
Toward Native XML Processing Using Multi-paradigm Design in C++

Sumant Tambe and Aniruddha Gokhale
Department of EECS, Vanderbilt University, Nashville, TN, USA

{sutambe, gokhale}@dre.vanderbilt.edu

Abstract

XML programming has emerged as a powerful data
processing paradigm with its own rules for abstracting,
partitioning, programming styles, and idioms. Seasoned
XML programmers expect, and their productivity depends
on the availability of languages and tools that allow us-
age of the patterns and practices native to the domain
of XML programming. The object-oriented community,
however, prefers XML data binding tools over dedicated
XML languages because these tools automatically generate
a statically-typed, vocabulary-specific object model from
a given XML schema. Unfortunately, these tools often
sidestep the expectations of seasoned XML programmers
because of the difficulties in synthesizing abstractions of
XML programming using purely object-oriented principles.
We demonstrate how this prevailing gap can be significantly
narrowed by a novel application of multi-paradigm pro-
gramming capabilities of C++. In particular, we demon-
strate how generic programming, metaprogramming, gen-
erative programming, strategic programming, and operator
overloading supported by C++ together enable native and
typed XML programming.

Keywords: XML Processing, Object-oriented Program-
ming, Generic Programing, Meta Programming, Generative
Programming, C++.

1 Introduction
There is little doubt that XML has evolved from just

a human readable serialization format to a sophisticated
data description, storage, and processing technique used
in a wide range of applications. XML programing – the
paradigm that is native to the domain of XML processing
– has its own type system [10], (e.g., anonymous complex
elements, repeating sub-sequences), data model [21] (e.g.,
XML information set constituents, such as elements, at-
tributes, and processing instructions), schema languages for
document description (e.g., XSD [22], DTD, RELAX NG),
programming languages (e.g., XPath [23], XSLT, XQuery),
and styles and idioms (e.g., child, descendant, sibling axes

in XPath, pattern matching in XSLT). Naturally, the concep-
tual richness of XML processing has led many to identify it
as a distinct paradigm in itself.

Listing 1 An XML document (catalog.xml) containing a
book catalog.

<catalog>
<book>

<title>Hamlet</title>
<price>9.99</price>
<author>
<name>William Shakespeare</name>
<country>England</country>

</author>
</book>
<book>...</book>

...
</catalog>

To reify this fact, consider the XML document shown
in Listing 1 that we will use as a running example in the
rest of this article. Suppose we need to extract the names
of authors who lived in England. A solution using XPath
would be

"//author[country/text() = ’England’]/name/text()"

The succinctness and expressiveness of this solution is
due to the idiomatic uses of XPath’s child and descendant
axes denoted by ‘/’ and ‘//’ respectively. The child axis
selects immediate children elements whereas the descen-
dant axis selects the specified element nodes (“author”) any-
where in the XML tree, irrespective of their depth from the
root (“catalog”).

While a XML aficionado would appreciate the succinct-
ness of the above solution, an object-oriented (OO)-biased
developer would be reluctant to use this approach for sev-
eral reasons. First, contemporary XPath libraries available
to the OO programmers use strings to represent queries,
which leaves no opportunity for static type checking. Incor-
rect XPath queries are identified only during testing when
the result set is either a null set or an exception is raised.
Second, the string encoded XPath queries may be vulnera-
ble to XPath injection attacks [2]. Finally, the results of such



queries require type casting to appropriate types, which is
often computationally expensive.

Listing 2 XML Schema Definition (XSD) of the catalog
XML
<xs:element name="catalog">
<xs:complexType> <xs:sequence>
<xs:element name="book" maxOccurs="unbounded">
<xs:complexType> <xs:sequence>
<xs:element name="name" type="xs:string" />
<xs:element name="title" type="xs:string" />
<xs:element name="price" type="xs:double" />
<xs:element name="author" maxOccurs="unbounded">
<xs:complexType> <xs:sequence>

<xs:element name="name" type="xs:string" />
<xs:element name="country" type="xs:string" />
</xs:sequence> </xs:complexType>

</xs:element>
</xs:sequence> </xs:complexType>
</xs:element>

</xs:sequence> </xs:complexType>
</xs:element>

Listing 3 C++ classes generated by a typical XML data
binding tool from the XSD

class title {...};
class price {...};
class name {...};
class country {...};
class author { // Constructors are not shown.

private: name name_;
country country_;

public: name get_name() const;
void set_name(name const &);
country get_country() const;
void set_country(country const &);

};
class book { // Constructors are not shown.

private: title title_;
price price_;
std::vector<author> author_sequence_;

public: title get_title() const;
void set_title(title const &);
price get_price() const;
void set_price(price const &);
std::vector<author> get_author() const;
void set_author(std::vector<author> const &);

};
class catalog {...}; // Contains a std::vector of books.

To overcome these limitations, OO-biased developers of-
ten use XML data binding tools [15, 1], which generate
a statically-typed, vocabulary-specific object model from
a description of the object structure in a schema language
(e.g., XSD, DTD, RELAX NG). For instance, Listing 2
shows the XML schema definition of the book catalog. Cor-
responding to that, Listing 3 shows the generated object
model1 that reflects the structure of the book catalog. Well-
known OO programming idioms are used to encapsulate the

1By default, simple types such as xs:double are implemented using the
language’s native types. Classes can be generated for simple types using
tool-specific command-line options or simple xsd transformations.

data in intuitive classes and intuitive ways are provided for
the inspection and manipulation of the data through mem-
ber functions only.

Verbose queries are the primary downside of the object-
oriented approach compared to XPath. First, obtaining chil-
dren requires invocation of member functions, which can-
not be composed as in the ‘/’ operator of XPath. Although
Method chaining can be exploited to a certain extent, its use
is not anticipated in most XML data binding tools. Second,
explicit loops are necessary to iterate over the containers of
children, which is clearly low-level and tedious compared
to XPath. Finally, the XPath features allow queries to be
decoupled from the concrete XML structure by omitting in-
termediate tags. For instance, XPath query “//name” finds
name tags anywhere in the XML tree, without having to
mention the “book”, “catalog”, and “author” tags. Such
decoupling reduces maintenance should the XML struc-
ture change in future. This commonly used XPath idiom
is nowhere to be found in the generated classes. In fact,
there is no way to bypass catalog and book objects before
reaching the name objects.

To bridge this technical gap between the two approaches
and thereby alleviate the “disappointment” of the XML pro-
grammer, we ask ourselves the question: “Is it possible
to achieve the expressiveness of XPath and the type-safety
of OO all at once?” As we will show in the rest of this
article, C++ is a true multi-paradigm language that rises
to the complexity of this problem, which is otherwise in-
accessible using the OO paradigm alone. In particular,
we demonstrate how generic programming, static metapro-
gramming [3], generative programming [7], and strategic
programming [19, 14] in combination with operator over-
loading can co-exist in a single framework to resolve the
gap between XPath-like notation and OO type-safety.

The following code snippet is a C++ program that is
equivalent to the XPath query shown earlier.

bool from_england(author a){ return a.get_country()=="England"; }
std::vector<name> author_names =
catalog_root >> AllDescendantsOf(catalog(), author())

>> Select(author(), from_england)
>> name()

This solution is presented using our previous work
on the Language for Embedded quEry and traverSAl
(LEESA) [17]. In the above code snippet, catalog_root
is the root of the typed XML tree, which is instantiated af-
ter parsing (and optionally validating) an input XML file.
AllDescendantsOf is LEESA’s manifestation of the de-
scendant axis, which serves a purpose similar to that of “//”
in XPath. Select encapsulates the user-defined predicate
function from_england.

The key distinction between the XPath query and the
LEESA query is that the C++ compiler type-checks the
LEESA expression because it is not encoded as a string.
Moreover, LEESA validates the expressions against the

2



schema at compile-time. The return value of the expression
is a standard container of names, which requires no type-
casting.

2 XML Programming Concerns
In this section, we identify the key concerns of XML

programmers that are left unresolved by contemporary OO-
biased XML data binding tools. Figure 1 shows a decom-
position of these concerns that we are interested in. Several
other XML programming concerns, such as construction of
XML literals, modularization of type-specific actions, and
the dreaded problem of X/O impedance [13] remain impor-
tant but are not discussed further. We describe how XML
data access can be made more generic (yet type-safe) by
using a type-driven approach.

Figure 1: Major concerns of the XML programming
paradigm and the proposed multi-paradigm solutions

2.1 Representation and Data Access

Contemporary XML data binding tools aptly represent
XML’s tree-shaped data using the Composite design pat-
tern. Each element type is represented by a class that is spe-
cific to the XML vocabulary in question as shown in List-
ing 3. These classes, however, are hard to use in generic
algorithms. Syntactically, vocabulary-specific accessors/-
mutators of the generated classes have little, if any, com-
monality. The types of the children elements are encoded in
the member function names (e.g., get_country, get_name
etc.), which force usage of OO’s dot notation.

In contrast, a more generic approach to access the chil-
dren is via a generic accessor function that can be param-
eterized by the desired children types. The key benefit of
the generic type-driven access to data is that it allows us to
abstract the vocabulary-specific interface behind a uniform
interface without losing type-safety. Furthermore, this ap-
proach is more amenable to composition than classic OO

dot notation as discussed in Section 2.3. Unfortunately,
such a generic use is often not anticipated by the OO-centric
XML data binding tools and hence the generic APIs are not
synthesized.

Listing 4 Automatically generated overloaded functions for
type-driven data access

name children (author a, name const *) {
return a.get_name();

}
country children (author a, country const *) {

return a.get_country();
}
title children (book b, title const *) {

return b.get_title();
}
price children (book b, price const *) {

return b.get_price();
}
std::vector<author> children (book b, author const *) {

return b.get_author();
}
std::vector<book> children (catalog c, book const *) {

return c.get_book();
}

To address this limitation we have developed a Python
script that generates a set of overloaded functions that al-
low generic type-driven access to the composite data, as
opposed to the common style of member function invoca-
tion. A sample of global (namespace-level) functions is
shown in Listing 4. All the overloaded functions are named
children, where the second formal parameter is a dummy
pointer used to resolve ambiguities and also to provide type-
driven access. Thus, for every parent-child pair one over-
loaded function is synthesized which maps the child type to
the appropriate member function of the parent object.

Alternatively, a semantically equivalent interface can be
synthesized using C++ member templates, where a generic
member function, children, is made parameterizable us-
ing C++ template mechanism. In fact, this technique has
been employed in our earlier work [17] where the type pa-
rameter serves the same purpose as the second parameter in
Listing 4. We choose overloaded functions here primarily
for their simplicity.

2.2 Resolving Ambiguities

Despite the simplicity of our approach, a new problem
arises that must be handled. For example, XML data bind-
ing tools use mapping optimizations where simple content
nodes such as attributes and simple elements are repre-
sented using standard library types or the language’s built-
in types instead of vocabulary-specific types. Such opti-
mizations, however, are unable to distinguish objects that
logically belong to different parts of the XML tree at the
type level. For instance, title and name in Listing 2 would
be indistinguishable at the type level if they are both rep-
resented using std::string. Nevertheless, such optimiza-

3



tions cause ambiguities in our type-driven approach when
two or more types of children elements are represented us-
ing the same C++ class.

To address this limitation, our Python script provides two
alternatives. First, the script can be used to transform the
given XML Schema Definition (XSD) – without affecting
its data semantics – such that XML data binding tools are
forced to generate vocabulary-specific types for simple con-
tent nodes. This is achieved by inserting a combination of
xsd:simpleType and xsd:restriction elements in the data def-
inition of the simple content nodes. For instance,

<xs:element name="name" type="xs:string" />
<xs:element name="title" type="xs:string" />

from Listing 2 is automatically transformed into

<xsd:element name="name">
<xsd:simpleType>
<xsd:restriction base="xsd:string" />

</xsd:simpleType>
</xsd:element>
<xsd:element name="title">
<xsd:simpleType>
<xsd:restriction base="xsd:string" />

</xsd:simpleType>
</xsd:element>

Such transformation forces contemporary XML data
binding tools to generate distinct name and title classes.
Alternatively, the script can be instructed to drop the am-
biguous set of functions, which leaves the programmer with
the generated OO bindings (instead of LEESA) as the only
way to access the leaf-level data.

2.3 Axis-oriented Fixed-depth Traversal

XPath programmers visualize every XML document as
being conceptually partitioned along the so-called XML
axes (e.g., child, parent, sibling, ancestor, descendant) and
the self-describing data organized around these axes. These
axes represent a commonality, i.e., an opportunity for reuse,
that is central to the domain of XML programming which,
however, is not recognized by the OO principles alone.
These axes determine not only how data is structured but
also how different variations in traversal allow access to the
data. For instance, Figure 2 shows two variations: breadth-
first and depth-first, along the child axis.

Complementing the axes, there exist numerous element
tags, which capture the actual data in every XML document.
Since the element tags are vocabulary-specific, the classes
that correspond to element tags in the corresponding object
model become the source of variability. Such an identifica-
tion of the common and variable parts provides a opportu-
nity to introduce a reusable mechanism that can capture the
commonality of axes while leaving the richly-typed objects
a mere matter of vocabulary-specific policy.

Figure 2: Variations in child axis traversal: (A) breadth-first
(B) depth-first

We achieve this desired goal using the generic program-
ming paradigm and operator overloading in C++ to con-
struct an intuitive, composable, and reusable notation for
axis-oriented expressions that is well beyond the dot nota-
tion prevalent in the OO paradigm.

Listing 5 A reusable, generic infrastructure in (pseudo)
C++ simulating XPath-like child axis notation

1: template <class Kind>
2: class Carrier : public std::vector<Kind> {
3: // Default and copy-constructor are trivial.
4: Carrier (const Kind &k) {
5: this->push_back(k);
6: }
7: using std::vector<Kind>::push_back; // Accepts one Kind.
8: void push_back(std::vector<Kind> const &v) {
9: this->insert(this->end(), v.begin(), v.end());

10: }
11: };
12: template <class Parent, class Child>
13: Carrier<Child>
14: operator >> (Carrier<Parent> carrier, Child const &c)
15: {
16: Carrier<Child> all_children;
17: foreach parent in carrier {
18: all_children.push_back(children(parent, &c));
19: }
20: return all_children;
21: }

Listing 5 shows a mechanism for writing typed child axis
expressions, which has been significantly simplified com-
pared to that of LEESA in the interest of brevity. While
LEESA uses the Expression Templates [18] idiom for sup-
porting both breadth-first and depth-first traversal, the over-
loaded operator � shown in Listing 5 supports breadth-
first traversal only. It allows the expression of type-safe
queries using a notation that is similar to the child axis of
XPath. For instance, the following program implements the
breadth-first traversal shown in Figure 2(A).

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
std::vector<name> names =
catalog_root >> book() >> author() >> name();

4



Carrier<Kind> is an abstraction that hides whether it is
carrying a single Kind or a collection of Kinds. The over-
loaded member function, push_back, treats a singular Kind
object and a collection of Kinds uniformly. This uniformity
is exploited on line #18 in the generic operator � func-
tion. The children function on line #18 is chosen from the
overloaded functions for type-driven data access shown in
Listing 4. Depending upon the return type of the children
function, appropriate overloaded method of push_back is
chosen. The Child type is automatically deduced by the
compiler while evaluating the chained operator � from
left to right. Finally, the operator � function itself is
reminiscent of the conventional overloaded extraction (�)
operators used for I/O, which can be chained to an arbitrary
length.

LEESA provides generic, reusable functionality for
traversal along child, parent, and sibling axes. In particular,
� and �= operators are used for breadth-first and depth-
first traversal of child axis whereas � and �= operators are
used for breadth-first and depth-first traversal of the parent
axis. The following query implements the depth-first child
axis traversal shown in Figure 2(B).

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
evaluate(catalog_root,

catalog() >>= book() >>= author() >>= name());

Note the use of function evaluate, which takes two pa-
rameters as input. The first parameter is a context object
and the second parameter is the depth-first LEESA query
implemented using the Expression Templates idiom. Ex-
pression Templates allow lazy evaluation of C++ expres-
sions. Actual execution can be deferred much later in the
program. At the point of definition, a temporary function
object is created that embodies the computation. This func-
tion object must be explicitly invoked later in the program.
LEESA provides evaluate function to execute previously
constructed LEESA expression templates. In the above ex-
pression, LEESA query is executed in the context of the root
of the XML tree: catalog_root.

Unlike the breadth-first expression, LEESA’s depth-first
expressions do not have return values. Instead, they are in-
tended to be used in the context of the Visitor [8] design pat-
tern. Our Python script generates a visitor class with empty
visit functions for all the types in the schema. Users can
extend specific visit functions to implement type-specific
actions, such as printing. Assuming the user-defined visitor
object is called v, the following expression invokes type-
specfic visit functions in depth-first order as shown in Fig-
ure 2(B).

Visitor v;
Carrier<catalog> catalog_root(getRoot("catalog.xml"));
evaluate(catalog_root,

catalog() >> v >>= book() >> v >>=
author() >> v >>= name() >> v);

Further details on the use of the Visitor design pattern in
LEESA can be found in [17].

LEESA also supports different variations of the sibling
axis to query children at the same level. We present a vari-
ation of sibling axis that allows on-demand creation of tu-
ples containing objects of different types. For example, the
following LEESA query creates a collection of tuples con-
taining every author’s name and his/her country.

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
std::vector<tuple<name, country> > tuples =
evaluate(catalog_root, catalog() >> book() >> author() >>

ChildrenAsTupleOf(author(),tuple<name,country>()));

Note that XPath does not support depth-first traversal
and tuple-fication2 of XML data element as presented here.
These capabilities demonstrate that due to the judicious
use of operator overloading and generic programming in
C++, succinct and expressive traversals can be written in
a type-safe manner. More details of LEESA’s design appear
in [17].

2.4 Axis-oriented Structure-shy Traversal

XPath supports the descendant axis, which allows omis-
sion of the element tags between the document root and the
elements of interest resulting in the so-called structure-shy
queries. For instance, "/*/*/country" and "//country"
are two structure-shy XPath queries that omit the “book”
and “author” tags indicating interest in the “country” ele-
ments only. While the former query looks for the “country”
elements at the third level from root, the latter looks for the
same at any nested level in the XML tree. Such a decou-
pling from the concrete structure of the XML tree is desir-
able to write flexible queries that are resilient to changes in
the schema.

Although the OO paradigm can exhibit structure-shyness
in the form of information hiding and encapsulation, realiz-
ing XPath-style structure-shyness poses a significant chal-
lenge using only the OO features of C++. However, by
leveraging the Strategic Programming (SP) [19, 14] and
Generative Programming [7] paradigms supported by C++,
we can achieve support for structure-shyness that rivals
XPath.

Sidebar 1 presents an overview of SP. In our ear-
lier work [17] we have demonstrated how LEESA imple-
ments basic strategic combinators using C++ templates.
Commonly used traversal schemes such as FullTopDown
are also provided out-of-the-box like most SP incarna-
tions do. LEESA’s manifestation of the descendant axis,
AllDescendantsOf(Ancestor, Descendant), uses Full-
TopDown traversal scheme to emulate XPath’s ‘//’ operator.

Specifically, the FullTopDown traversal scheme is pa-
rameterized with a Collector<Descendant> object that

2XPath’s or operator computes a linear list of node elements; not a list
of tuples as in LEESA.

5



identifies the Descendant type objects and accumulates
them as the recursive strategy descends into the XML
tree. For example, AllDescendantsOf(catalog(),
country()) uses Collector<country> that collects all
the country objects irrespective of their depth. Therefore,
AllDescendantsOf presents an opportunity for XML pro-
grammers to express typed structure-shy queries. The fol-
lowing expression is a typed equivalent of "//country"
XPath query.

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
std::vector<country> countries =
evaluate(catalog_root, catalog() >>

AllDescendantsOf(catalog(), country()));

Sidebar 1: Strategic Programming in a
Nutshell

Strategic Programming (SP) began as a general-
purpose program transformation [19] technique, which later
evolved into a paradigm [14] for generic tree traversal
that supports reuse of the traversal logic while providing
complete control over traversal. It warrants the status of
a paradigm because it has been incarnated in disparate
programming disciplines such as term rewriting, func-
tional programming, logic programming, object-oriented
programming (visitors). It is based on a small set of combi-
nators (Identity, Fail, Sequence, Choice, All, and One) that
can be composed to construct complex traversal schemes.
Pseudo-code for the Sequence and All combinators is shown
below.

template <class Strategy1, class Strategy2, class Datum>
Sequence (Datum d) {

Strategy1(d);
Strategy2(d);

}
template <class Strategy, class Datum>
All (Datum d) {
foreach child c of d

Strategy(c);
}

While the Sequence combinator invokes the parameter
strategies in sequence on its input datum, the All combi-
nator invokes the parameter strategy on all the children of
the input datum, if any. The strategy template parame-
ters could be simple unary functions, function objects, or
other strategic combinators themselves. The real strength
of SP lies in the various ways these combinators can be
combined to give rise to complex traversals. For example,
Sequence and All can be composed to obtain a recursive
traversal scheme called FullTopDown, which descends into
each sub-tree and applies the specified strategy on every el-
ement in the sub-tree.

template <class Strategy, class Datum>
FullTopDown (Datum d) {

Sequence<Strategy, All<FullTopDown<Strategy> > > (d);
}

Furthermore, LEESA applies strategic programming
to construct type-safe queries that emulate XPath wild-
cards (’/*/’) using LevelDescendantsOf. For in-
stance, the following expression is a typed equivalent of
"/*/*/country" XPath query. The intermediate types be-
tween catalog and country are omitted without losing the
type-safety of the query.

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
std::vector<country> countries =
evaluate(catalog_root, catalog() >>

LevelDescendantsOf(catalog(), _, _, country()));

LEESA infers the omitted types using sophisticated
metaprograms implemented in LevelDescendantsOf.
LevelDescendantsOf makes use of the All strategic com-
binator, which applies its nested strategy to the im-
mediate children of its input datum. For instance,
when All<All<All<Collector<country> > > > com-
posite strategy is applied to the root of the catalog object
model, it collects the country objects found exactly at the
3rd level. Note that in the case of LevelDescendantsOf,
the number of times All is composed is not known a priori
but instead determined at compile-time based on the num-
ber of wildcards specified by the programmer. Such auto-
matic compile-time composition of strategies is the novelty
of LEESA’s incarnation of SP. This technique of synthe-
sizing complex types from basic types at compile-time is
well-known in the C++ community as generative program-
ming [7].

2.5 Compile-time Schema Conformance Checking

Although all the LEESA queries are type-checked by the
compiler, it could be argued that the axis-oriented traver-
sal is an over-generalization of OO’s member access idiom
leading to a possibility of writing unsafe or illegal XML
queries. For instance, catalog() � book() � book()
is an illegal query because “book” elements do not contain
other books. The possibility of such illegal queries ques-
tion the usefulness of the type-driven data access approach
we presented earlier. We address these limitations using the
static metaprogramming paradigm supported by C++.

We exploit the C++ compiler to check LEESA expres-
sions at compile-time based on the meta-information of
the XML object structure that is automatically external-
ized in a form understood by the C++ compiler. The Boost
Metaprogramming Library (MPL) is used as the represen-
tation format for the externalized meta-information for the
child and descendant axes. Sidebar 2 presents an overview
of Boost MPL, which provides sophisticated facilities for
static metaprogramming in C++.

We have developed a Python script that automatically ex-
ternalizes the meta-information in the schema in the form
of MPL sequences. Listing 6 shows the automatically gen-
erated meta-information for the catalog object model. For

6



Sidebar 2: C++ Metaprogramming and
Boost MPL

C++ templates, due to their support for specialization,
give rise to a unique, purely functional computation sys-
tem that can be used to perform compile-time computations.
It has become well-known as C++ template metaprogram-
ming and has been exploited in countless applications in-
cluding scientific computing, parser generators, functional
programming among others.

Boost MPL [3] is a general-purpose C++ metapro-
gramming library with a collection of extensible compile-
time algorithms, typelists, and metafunctions. Typelists en-
capsulate zero or more C++ types in a way that can be ma-
nipulated at compile-time using MPL metafunctions. For
example, consider a typelist called Integral, which is rep-
resented using a compile-time MPL sequence mpl::vector
(not to be confused with std::vector).

typedef mpl::vector<int, long, short, unsigned> Integral;

MPL provides several off-the-shelf capabilities to ma-
nipulate such a list of types at compile-time. For instance,
a MPL metafunction called mpl::contains can be used to
check existence of a type in a MPL sequence.

mpl::contains<Integral, int>::value; // value = true
mpl::contains<Integral, float>::value; // value = false

Listing 6 Automatically generated meta-information for the
catalog object model

1: template <class Kind> struct SchemaTraits {
2: typedef mpl::vector<> Children; // Empty sequence
3: };
4: template <> struct SchemaTraits <catalog> {
5: typedef mpl::vector<book> Children;
6: };
7: template <> struct SchemaTraits <book> {
8: typedef mpl::vector<title, price, author> Children;
9: };

10: template <> struct SchemaTraits <author> {
11: typedef mpl::vector<name, country> Children;
12: };

13: struct True { enum { value = 1 }; };
14: struct False { enum { value = 0 }; };
15: template<class A, class D> struct IsDescendant : False {};

16: template<> struct IsDescendant<catalog, book> : True {};
17: template<> struct IsDescendant<catalog, title> : True {};
18: template<> struct IsDescendant<catalog, price> : True {};
19: template<> struct IsDescendant<catalog, author> : True {};
20: template<> struct IsDescendant<catalog, name> : True {};
21: template<> struct IsDescendant<catalog, country> : True {};

22: template<> struct IsDescendant<book, title> : True {};
23: template<> struct IsDescendant<book, price> : True {};
24: template<> struct IsDescendant<book, author> : True {};
25: template<> struct IsDescendant<book, name> : True {};
26: template<> struct IsDescendant<book, country> : True {};

27: template<> struct IsDescendant<author, name> : True {};
28: template<> struct IsDescendant<author, country> : True {};

every class that has at least one child, a specialization of
the SchemaTraits is generated that contains a MPL se-
quence of the children types. For other simple classes,
the list of children is empty, represented by the generic
SchemaTraits template (lines 1-3) in Listing 6.

The descendant axis information is represented using the
specializations of IsDescendant<A,D> template. For ev-
ery type D (for descendant) that is contained directly or in-
directly under type A (for ancestor), an IsDescendant spe-
cialization is generated that inherits from the True type. For
all other pairs, the generic IsDescendant template (line
#15) inherits from False, indicating that the descendant re-
lationship does not hold. Essentially, IsDescendant is a
transitive closure of the child relationship.

LEESA leverages this meta-information to catch any il-
legal query expression at compile-time. LEESA imple-
ments generic, reusable compile-time assertions in its over-
loaded operators to disallow illegal queries along all the
supported axes. For instance, the following compile-time
assertion is used in the implementation of operator �
function (Listing 5).

typedef SchemaTraits<Parent>::Children Children;
BOOST_STATIC_ASSERT(mpl::contains<Children, Child>);

Using the Boost static-assert library and the external-
ized meta-information, LEESA constrains the formal pa-
rameter types of the function such that only those types
that satisfy the parent-child relationship yield a success-
ful compilation of the program. Similar static assertions
are used in the implementation of AllDescendantsOf and
LevelDescendantsOf based on the IsDescendant<A,D>
meta-information. Such compile-time assertions are
generic but still schema-aware. They act like vocabulary-
specific extensions to the language’s type system ensuring
that the existential constraints in the schema are satisfied at
compile-time.

3 Performance Evaluation
To determine whether our approach can be used in prac-

tice, we compare the performance3 of LEESA with sev-
eral contemporary XML processing tools, such as the open-
source xsdcxx [1] XML data-binding tool for C++ and an
open-source XML processing library in C language called
libxml24. We chose these tools because they are open-
source and widely deployed.

3.1 Run-time Performance

Figure 3 compares the run-time performance LEESA
with equivalent programs written using pure object-oriented
techniques (xsdcxx) and the libxml2 C library. We com-
pared the time needed to construct a standard container

3The testbed can be downloaded from http://www.dre.
vanderbilt.edu/LEESA

4http://xmlsoft.org

7



(std::vector) of name objects from a set of large book
catalogs. LEESA’s descendant axis has consistently higher
overhead by a factor of 2.3 compared to the XML data-
binding solution. The performance of libxml2 library lies
between the solutions using OO and LEESA. This abstrac-
tion penalty stems from the construction, copying, and de-
struction of the internal dynamic data structures LEESA
maintains. In particular, our analysis using the GNU pro-
filer (gprof) revealed that the test program spent the highest
percentage of time in the std::vector’s insert member
function and the iterator functions during the query execu-
tion.

Figure 3: Comparison of run-time performance of LEESA,
the OO solution, and libxml2

In practice, however, query execution amounts to a small
fraction of the overall XML processing, which involves I/O,
parsing, XML validation, construction of the in-memory
object model, and the execution of business logic. For in-
stance, our 320,000 elements test took over 33 seconds for
XML parsing, validation, and object model construction,
which is nearly two orders of magnitude higher than the
query execution time.

Moreover, LEESA’s higher-level of abstraction opens
opportunities for transparent performance improvements
using the upcoming C++ language features such as rvalue
reference [11]. Rvalue references eliminate unnecessary ex-
pensive copies of objects, particularly when large objects
are returned by value. LEESA, like most other generic li-
braries, will benefit from this language feature because it
passes large container objects from the inner scope to the
outer by value.

3.2 Compile-time Overhead

LEESA’s heavy reliance on C++ template metaprogram-
ming and generative programming motivates us to evaluate
metrics such as compilation times, source code size, and
the object code size. Table 1 shows the comparison of code
sizes for one small (10 types) and one large (300 types)

schema. The small schema has four nested levels where
as the large schema has eight (not considering recursion).
The large schema is the data representation format used by
a component-based modeling language [5], which has 4 re-
cursive and mutually recursive types. We evaluated a single
LEESA expression of each query type shown in the table
against equivalent programs written using OO abstractions
only. The GNU C++ compiler collection (version 4.5) was
used for the evaluations.

Schema Query type Lines of Object code
size code (Megabytes)

(A) (B) (A) (B)

Small
Child-axis,

AllDescendants, 3 13 0.38 0.35
LevelDescendants

Large
Child-axis 3 39 7.42 7.15

AllDescendants 3 136 7.46 7.19
LevelDescendants 4 88 7.49 7.18

Table 1: Comparison of the static metrics. (A) = LEESA
and (B) = Object-oriented solution

The difference in the lines of code (LOC) in Table 1
clearly shows that LEESA expressions are expressive and
succinct compared to the OO-centric solution. Pure OO
code is not only verbose but also unable to express XML id-
ioms of structure-shyness. Data for the object code sizes re-
veals that LEESA’s generative programming approach does
not result in object-level code bloat.

Figure 4: Comparison of compilation times of LEESA and
the pure OO solution. Schema of 300 types.

Comparisons of the compilation times for the test pro-
grams written using the large schema are shown in Figure 4.
LEESA-based programs consistently require more time to

8



compile than pure OO solutions because contemporary C++
compilers are not optimized for heavy metaprogramming.
The increasing compilation-times may lengthen the edit-
compile-test cycles. However, we believe hat the succinct-
ness and intuitiveness of LEESA not only requires fewer
key-strokes but also fewer compilations than the equivalent
object-oriented programs.

Furthermore, the upcoming C++ language standard (in-
formally know as C++0x) has improved generic program-
ming features such as, variadic templates that allows arbi-
trary number of template parameters. With variadic tem-
plates, LEESA gains efficiency in compile-time computa-
tions due to their first-class status in the language. The
results in Figure 4 show the improvement in compilation
times for LEESA’s internal metaprograms written using
variadic templates as opposed to their library-level emula-
tion using MPL typelists. We observed 10% to 23% re-
duction in compilation time depending upon the axis used.
Savings were more pronounced for the descendant axis ex-
pressions because they use more complex meta-programs
that that of the child axis.

4 Related Work
In this section we present a sampling of related research

focused on integrating XML semantics in object-oriented
languages.

Lämmel et al. have identified the fundamental differ-
ences in the type systems of the contemporary OO lan-
guages and that of XML, which is known as the X/O
impedance [13] mismatch. XML data is naturally repre-
sented by regular expression types [10] or regular types
in short. Popular schema definition languages (e.g., XSD,
DTD, RelaxNG) are all based on regular types. Common
features of regular types, such as associative concatenation
operator, untagged union, and Kneene-star give rise to a
complex type system that is impossible to reflect in the type
systems of contemporary OO languages.

Several research languages, such as XJ [9], XACT [12],
Xtatic [12] embed XML type system into an OO language.
XJ and XACT combine the Java and XSD type systems.
XACT provides a programming model based on XML tem-
plates and XPath together with a type checker based on
data-flow analysis. Xtatic is an extension of C# program-
ming language with several features from the XML type
system, such as tree and sequence constructors for data and
regular types for data representation. Tight integration of
the two type systems in the languages often gives static
guarantees of validity of the generated XML data.

Language Integrated Query (LINQ) [4] is a Microsoft
technology used to support SQL-like queries natively in a
program to search, project and filter data in arrays, XML,
relational databases, and other third-party data sources.
LINQ expressions are designed to be embedded in .NET

languages, particularly C#.
S-XML [6] and XML Translation Language [20] are

functional languages embedded in Scheme and Haskell,
respectively, for creating and processing XML-like trees.
These languages are designed to exploit the functional char-
acteristics of their host languages.

XTL [16] presents an extensible typing library in C++,
which implements domain-specific enhancements to the
C++ type system. XTL also defines a type system for the
XML processing language, capable of statically guarantee-
ing that a program only produces valid XML documents
according to a given XML Schema.

X/O impedance [13] identifies the lack of fidelity in con-
temporary X-to-O mapping (XML data binding) tools to-
wards supporting XML semantics and programming pat-
terns & practices native to the XML domain. LEESA, how-
ever, recognizes the practical usefulness of these mappings
and attempts to improve the extraction of typed data by in-
corporating the idioms of XML querying (e.g., XPath axes,
wildcards) without losing type-safety. In that sense it sup-
ports typed XML processing and alleviates the disappoint-
ment of a XML programmer in the typed world.

5 Conclusion
XML data-binding tools are increasingly being used for

XML document processing in C++ because the automati-
cally generated language bindings from the XML schema
improves the type-safety of the programs. The gain in type-
safety, however, comes at the expense of native XML pro-
gramming styles and idioms, such as succinct axis-oriented
queries (XPath), structure-shyness, and the fidelity to the
full XML information set semantics. As a consequence,
typed XML processing programs in C++ are often verbose
and tightly coupled to the underlying XML data structure.

This paper addresses the limitations of XML data-
binding tools using the multi-paradigm capabilities of C++.
It develops a programming model for XML processing that
supports axis-oriented and structure-shy queries without
losing type-safety. The viability of the approach is demon-
strated in a C++ library named LEESA. Although LEESA
can not support all the capabilities of XPath, it has valuable
XML processing features, such as depth-first traversal and
tuple-fication that XPath does not provide. Compile-time
and run-time performance evaluations of LEESA show that
it is a practical alternative to existing XML processing li-
braries.

LEESA is a step forward toward integrating typed XML
processing in C++, but much remains to be accomplished.
We believe that the upcoming C++ language standard,
C++0x, which dramatically improves the generic program-
ming support in C++, offers plethora of opportunities to ad-
vance the fidelity and performance of XML integration in
C++. LEESA can be downloaded in open-source from www.dre.
vanderbilt.edu/LEESA.

9



References
[1] XML Data Binding for C++.

http://www.codesynthesis.com/products/xsd.
[2] A. Klain. Blind XPath Injection. Whitepaper from Watchfire,

2005.
[3] D. Abrahams and A. Gurtovoy. C++ Template Metapro-

gramming: Concepts, Tools, and Techniques from Boost and
Beyond (C++ in Depth Series). Addison-Wesley Profes-
sional, 2004.

[4] Anders Hejlsberg, Don Box et al. Language Integrated
Query (LINQ).

[5] K. Balasubramanian, J. Balasubramanian, J. Parsons,
A. Gokhale, and D. C. Schmidt. A Platform-Independent
Component Modeling Language for Distributed Real-Time
and Embedded Systems. In RTAS ’05: Proceedings of the
11th IEEE Real Time on Embedded Technology and Appli-
cations Symposium, pages 190–199, Washington, DC, USA,
2005. IEEE Computer Society.

[6] J. Clements, M. Felleisen, R. Findler, M. Flatt, and S. Krish-
namurthi. Fostering Little Languages. Dr. Dobb’s J., Mar.
2004.

[7] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Reading, Massachusetts, 2000.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1995.

[9] M. Harren, M. Raghavachari, O. Shmueli, M. G. Burke,
V. Sarkar, and R. Bordawekar. Xj: integration of xml pro-
cessing into java. In Proceedings of the 13th international
World Wide Web conference on Alternate track papers &
posters, WWW Alt. ’04, pages 340–341, New York, NY,
USA, 2004. ACM.

[10] H. Hosoya, J. Vouillon, and B. C. Pierce. Regular expression
types for XML. ACM Trans. Program. Lang. Syst., 27(1):46–
90, 2005.

[11] Howard Hinnant, Bjarne Stroustrup, and Bronek Kozicki. A
Brief Introduction to Rvalue References, C++ Source, 2008.

[12] C. Kirkegaard and A. Moller. Type checking with XML
Schema in XACT, Technical Report RS-05-31, BRICS. Pro-
gramming Language Technologies for XML, PLAN-X, 2005.

[13] R. Lämmel and E. Meijer. Revealing the X/O Impedance
Mismatch (Changing lead into gold). In In Datatype-Generic
Programming, volume 4719 of LNCS, 2007.

[14] R. Lämmel, E. Visser, and J. Visser. The Essence of Strate-
gic Programming. Draft; Available at http://homepages.
cwi.nl/~ralf/eosp, Oct.15 2002.

[15] Ronald Bourret. XML Data Binding Resources.
[16] Y. Solodkyy, J. JÃd’rvi, and E. Mlaih. Extending Type Sys-

tems in a Library — Type-safe XML processing in C++.
In Proceedings of the Second International Workshop on
Library-Centric Software Design (LCSD’06), pages 55–64,
2006.

[17] S. Tambe and A. Gokhale. LEESA: Embedding Strategic
and XPath-Like Object Structure Traversals in C++. In DSL
’09: Proceedings of the IFIP TC 2 Working Conference on
Domain-Specific Languages, pages 100–124, 2009.

[18] T. Veldhuizen. Expression Templates. C++ Report, 7(5):26–
31, June 1995.

[19] E. Visser, Z. Benaissa, and A. Tolmach. Building Program
Optimizers with Rewriting Strategies. In Proceedings of

the International Conference on Functional Programming
(ICFP’98), pages 13–26. ACM Press, 1998.

[20] M. Wallace and C. Runciman. Haskell and XML: Generic
combinators or type-based translation? In Proc. of the
Fourth ACM SIGPLAN International Conference on Func-
tional Programming (ICFP‘99).

[21] World Wide Web Consontium (W3C). XML Information
Set, W3C Recommendation. http://www.w3.org/TR/xml-
infoset, Feb. 2004.

[22] World Wide Web Consontium (W3C). XML Schema
Part 0: Primer Second Edition, W3C Recommendation.
http://www.w3.org/TR/xmlschema-0, Oct. 2004.

[23] World Wide Web Consontium (W3C). XML Path
Language (XPath), Version 2.0, W3C Recommendation.
http://www.w3.org/TR/xpath20, Jan. 2007.

10


