
State-of-the-art in Publish/Subscribe Middleware for Supporting
Mobility

Sumant Tambe
ISIS, Dept of EECS, Vanderbilt University, Nashville, TN, USA

sutambe@dre.vanderbilt.edu

Abstract
Publish/subscribe is a widely used middleware architecture
as it proliferates loose coupling between interacting compo-
nents. It is particularly useful in mobile environment because
communication in publish/subscribe is anonymous, asyn-
chronous, and inherently multicasting in nature. In spite of
these features, the requirements of mobile applications are
hard to satisfy using publish/subscribe middleware for static
systems. Frequent connections/disconnections, scarcity of
bandwidth and power, and frequent changes in location
are the major challenges in mobile environment. Several
researchers have proposed solutions to address these chal-
lenges to build scalable publish/subscribe middleware in
resource constrained environment. In this paper, we review
the requirements of the mobile applications, survey the state-
of-the-art of research that address some of the challenges in
development and verification of publish/subscribe systems
and discuss the open research issues that remain in the do-
main.

General Terms Mobility Support, Publish/Subscribe, Mid-
dleware, Location Awareness

Keywords Publish/Subscribe, Mobility, Middleware

1. Introduction
The traditional request/response paradigm, widely advo-
cated as the distributed computing paradigm of choice, is
not adequate for several different information dissemination
applications such as stock price tracker, sports and news
tracker, alert systems, pervasive computing, and autonomic
systems. The request/response paradigm is not able satisfy
the requirements of these applications because of loose cou-
pling, high level of dynamism and flexibility required by

[copyright notice will appear here]

these applications. Publish/subscribe paradigm was devel-
oped to address these challenges.

A publish/subscribe system connects together informa-
tion providers and consumers by delivering events from
sources to interested users. A publisher advertises the types
of events it is going to publish. A user expresses his/her in-
terest in receiving certain types of events by submitting a
predicate defined on the event, called the users’ subscrip-
tion. When a new event is generated and published to the
system, the publish/ subscribe infrastructure is responsible
for checking the event against all current subscriptions and
dispatching it to all users whose subscriptions match the
event.

The publish/subscribe communication paradigm differs
from traditional client-server model in a number of ways.
In publish/subscribe, communication is anonymous, asyn-
chronous, implicit, and multicasting in nature. Anonymity
means that the communication partners are not required to
identify the party they want to talk to. For example, instead
of identifying a publisher to receive events from, the sub-
scriber simply describes the characteristics of the events it
wants to receive. The system is therefore able to quickly
adapt in a dynamic environment as publishers come and
go. Publish/subscribe is also inherently asynchronous be-
cause the sender (publisher) does not have to wait for an ac-
knowledgment from the recipient (subscriber) before mov-
ing on. The publisher does not identify who the intended re-
ceivers are. The subscribers are implicitly selected based on
their subscriptions. It is possible that sender publishes events
when there are no subscribers. Such events are discarded
by the infrastructure. The reliable transmission of events to
the subscribers is taken care of by the infrastructure. Pub-
lish/subscribe resembles multicast because it allows a pub-
lisher to send the same event to many subscribers with only
one publish operation.

These features of publish/subscribe architecture make
them particularly useful in mobile environment. The anonymity
and dynamism of publish/subscribe allow the systems to
adapt quickly to frequent connections and disconnections of
mobile nodes, a characteristic of a mobile network. Asyn-
chrony is helpful because mobile devices are often turned off

1 2007/12/9

or disconnected from the network for long periods of time.
Wireless devices have limited capabilities and bandwidth.
The multicasting nature of publish/subscribe can leverage
the broadcast radio nature of many wireless technologies
and helps a system scale to thousands of units.

In spite of the suitability of publish/subscribe paradigm to
mobile applications, there are several challenges that emerge
in mobile environment. Quite often mobile nodes leave a
network at one place and reconnect again at another lo-
cation. Mobility of clients must to be taken into account
by the middleware. ToPSS [3] and JEDI [3] address dif-
ferent aspects of the mobility challenge including the prob-
lem of frequent connections and disconnections. In order to
support existing applications on mobile platforms, location
transparency must be provided by the underlying middle-
ware. REBECA [6] platform provides location transparency
in the context of physical mobility. In some extreme envi-
ronments (e.g., disaster recovery, war field) there is hardly
any fixed network support available to host the infrastruc-
ture. The middleware suitable for applications running on
ad-hoc networking technologies needs to be aware of such
highly dynamic environments. Huang and Molina [8] de-
scribe how resource friendly dispatching trees can be con-
structed in highly dynamic environment of ad-hoc networks.

The rest of the paper is organized as follows. Section 2
gives some basic background and terminology of pub-
lish/subscribe middleware domain. In Section 3 we analyze
the requirements of mobile computing as they pertain to the
publish/subscribe paradigm. In Section 4 we discuss the so-
lutions that are proposed in current literature. In Section 5,
future directions for research are given and finally, Section
6 concludes the paper.

2. Publish/Subscribe Paradigm
In this section, comparison between publish/subscribe paradigm
with other dominant communication paradigms is presented.
It is also shown that publish/subscribe architecture is well
suited for identity, space and synchronization decoupling
of subscribers and publishers. We categorize existing pub-
lish/subscribe system design approaches along two impor-
tant dimensions: expressiveness of subscription languages,
and centralized/distributed infrastructure.

2.1 Alternative Communication Paradigms
Eugster et al. [4] compare publish/subscribe paradigm with
alternative communication paradigms: Message Passing,
Remote Invocation, Notification, Shared Spaces, and finally,
Message Queuing. Message passing is the most fundamental
communication primitive based on which all the distributed
systems are developed. Remote Invocation builds upon mes-
sage passing and gives the impression of local function call
where in fact the the execution happens at a remote location.
Notifications are used when most of the communication is
done using remote invocation style but when synchroniza-

tion decoupling is desired, a synchronous remote invocation
is split into a one way forward invocation coupled with a
callback from the remote site later on. Shared spaces is a
simple and powerful abstraction for accessing shared mem-
ory. A shared space is composed of a collection of ordered
tuples and communication between two hosts takes place
through insertion and removal of tuples to/from the shared
space. Finally, message queuing is an abstraction that is
closely related to publish/subscribe paradigm. In message
queuing a central FIFO queue is maintained to synchronize
the communication between producers and consumers. Ta-
ble 1 highlights the main differences between various com-
munication paradigms with examples.

2.2 Variations of Publish/Subscribe Paradigm
Eugster et al. [4, 5] and Carzaniga et al., [2] categorize
publish/subscribe schemes depending upon the expressive
power of the subscription languages. Channel-based, subject-
based (topic-based), type-based, content-based, content-
based with patterns, and local context-based publish/subscribe
schemes, ordered in the increasing order of expressiveness,
have been developed.

• In channel-based [2] model of event notification, notifi-
cations are fed into what amounts to a discrete commu-
nication pipe. The notion of filtering reduces to channel
selection.

• In subject-based [4] (topic-based) notification scheme,
recipients subscribe to one or more topics identified by
keywords. Events belonging to a topic are dispatched to
the interested recipients based on matching subscriptions.

• In type-based [4] notification scheme, events are filtered
according to their programming language level types.
This enables closer integration of the language with the
middleware. Moreover, type safety can be achieved at
compile time.

• Content-based [3] scheme is by far the most popu-
lar scheme of designing publish/subscribe infrastruc-
ture. Thanks to its flexibility and expressive power. A
predicate on the contents of the events is given with
the subscription and the infrastructure delivers events
to consumers if the given predicate matches an event.
Events are usually structured as unordered sets of typed
attribute-value pairs.

• Content-based with patterns [2] scheme is a generaliza-
tion of the content-based scheme wherein the subscriber
provides a pattern of more than one notifications to match
against. The notifications are delivered to the subscriber
only if they satisfy the registered pattern.

• Context-based publish/subscribe [5] scheme is the most
general form of subscription language. The infrastructure
has to take into account the state of the subscriber before
delivering an event. The subscriber context can be physi-

2 2007/12/9

Communication Identity Time Synchronization Examples
Paradigm decoupling decoupling decoupling

Message Passing No No Producer-side HTTP on TCP
Remote Invocation No No Producer-side CORBA,

Notifications No No Yes CORBA AMI
Shared Spaces Yes Yes Producer-side Linda, Java Spaces

Message Queuing Yes Yes Producer-side IBM MQ series
Publish/Subscribe Yes Yes Yes REBECA [6], JEDI [3]

Table 1: Comparison of Abilities of Communication Paradigms [4]

cal values such as location, speed, direction, temperature
as well as resource availability such as battery power.

It is generally desirable to build sophisticated event fil-
tering mechanisms in the middleware itself and not in the
higher level application because, performing event filtering
in the infrastructure saves bandwidth and avoids unneces-
sary processing complexity at the client side. It is especially
important in mobile environment because, mobile clients are
constrained on bandwidth as well as processor resources.

2.3 Centralized vs. Distributed Publish/Subscribe
Architecture

Figure 1: A Distributed Event Broker Network [6]

The publish/subscribe infrastructure components that are
responsible for storing consumer subscriptions and match-
ing events against them are known as Event Brokers1 [8].
A centralized publish/subscribe system consists of only one
central broker component running on a dedicate host. The
central broker stores all currently active subscriptions in the
system. Every new event is published to the broker, which
is responsible for matching it against all the subscriptions.
Afterwards the event is forwarded to all consumers whose
subscriptions match. A distributed publish/subscribe infras-
tructure consists of more than one Event Brokers arranged

1 In the surveyed literature, both the terms – “Event Broker” and “Dispatch-
ing Server” – represent the same thing conceptually.

in a hierarchical fashion or generic connected graph repre-
sentation. Figure 1 shows an example of a distributed pub-
lish/subscribe infrastructure. Distributed event broker archi-
tectures can scale to large number of publishers, consumers
and subscriptions. Matching and delivering workload at each
event broker is reduced as there are fewer subscriptions to
match at every event broker.

3. Publish/Subscribe Systems and Mobility
In this section, we analyze the requirements of publish/subscribe
middleware for large mobile systems and issues that any
publish/subscribe middleware must address to overcome
them. We also discuss an approach to verify applications
built using publish/subscribe middleware.

3.1 Requirements of Publish/Subscribe Middleware
for Mobility [3]

• Manage physical mobility of application components.
Users can move while being online or offline, the mid-
dleware must take this into account.

• Manage changes in the underlying network topology that
may occur in very dynamic settings like ad-hoc network-
ing.

• Manage large number of information consumers and
consequently large number of subscriptions. Similarly,
manage a potentially very large number of information
providers

• Propagate notifications for thousands of information con-
sumers simultaneously, which generally implies use of
some sort of multicasting or limited broadcasting like
technique under the hood.

• Manage high volatility of users’ interests (subscription
update, insertion, deletion).

• Manage heterogeneity of content formats, ranging from
topic tagged blobs and attribute-value pairs to HTML and
XML marked-up data. Also support heterogeneous noti-
fication channels (email, Internet-protocols, WiFi, phone,
WAP, imode, ICQ etc.)

• Support approximate subscriptions and approximate
events to enhance system flexibility by increasing the

3 2007/12/9

expressiveness of the filtering language and the publi-
cation language. This feature is particularly useful for
location-based services.

• Support existing (legacy) applications.
• Support high availability despite node and/or link fail-

ures.

It clearly suggests that innovative and flexible middle-
ware policies and mechanisms are required to support such
a wide range of application requirements.

3.2 Mobility Issues in Publish/Subscribe Middleware
There are two main issues in middleware for supporting
mobility: physical mobility [6] and logical mobility [6]

Physical Mobility. A good mobile publish/subscribe sys-
tem has to deal gracefully with both publishers and con-
sumers going offline. For example, when a consumer is out
of reach, it is reasonable to expect that the event broker to
log and queue the consumers’ events so that they can be
delivered later when the consumer comes back online. It is
quite possible that when the consumer comes back online,
it may not reconnect to the old event broker. It may connect
to a different event broker on the same broker connectiv-
ity graph. In such situations, the main concern of physical
mobility is location transparency. The middleware should
completely shield away the change of location in a seam-
less manner. Applications that were not designed taking into
account mobility should be able to interact with the infras-
tructure in a seamless manner. The middleware needs to sat-
isfy at least following requirements to support true location
transparency:

• Interface. The interface of publish/subscribe system
must not change as legacy applications are not aware
of mobility.

• Completeness. Despite intermittent disconnects, the
middleware should deliver all notifications for a client
eventually.

• Ordering. Producers’ ordering of event should be main-
tained during connections and disconnections.

• No duplicates. In large distributed event broker net-
works, rapid location changes coupled with network la-
tency due to link congestion may result into events begin
delivered twice. Middleware should guard applications
against such situations.

• Responsiveness. The quality of service (QoS) guarantees
of the application should not have noticeable degradation.
Often, Mobile IP [9] based solutions to mobility do not
guarantee responsiveness because of extra indirection in
the middle.

Providing above guarantees in very dynamic environ-
ments such as ad-hoc networking is a very challenging
task, if not impossible. Often, persistence storage is used

to provide completeness guarantee to the applications. Mo-
bile nodes in ad-hoc network rarely can afford resources to
support a persistent storage. Discarding out-of-order events
and requesting retransmission of missed events is not an op-
tion for bandwidth constrained mobile nodes. In Section 4.1,
we discuss how a dynamic publish/subscribe tree (PST) [8]
can be created in ad-hoc wireless environment to reduce the
overhead of event dispatching in a distributed event bro-
ker system. Similarly, to maintain responsiveness at differ-
ent physical locations after repeated disconnections requires
quick adaptation of the delivery path from producer to con-
sumer in a distributed broker network. A handoff protocol
for consumers subscriptions is often necessary in such sit-
uations. In Section 4.1, we discuss a handoff protocol im-
plemented in REBECA [6] that allows seamless location
transparency. The subscription handoff protocol needs to be
designed carefully so that, as the new routing information
(delivery path) percolates up the distributed event brokers,
no event from any potential source is lost or delivered twice.

Logical Mobility. While physical mobility is a rather tech-
nical issue invisible to the application, logical mobility in-
volves location awareness. An example for logical mobil-
ity is when clients move around a house or building that is
served by only one event broker. In this case, the user might
be interested to receive just those notifications that refer to
the room he is currently located in. It is possible for a client
to be both logically and physically mobile at the same time.

The adaptation of some location dependent subscrip-
tion should take place “instantaneously”. Propagation de-
lay of events and subscriptions between distributed nodes
should not cause loss of location specific events and blackout
periods. Such location-aware subscriptions are commonly
known as location dependent filters. Middleware should
provide support (using policies and mechanisms) for appli-
cations that use location dependent filters in such a way that
discrete publication events should be delivered to mobile
subscribers subject to their continuous motion. As shown
in Figure 2, simple routing technique may result into loss
of some location dependent events. Flooding can solve the
problem but it is very expensive in large networks. We dis-
cuss a solution to the problem of loss of events using re-
stricted flooding [6] technique in Section 4.2.

Effective implementation of location dependent filters re-
quire approximate matching [3, 10] technique. An example
of an approximate subscription is shown in Figure 3.

S: (close to downtown Toronto) AND
(about 75 square meters in size) AND
(no more than $1000) AND
(close to major grocery shopping)

Figure 3: An Example Approximate Subscription [3]

4 2007/12/9

Figure 2: Blackout Period After Subscribing with (a) Simple Routing and (b) Flooding with Consumer-side Filtering. [6]

Unlike approximate matching, conventional publish/subscribe
systems use strict boolean matching. They are either matched
or not matched by a given event. This matching semantic is
often too restrictive, because in many situations only impre-
cise knowledge about the exact value of a location variable is
available, or because subscribers may often be satisfied with
an event that matches a subscription partially or only to a cer-
tain degree. For example, it is often enough to indicate that
a parking space is available within a few hundred feet from
the current location of a vehicle. Probability theory, fuzzy
set theory, or possibility theory based technique should be
incorporated into middleware for supporting location-aware
subscriptions.

Middleware for supporting location-aware applications
also need to provide support for location-dependent events
or in general, approximate events similar to approximate
subscriptions. For example, an approximate location-dependent
event may look like as shown in Figure 4.

E: (location, close to downtown)
(size, big)
(price, expensive)
(shopping, close-by)

Figure 4: An Example Approximate Event [3]

The notions of location dependent events and location de-
pendent subscriptions are generalized to publication spaces
and subscription spaces in LPS [5] as shown in Figure 5.
Modeling of imprecise sensor readings, approximate loca-
tion information, location information annotated with range,
and stochastic environmental conditions are further exam-
ples that require an approximate matching-based approach
for processing with a publish/subscribe system. We discuss
the design of an approximate matching engine kernel [3, 10]
in Section 4.2.

Figure 5: Location-based Event Matching [5]

3.3 Automatic Verification of Publish/Subscribe
Architectures

It is clear from the previous sections that any publish/subscribe
middleware that satisfies the wide range of requirements of
the mobile applications has to be flexible and very dynamic
in nature. Flexibility of the infrastructure hampers its valida-
tion. Therefore, verification of applications developed using
this paradigm becomes a challenging task. We can easily rea-
son on publishers and consumers in isolation, but the global
picture is much more complex and dynamic. Components
are often written independently of the way they are feder-
ated and their interactions can change dynamically. More-
over, the publish/subscribe paradigm can be instantiated in
very different ways. The key features are preserved, but spe-
cific guarantees vary from infrastructure to infrastructure.
For example, Table 2 summarizes the guarantees provided
by publish/subscribe middleware. Available choices make
verification process extremely difficult.

The problem becomes even harder if we want to model
these features by means of existing model checkers. Detailed
models cause the well-known state space explosion problem,
which inherently leads to the inability to verify accurate
models. The consequence is that simplified or partial models

5 2007/12/9

Guarantee Choices
Message Reliability Absent, Present
Message Ordering Random, Pair-wise FIFO,

System-wide FIFO, Causal Order,
Total Order

Filtering Precise, Approximate
Real-time guarantees None, Soft RT, Hard RT
Repliable Messages Absent, Present

Table 2: Publish/Subscribe Guarantees [1]

are used, which limit the number of states generated during
verification. In Section 4.3, we discuss the approach adopted
by Baresi et al. [1] that allows creation of accurate finite
state models of applications using Bogor [12] and detailed
verification of them without incurring in the state space
explosion problem.

4. Solutions
In this section we discuss existing solutions to address var-
ious issues in middleware for supporting mobility. The so-
lutions can be categorized into three groups: (1) Algorithms
for creating dynamic dispatching trees [3, 8] in ad-hoc net-
working environment and subscription handoff protocols [6]
using dispatching trees, (2) Algorithms for creating location
dependent filters [6] and approximate matching [3] tech-
niques, and (3) techniques for automatic verification [1] of
publish/subscribe systems. All the solutions are described in
the context of distributed event broker network as shown in
Figure 1.

4.1 Dynamic Dispatching Trees for Mobile Event
Brokers

Figure 6: Dispatching Tree in JEDI [3]

Cugola and Jacobson describe an improvement over the
existing static dispatching trees in JEDI [3] publish/subscribe
system. Figure 6 shows an example of a dispatching tree in
JEDI. In this approach, a dispatching server is selected to be
a leader of a group of subscribers. It manages the access of
other subscribers to the group and the distribution of group
members in the network. Any new subscription is broad-
casted to all other dispatching servers by the leader. Upon
receipt of the subscription, non-leader servers point to the
leader to forward the notifications they receive directly from
publishers. Thus, any internal dispatching server knows the
group leaders for all subscriptions. When an event notifi-
cation is published, if the originator is not part of the cor-
responding group of subscribers, the notification is directly
sent to the group leader. The group leader dispatches the
event to all the interested consumers through the dispatching
tree rooted at itself.

The algorithm in JEDI allows dynamic changes to the dis-
patching tree. A dispatching server can leave the dispatch-
ing tree for a particular subscription by sending control mes-
sages to its parent. A leaf dispatching server can easily leave
the group by communicating its intent to its parent. An in-
termediate server has to wait till all its children (other dis-
patching servers and consumers) leave the group. A leader
can also leave the group by broadcasting control messages to
all other servers and follows the steps of either a leaf server
or intermediate server depending upon its position.

The approach described above could be combined to dy-
namically adapt the dispatching network to changes in the
workload that results from movement of consumers and to
cope with mobile dispatching servers.

Huang and Molina [7, 8] describe an algorithm called
SHOPPARENT to create a publish/subscribe tree (PST) to
reduce the total amount of work performed by the dispatch-
ing servers. Overhead of a PST is defined to be a heuristic
function of actions each dispatching server performs: check-
ing for matches, buffering the events, and re-broadcasting
the event for children in the PST. Key feature of SHOPPAR-
ENT algorithm is that it takes into account subscriptions and
locality of subscribers while choosing the right PST to dis-
patch the events. It is a fully distributed, greedy tree con-
struction algorithm in which no node needs to have global
knowledge about the system.

Figure 7: Comparison of Two PSTs [8]

6 2007/12/9

Each dispatching server periodically broadcasts a PAR-
ENTPROBE to all dispatching servers in its immediate radio
neighborhood, giving its desired subscription. A recipient of
the probe replies with a PARENT-ADVERTISE message if
it is capable of parenting the requester. The reply contains, in
addition to other necessary information, an estimate of how
much its overhead will increase if the requesting dispatch-
ing server connects to it. The original dispatching server se-
lects among all the replies the one with the smallest expected
overhead. Because the probe is periodic, a dispatching server
is constantly searching for a better parent, and the tree can
reconfigure itself as a result of changes in the system such as
node movements and failures. Figure 7 shows an example of
a better PST (a) than another PST (b).

In [7], performance of SHOPPARENT algorithms us-
ing different heuristic functions (SP-NHOP, SP-OVHD, SP-
COMBO) is measured. It is shown that SP-COMBO algo-
rithm performs within 15% of the optimal under normal con-
figurations.

On one hand, dynamic tree construction/adaptation al-
gorithms are required to address the challenge of moving
infrastructure components in ad-hoc networking environ-
ments, whereas on the other hand subscription handoff pro-
tocols are required to efficiently migrate consumer subscrip-
tions from one dispatching server to the another when the
consumer physically moves in the vicinity of the later dis-
patching server. Fiege et al. [6] describe a subscription hand-
off protocol implemented in REBECA publish/subscribe
middleware.

Figure 8: Subscription Hand-off from Broker 6 to Broker
1 [6]

Figure 8 shows an example of a client (C) that moves
from dispatching server 6 to 1. The client is subscribed to

events published by publisher attached to the dispatching
server 8. The subscription handoff protocol is initiated by
the dispatching server 1, when it realizes that client C moved
from a different location. The subscription of the client is
reissued at the new dispatcher (1). The dispatcher PROPA-
GATEs the subscription backwards to its parents till it finds
the junction dispatcher server (4). The junction could be
source dispatcher server as well. The junction dispatcher
server sends FETCH request to the old dispatching server
(6). Upon receiving FETCH request, dispatcher server 6 RE-
PLAYs queued messages back to server 1 and un-subscribes
client C from the set of subscribers at 6. Upon receiving
replayed messages at the new server, it sends the received
notifications to the roaming client in source FIFO order.
Roaming client C receives the notifications in order as ex-
pected. This handoff protocol provides the completeness,
ordering, no duplicates guarantees expected from the pub-
lish/subscribe middleware. The algorithm works correctly
with the boundaries of finite storage space in the servers,
speed of the roaming client, and the rate of event publica-
tion.

4.2 Location Dependent Filters and Approximate
Matching

Fiege et al. [6] describe another algorithmic solution to a
scenario where clients are only logically mobile, i.e., they
remain attached to a single dispatching server. The idea
is based on covering and merging of location dependent
subscriptions. A filter F1 is said to cover another filter F2, if
filter F1 accepts a superset of notifications of the second one.
If no cover of a given filter can be exists, then two filters are
merged to create a new filter that covers both the constituent
filters. Merging technique simply uses disjunction of two
filters.

The algorithm uses restricted broadcasting like approach
to give a client fine-grained control over notification deliv-
ery in the form of location-dependent filters. It builds a series
of location dependent filters with monotonically increasing
coverage. Filters with larger coverage move toward the event
publisher and filters with smaller coverage are stored in dis-
patching servers nearer to the consumer along the delivery
path. Filters having larger and larger coverage are built us-
ing a movement graph. The movement graph is used to con-
strain the movement of a consumer as well as to determine
the number of steps necessary to move from one location
to another. These filters use a local context variable called
location variable.

Such location dependent filters are often used in Loca-
tion dependent services that rely on approximate matches of
location variable. Generally, it is very difficult to cast vague-
ness inherent in real world applications into a crisp model of
mathematical boolean operators that establishes exact limits.
Such systems use approximate subscriptions and approxi-
mate events, as shown in Figure 3 and Figure 4.

7 2007/12/9

ToPSS [3] publish/subscribe system has a matching en-
gine kernel that implements an approximate matching al-
gorithm for their subscription language and the publication
model. The ToPSS kernel implements a minimal predicate
language [10] on top of which various higher level lan-
guages are modeled. The minimal predicate language de-
fines crisp operators (e.g., <, >, =, <=, >= and !=), which de-
fine crisp boolean predicates; approximate operators, which
define fuzzy predicates; and probability operators, which
define probabilistic predicates. An event matches a subscrip-
tion to a certain degree, if the evaluation of its predicates’
and the subscriptions’ truth value result in a value less than
one (i.e., in a logic where one would represent an exact
match.) The interface exposed to the system developers is at
a higher level of abstraction than the minimal predicate lan-
guage. ToPSS provides a mapping of high-level subscription
matching language to the low-level predicate language.

ToPSS publish/subscribe system has other features that
help in solving other mobility related issues such as band-
width conservation using a technique called scheduled noti-
fications. Heterogeneous notification channels are also sup-
ported using the pervasive notification engine, which is a
stand-alone component that supports a number of standard
transport protocols for subscriber notification.

From the above survey of the literature it is clear that re-
searchers have developed solutions to many critical prob-
lems in the domain of middleware for mobile systems, but
they are scattered across multiple research prototype imple-
mentations and are not unified in single middleware plat-
form. Often, combining solutions together is not feasible be-
cause of different trade-offs involved.

4.3 Automatic Verification of publish/subscribe
architectures

In this section, we discuss how detailed verification of ap-
plications built using complex middleware platforms can
be done efficiently. Baresi et al. [1] present a novel ap-
proach based on Bogor [12] for the accurate verification of
applications based on publish/subscribe infrastructure. In-
stead of building on top of existing model checkers, asyn-
chronous communication mechanisms of publish/subscribe
infrastructures are embedded within Bogor. This way, pub-
lish/subscribe primitives become part of the specification
language as additional, domain-specific constructs. It en-
ables domain-experts to exploit their specific knowledge to
better control the state space explosion. The domain-specific
constructs hide state information, which does not affect the
publish/subscribe semantics. Based on these semantics, the
states that a standard model checker would consider as dif-
ferent are considered identical and thereby reducing the state
space dramatically. Table 2 summarizes different guarantees
provided by publish/subscribe middleware. Extended Bogor
specification languages is useful to verify such a wide range
of guarantees using higher level, domain-specific mecha-
nisms.

Extended Bogor specification language shows how do-
main specific optimizations can be embedded in a model
checker by raising the level of abstraction of specification
language with domain specific constructs. It allows design-
ers to parameterize the new publish/subscribe primitives
with one or more of the guarantees shown in Table 2. For ex-
ample, a publish/subscribe connection can be parameterized
with causal order delivery option. Messages received out of
order will not be delivered to the application using such a
connection. This implies that receipt of an out of order mes-
sage can’t change the state of the application and therefore,
no new state needs to be generated in this case. Another
optimization that helps reduce number of states is when a
point-to-multipoint communication mechanism comes into
play. Message duplication and multicasting often happens
transparently to the application. Therefore, it is possible to
avoid to deal with mechanisms and data structures needed to
duplicate and distribute messages from the computation of
the system state.

This approach allows system designers to explore the
trade-offs between the assumptions made on the underly-
ing middleware system and the mechanisms explicitly im-
plemented at application level. For each required guarantee,
the developer can either pose new requirements on the pub-
lish/subscribe infrastructure by means of parameterization,
or maintain the same assumptions on the publish/subscribe
infrastructure and implement required mechanisms at appli-
cation level. Besides flexibility, there is a gain in terms of
computational time and memory use in analyzing the sys-
tem. This means that models that would be too heavy for
“conventional” model checkers become analyzable.

5. Discussion
Mobile computing applications raise a number of challenges
for the middleware designer. Several solutions have been
proposed in literature. We focused on solutions primarily
related to (a) publish/subscribe dispatching tree construction
and handoff protocols, (b) location dependent services and
required mechanisms to support them, and (c) verification
of publish/subscribe systems. However, there are several
limitations of the approaches that we discussed.

In JEDI [3], every subscription in known to every dis-
patching server increasing processing time at every hop in
the network of dispatching servers. Although, covering and
merging based strategies can be used, it results into a kind
of flooding in the overlay network of matching producers
and consumers of similar interests. Effects of covering-based
technique are discussed in REBECA [13]. Both covering and
merging promise to increase routing efficiency but aggravate
relocation management.

One of the drawbacks of the SHOPPARENT algorithm
for dynamic dispatching tree construction in ad-hoc net-
working environment is that it only supports occasional
reconfigurations of the tree followed by periods of stabil-

8 2007/12/9

ity. This assumption may not hold in highly dynamic en-
vironments where frequent reconfigurations are necessary.
Mesh-based instead of tree based approaches should be
investigated. An undesirable consequence of using more
(re)configuration resilient technique is that, reconfiguration
latency increases resulting into need of larger persistent
queues in the mobile hosts and reduces the upper bound
on the maximum rate of change of location (speed).

Requirement of large persistent storage on mobile de-
vices can be alleviated using semantic filtering [8]. Another
technique that is based on semantics of events is to use of-
fline filters or durable subscriptions [11]. Unlike durable
subscriptions, offline filters are active only when the mo-
bile subscriber is disconnected from its dispatching server.
The offline filters are designed in such a way that only the
most relevant events are preserved. For example, in a stock
tracker application, only the latest quote is stored, or in a
temperature sensor application, only the highest tempera-
ture is stored. Responsive handoff protocols can further re-
duce the size of persistent storage. Responsiveness of hand-
off protocols can be improved using network level quality of
service (QoS) for control messages on fixed networks. Re-
search along these directions seems to be missing.

In some worst case scenarios, the location based rout-
ing algorithm described in REBECA may lead to undesir-
able behavior like missing notifications or even starvation
of a client because of the latency of the event middleware.
Although their approach is based on “restricted flooding”,
flooding can be nearly eliminated if location change is pred-
icated proactively and if the infrastructure reorganizes itself
around it. Research seems to be missing along this dimen-
sion as well.

Achieving of high availability in spite of node failures
in distributed publish/subscribe systems is also of concern,
especially in mobile environments. Huang and Molina [8]
describe how basic guarantees of publish/subscribe middle-
ware are affected because of replication – a common tech-
nique to improve availability. Security is also an open issue
for publish/subscribe middleware. In particular, it is critical
to support confidentiality of events given that the content of
events has to be available in some form to the event dis-
patcher to route them. It is clear that much work remains
to be done in the broad space of publish/subscribe systems
for supporing mobility.

6. Concluding Remarks
The proliferation of pervasive computing devices, the inte-
gration of network access technologies (mobile, wireless,
and Internet) and the large amount of information providers
offering content are driving the need to an information dis-
semination model that offers its users highly pertinent infor-
mation in a demand-driven manner. This can be supported
extremely well thorough the publish/subscribe paradigm,
where content providers constitute the publishers of infor-

mation, while content seekers constitute subscribers. Mo-
bility support in publish/subscribe system raises new chal-
lenges because of highly dynamic nature of the underly-
ing network and resource scarcity. We discussed require-
ments of the applications on mobile platform and issues that
arise in middleware that promises to satisfy those require-
ments. We focused on various solutions pertaining to (a)
publish/subscribe dispatching tree construction [3, 8] and
handoff protocols [6] (b) location dependent filters [6] and
approximate matching techniques [10] and (c) verification
of publish/subscribe systems [1]. We also visited open chal-
lenges in the space of middleware support for mobility and
sketched an outline of possible solutions to some of the prob-
lems.

References
[1] Luciano Baresi, Carlo Ghezzi, and Luca Mottola. On accurate

automatic verification of publish-subscribe architectures. In
ICSE ’07: Proceedings of the 29th International Conference
on Software Engineering, pages 199–208, Washington, DC,
USA, 2007. IEEE Computer Society.

[2] Antonio Carzaniga, David S. Rosenblum, and Alexander L.
Wolf. Achieving scalability and expressiveness in an internet-
scale event notification service. In PODC ’00: Proceedings
of the nineteenth annual ACM symposium on Principles of
distributed computing, pages 219–227, New York, NY, USA,
2000. ACM.

[3] G. Cugola and H.A. Jacobsen. Using publish/subscribe
middleware for mobile systems. ACM SIGMOBILE Mobile
Computing and Communications Review, 6(4):25–33, 2002.

[4] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui,
and Anne-Marie Kermarrec. The many faces of pub-
lish/subscribe. ACM Comput. Surv., 35(2):114–131, 2003.

[5] Patrick Th. Eugster, Benoît Garbinato, and Adrian Holzer.
Location-based publish/subscribe. In NCA ’05: Proceedings
of the Fourth IEEE International Symposium on Network
Computing and Applications, pages 279–282, Washington,
DC, USA, 2005. IEEE Computer Society.

[6] Ludger Fiege, Felix C. Gärtner, Oliver Kasten, and An-
dreas Zeidler. Supporting mobility in content-based pub-
lish/subscribe middleware, 2003.

[7] Yongqiang Huang and Hector Garcia-Molina. Pub-
lish/subscribe tree construction in wireless ad-hoc networks.
In MDM ’03: Proceedings of the 4th International Confer-
ence on Mobile Data Management, pages 122–140, London,
UK, 2003. Springer-Verlag.

[8] Yongqiang Huang and Hector Garcia-Molina. Pub-
lish/subscribe in a mobile environment. Wirel. Netw.,
10(6):643–652, 2004.

[9] D. Johnson. Scalable support for transparent mobile host
internetworking, 1995.

[10] Haifeng Liu and H.-Arno Jacobsen. A-TOPSS — a
publish/subscribe system supporting approximate matching.
In Proceedings of the 28th Intl. Conference on Very Large

9 2007/12/9

Data Bases (VLDB), pages 1107–1110, 2002.

[11] Gero Muhl, Andreas Ulbrich, Klaus Herrmann, and Torben
Weis. Disseminating information to mobile clients using
publish-subscribe. IEEE Internet Computing, 8(3):46–53,
2004.

[12] M. Robby and J. Dwyer. Bogor: an extensible and highly-
modular software model checking framework, 2003.

[13] A. Zeidler and L. Fiege. Mobility support with rebeca, 2003.

10 2007/12/9

