of the ball till its height is below 1 meter. For a team possession,
we have a separate processor called TeamBallPossession, which subscribes to the result stream of the player
ball possession. We are calculating it by storing the possession time of each player at every timestamp into
a double-ended queue. To display the team possession at the current timestamp, the possession for each
player on the team is aggregated from the current timestamp, which is located at the end of the appropriate
queue with the previous timestamp.A team’s possession percentage is calculated accordingly. As the query
incorporates the four time windows, the processor publishes four result streams by different data writers.

2.5 Implementing Query 3

Query 3 is perhaps the most straightforward query in its logic. However, the amount of data required to be
kept in the system to accurately calculate the results quickly grows and needs to be handled properly. To
do this, we have a receiving node, called AccumulatingHeatMapProcesser (Accumulator), processing player
positions from the AwverageProcessor at 50Hz. This Accumulator reads in the location data for each player
and builds a logical data structure of 6,401 integers: the total number of samples that were recorded for that
second, and then values for each of the 64x100 row/column cell value.

Our solution incurs slightly inaccurate approximations on the 8x13 grid of cells because the 100 rows of
the 64x100 cell matrix cannot be divided evenly into a 8x13 matrix. The result is that our 8x13 matrix cells
are shorter by 1/2 of a 64x100 cell for each of the 8 cells. This was made to simplify the data processing
and decrease the data transmission requirements. This can be easily updated if exact precision is required.
This solution allows the same algorithm to determine the appropriate result stream for all 4 grid sizes by
accumulating the 4 cells from the next more accurate data for each required cell of the result stream.

Sample data per player is then subscribed to by the HeatMapProcessor processor block every second. This
processor block acts as an accumulator and maintains the data which will be used for producing the 16 result
streams for each player. It uses the 64x100 grid to mathematically generate, by adding the appropriate 2x2
cells from the next larger cell matrix to obtain the 32x50, 16x25, and 8x13 grid of cells when that information
is needed. This node could be configured in a production system to actually be a single node per player, but
we have found that it works well as a single node for the data provided.

The processor block keeps track of this data by building a running tally of all 16 desired output streams:
4 time windows * 4 grid sizes. By doing this, the node has to compute only two functions per stream. First,

it has to subtract the older data that no longer fits into the appropriate time window from the running tallies
in the 12 streams where the entire game data is not desired. Then, the processor block has to add the newest
one second worth of accumulated data to each of the streams’ tallies.

There are two ways to implement different time windows utilizing DDS middleware. First, each processor
keeps history values in the processor’s cache and calculates a proper value using the history values according
to the size of the time window. Second, the history values can be kept and managed in the middleware
cache by making use of History QoS and Resource Limits QoS. In query 3, we adopted the latter approach.
We approximated the size of middleware cache in our configuration of the QoS such as history depth and
maximum number of samples according to arrival rate of input streams. In the case of query 3, the arrival
rate is 1 second and requires a minimum cache memory storage of 60 samples for 1 minute, 300 samples for 5
minutes, and 600 samples for 10 minutes. However, history samples for 1 minute and 5 minutes are actually
overlapped with history samples for 10 minutes, so we allocate memory for history samples for 20 minutes
and other time windows reuse the same memory, which is a tradeoff and an optimization.

2.6 Implementing Query 4

The query 4’s goal is to detect events of a player shooting in the direction of the goal. Shots on goal occur
when a player hits the ball (i.e. his foot is close to the ball and the ball’s acceleration is greater than 55 m/s?)
and the projection of the ball’s movement would lead it within one of the two goal areas. Since detection
of hit events is already carried out to compute query 2, ShotsOnGoalProcessor subscribes to a data-stream
published by by PlayerBallPossessionProcessor. Similary, the filtered data-stream reporting data about the
ball currently used in the game is used instead of raw sensor data.

Projection on goal / Publish result

Projection not on goal / No output
Ball outside field / No output - -
New Hit event / No output (.
‘ Hit
v Ball outside field / No output Ball in valid position /

‘ New Hit event / No output No output

;(Waiting }—
New Hit event / No output

L]

Ball not in valid position / No output

Fig. 4. State Diagram for ShotsOnGoalProcessor

Detection of shots on goal is implemented using a simple finite-state machine represented in Figure 4.
The processor uses asynchronous notifications from DDS to wait for input data to be available. The latest
hit event and ball position samples received are stored by the processor between successive notifications.
Whenever inputs are updated, the state-machine is updated. Once a hit event is notified, the processor must
wait for the ball to have moved sufficiently farther from the initial location of the hit so that its motion can
be projected more accurately using the equations for projectile motion.

Whenever the processor detects a valid projection on the goal, it will publish a result sample containing the
shooting player’s id and the ball’s position at the time of detection. In this implementation we used simple 2-
dimensional equations for these computations, which seemed to yield accurate enough results. Nevertheless, it

is trivial to replace the projection calculating algorithm if results are found to be not satisfactory. The results
are produced until the projection is found to be missing the goal with updated ball position information, in
which case the processor resets its state.

The state-machine is also transitioned back to the initial state every time the ball ends up outside the
field boundaries or a new hit event from a different player is received. Depending on the current values
of the inputs, multiple state transitions may occur with a single state update. This enables the processor
to consume available input more efficiently and avoid unneccessary waiting when the ball is already in a
valid position to compute its projection toward the goal. For example, in the case of a new hit event, the
processor may execute a maximum of 4 consecutive state transitions within a single state update, if the ball
is immediately found within valid range for computing the projection of the new hit event and the processor
determines the ball will not hit the goal.

3 Evaluation

In this section, we experimented with two aspects of performance of our system. First, data update rates of
a result stream are measured to show efficient resource management within given deadlines by making use
of DDS QoS. Second, to show scalability of the system, we measured processing latency of a query stream as
the number of clients subscribing to a result stream is increased. We used the current running analysis query
because results of the query are updated continuously and at high frequency. Our configuration is as follows.
One machine is used for sensor data generation and query processing for both experiments. In the update
rate experiment, a machine is used for a subscribing client process and, ffor the scalability testing (to provide
as many client processes as are needed to generate loads to our system), we used 5 client machines. The
following is the hardware specification of the machine: 12-core 2.1 GHz Opteron CPUs, 32GB of memory,
and Gigabit Ethernet cards. All physical host machines are connected by a Gigabit Ethernet switch. RTI
Connext Professional Edition 5.0 is used for the DDS implementation.

30
251 ! |
20} : |

10 o .

Data Refesh Rate (milliseconds)

100

@
o
T
|

CPU Utilization (%)
N
2
/

D
o
T
|

n
o
T

o

20

o

5 10 15
Time—based Filter's Minimum Separation Value (milliseconds)

Fig. 5. Data Refresh Rates Per a Player and CPU Utilization by Different Time-based Filter Values

Figure 5 shows data refresh rates per a player and CPU utilization of the serving processor, Curren-
tRunningAnalyzer. Through this experiment, a clever way to manage restrained resources for soft real-time
systems by making use of Time-based Filter QoS is introduced. According to the requirement of the DESB
Grand Challenge, the maximum frequency of this query is 50Hz and therefore the update rate of this query
should be 20 milliseconds. As the graph shows, when we set the minimum separation value to 10 milliseconds
and 15 milliseconds, averaged latency is around 17 milliseconds and 18 milliseconds which actually satisfy
the requirement, respectively. If 20 milliseconds is the deadline, the result with 10 milliseconds of minimum

separation is turned out that only 60 out of 100000 samples miss the deadline (0.06% of deadline-missing
ratio), but CPU utilization is reduced about 10 to 20% comparing the one without time-based filter.

-
[}

-
N

Latency (milliseconds)
- [

o
)

o
[}

©
N

1 100 00 400 500

200 3
Number of Subscribers

Fig. 6. Processing Latency by Increasing Number of Subscribers

To measure complete latency of the query, a starting timestamp is recorded when a sample is fed into our
system. Then, the timestamp is delivered within a message to a client processor and an ending timestamp is
logged at the client processor to calculate the difference between two timestamps. However, in the experiment,
we deployed the query processors and client processors in separate machines where system time is not
synchronized and therefore accurate latency cannot be measure. To resolve the issue, Precision Time Protocol
(PTP) [4] was exploited to guarantee fine-grained time synchronization between different physical hosts as
it achieves clock accuracy in the sub-microsecond range on a local area network.

Figure 6 shows the processing latency of the current running analysis of query 1. We tested our system
using an increasing number of subscriber processes in order to verify its scalability. For better performance,
we partitioned processing data by player_id and fed each separate data stream into parallel processors, each
one responsible for a different set of players. DDS filtering mechanisms facilitate partitioning by leveraging the
concept of instances identified by a key (in this case, player_id). Each instance can be processed independently
of the other. Data flow to each element of the processing architecture can be controlled without requiring
modifications to its code by leveragin XML-based DDS configuration.

The processing latency starts at 500 microseconds, for a single subscriber, and it increases linearly to 1.6
milliseconds, when serving 500 subscribers. Additional scalability could be added to the system by adding
multiple DDS domains to the processing architecture. Each domain will actively replicate all (or some of)
the processing functionalities and cater a separate set of end clients.

4 Concluding Remarks

This paper described our solution to the DEBS 2013 Grand Challenge Problem. Our solution implements the
four queries that require real-time stream processing and analytics using the OMG Data Distribution Service
(DDS) middleware and a variety of its QoS policies. By using DDS, we were able to architect our solution in
a way where we could focus on developing the algorithms to address each query while rely on the middleware
to provide us out-of-the-box solutions needed for distribution, timeliness and reliability, in-network database,
and scalability to accommodate a large number of entities.

References

1. Jerzak, Z., Ziekow, H.: The acm debs 2013 grand challenge. http://www.orgs.ttu.edu/debs2013/index.php?
goto=cfchallengedetails (2013)

2. OMG: The data distribution service specification, v1.2. http://www.omg.org/spec/DDS/1.2 (2007)

OMG: Extensible and dynamic topic types for dds (dds-xtypes). http://www.omg.org/spec/DDS-XTypes (2012)

4. Carroll, L.: Teee 1588 precision time protocol (ptp). http://www.eecis.udel.edu/~mills/ptp.html (2012)

w

http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.orgs.ttu.edu/debs2013/index.php?goto=cfchallengedetails
http://www.omg.org/spec/DDS/1.2
http://www.omg.org/spec/DDS-XTypes
http://www.eecis.udel.edu/~mills/ptp.html

	Real-time Sensor Data Analysis Processing of a Soccer Game Using OMG DDS Publish/Subscribe Middleware

