
An Embedded Declarative Language for Hierarchical Object
Structure Traversal

Sumant Tambe and Aniruddha Gokhale
Vanderbilt University, Nashville, TN, USA
{sutambe,gokhale}@dre.vanderbilt.edu

Abstract
A common challenge in processing large domain-specific models
and in-memory object structures (e.g., complex XML documents)
is writing traversals and queries on them. Object-oriented (OO) de-
signs, particularly those based on the Visitor pattern, are commonly
used for developing traversals. However, such OO designs limit the
reusability and independent evolution of visitation actions (i.e., the
actions to be performed at each traversed node) due to tight cou-
pling between the traversal logic and visitation actions, particularly
when a variety of different traversals are needed. Code generators
developed for traversal specification languages alleviate some of
these problems but their high cost of development is often pro-
hibitive. This paper presents Language for Embedded quEry and
traverSAl (LEESA), which provides a generative programming ap-
proach for embedding object structure queries and traversal specifi-
cations within a host language, C++. By virtue of being declarative,
LEESA significantly reduces the development cost of programs op-
erating on complex object structures compared to the traditional
techniques.

1. Introduction
A common practice for providing access to a large hierarchical data
consisting of heterogeneous types of objects is to provide type-safe
interfaces for every different type of object. These object structures
are represented in memory as a hierarchical collection of typed
objects with accessors and mutators. A canonical example of this
approach is XML data binding (e.g., Java Architecture for XML
Binding (JAXB)), where a code generator generates a hierarchy of
classes representing types in an XML schema in such a way that
de-marshaling of an XML document conforming to the schema
reduces to simply instantiating the root class of the generated class
hierarchy.

An identical approach [1] is adopted in the development of
domain-specific modeling (DSM) [2] tools such as analysis tools,
code generators, model checkers, model transformation tools,
among others. In the DSM methodology, domain-specific models
conforming to a meta-model are created. Often the interpretation
of these domain-specific models require navigation and querying
capabilities over the complex object structures governed by the
underlying meta-model.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

Extracting meaningful data from such object structures often re-
quires different traversals over the object structure. The Visitor [3]
pattern is a preferred approach for writing such traversals since
it groups together related visitation actions (i.e., the actions to be
performed at each traversed node) in the visitor class whereas the
traversals are localized in the concrete classes of the object struc-
ture. The consequence of using the Visitor pattern is a rigid traver-
sal of the object structure, which is inefficient when the desired
traversal requires visitation to only a subset of elements.

Alternatively, the traversal algorithm could be put in the vis-
itor, which results into not only duplicating the traversal code in
each concrete visitor but also coupling it with the visitation actions.
Introducing Iterators [3] can eliminate the dependence on the un-
derlying physical data structure (e.g., linked-list, vector) used by
the containers, however, dependence on the order of types visited
still remains in the visitor classes. Such coupling of traversal and
visitation actions adversely affects the reusability of the visitors,
especially when visitation actions are stable but traversals are not.

Domain-specific languages (DSL) [4–7] that are tailored for the
traversals of object structures have been proposed to overcome the
pitfalls of the Visitor pattern. These DSLs separate traversals from
the visitation actions. In general, the basic building block of these
languages are one or more traversal rules where every rule consists
of a composite type and its children types listed in the desired
traversal order. A code generator transforms the traversal rules
into a conventional procedural language program. For example, the
Traversal/Visitor Language (TVL) [6] can be used to write traversal
rules for domain-specific models. From the traversal rules, TVL’s
language processor generates visitor-based C++ code that visits the
object structure in the specified order. Finally, a separate step is
needed to compile the generated code with the manually written
visitation actions.

In spite of significant research in developing traversal DSLs, the
existing approaches have not enjoyed wide spread use. Among the
most important reasons [8–10] hindering their adoption are (1) high
upfront cost of the language and tool development, and (2) their
evolution and maintenance overhead. Development of language
tools such as a code generator requires the development of at least
a lexical analyzer, parser, back-end code synthesizer and a pretty
printer. Moreover, Mernik et al. [8] claim that language extension is
hard to realize because most language processors are not designed
with extension in mind. This increases the maintenance overhead
of the code generator as the DSL and the back-end programmatic
interface evolve over time.

Apart from traversal, querying is another commonly performed
operation on hierarchical object structures, which, although possi-
ble, is not supported in the existing [5, 6] DSLs for traversal speci-
fication. Querying requires support for selection, filtering, sorting,
and folding based on user-defined predicates, which significantly
increases the implementation complexity and the learning curve of

the DSLs. Lack of integrated support for querying and traversal,
however, reflects in the increased implementation complexity of the
visitors because the visitors must incorporate queries using proce-
dural techniques. Moreover, the user-defined predicates used in the
queries are often tightly coupled with the object structure.

To address the challenges outlined above, in this paper we
present a generative programming [11] approach to develop a
domain-specific embedded language (DSEL) [12] for querying
and implementing multiple visitor-based traversals over domain-
specific models. Our approach is not limited to domain-specific
models only; and it is applicable to a general class of problems for
hierarchical object structure traversal. We have developed an em-
bedded DSEL for C++ called Language for Embedded quEry and
traverSAl (LEESA), which leverages C++ templates and operator
overloading to provide an intuitive syntax for writing queries and
traversals. LEESA makes the following contributions:

• It embodies a novel, low-cost approach of developing a DSEL
suitable for object structure query and traversal in a multi-
paradigm language such as C++. The generative programming
approach adopted by LEESA’s language processor does not re-
quire development of a complex lexer, parser and code gener-
ator because it leverages the C++ compiler to accomplish its
goals and thereby significantly reduces [8–10] the cost of DSEL
development.

• It enables strong separation between the code that performs
traversal and the actions to be performed at each traversed node.
This prevents the knowledge of the object structure from being
tangled throughout the code.

• The notation provided by LEESA is declarative, which focuses
on which objects are visited but hides the details of how they
are visited. Moreover, the notation is suitable for writing queries
and visitor-based traversals simultaneously over an object struc-
ture, unlike any previous approach. The result is a succinct yet
expressive notation for traversal.

The remainder of the paper is organized as follows. Section 2
presents the architecture of LEESA and describes how we resolve
the challenges in designing a notation for object structure query-
ing and traversal; Section 3 describes in detail our generative pro-
gramming approach of embedding LEESA’s language processor in
C++; Section 4 presents open issues that require further investiga-
tion; Section 5 presents related work; and Section 6 concludes the
paper.

2. LEESA: Language for Embedded QuEry and
TraverSAl

We begin this section with the layered architecture of LEESA
and describe how LEESA’s architecture supports the solutions for
(1) embedding a notation for object structure traversal and (2)
implementing a language processor in the host language, C++. We
further describe the challenges faced while developing LEESA in
the context of a small case study of a finite state machine (FSM)
modeling language.

2.1 Layered Architecture of LEESA
Figure 1 shows the four layer architecture of LEESA. At the bottom
is the hierarchical object structure we would like to search and
traverse. For example, it could be an instance of a domain-specific
model or a large XML document. A generic data access layer is
a layer of abstraction over the object structure, which provides
an interface for accessing the elements in the object structure,
iteratively. Often, a meta-level code generator is used to generate
the classes that provide such an interface. Several different types

of meta-level code generators such as XML schema compilers
(e.g., JAXB) and domain-specific modeling tool-suites [1] exist that
generate a set of classes from the meta information of the object
structures.

Figure 1. Layered Architecture of LEESA

Expression Templates [13, 14], is the key idea behind embed-
ding a declarative notation for query and traversal in C++. Expres-
sion templates map the LEESA expressions, embedded in a C++
program onto the generic data access layer. Expression templates
raise the level of abstraction by hiding away the iterative process of
accessing objects and focus only on the types of the objects and dif-
ferent strategies of traversal. Moreover, LEESA’s expression tem-
plates are generic, which can be used for writing queries and traver-
sals over any hierarchical object structure provided an appropriate
generic data access layer is provided.

2.2 Finite State Machine Language: A Case-study
We use a FSM modeling language as a running example through-
out the paper to describe various capabilities of LEESA. Fig-
ure 2 shows a meta-model of a FSM language using a UML-
like notation. Our FSM meta-model consists of a StateMachine
with one or more States having directional edges between them
called Transitions. One of the states can be marked as a start
state using a boolean attribute. States may optionally contain
a Property element representing an arbitrary domain-specific
value (e.g., timeout period in seconds). A Transition repre-
sents an association between two states, where the source state
is in the srcTransition role and the destination state is in the
dstTransition role with respect to a Transition as shown in
Figure 2. The RootFolder is a singleton that represents the root
level model.

Figure 2. (A) Meta-model of Finite State Machine (FSM) Lan-
guage (B) A Simple FSM Model

We used Universal Data Model (UDM) [1] – a code genera-
tor for developing domain-specific modeling tools – to generate
the data access layer for iteratively accessing FSM models. The
generic data access layer for FSM models consists of five C++
classes: RootFolder, StateMachine, State, Transition, and
Property.

2.3 Notation for Object Structure Querying
Designing an intuitive domain-specific notation for a DSL is central
to achieving productivity improvements as domain-specific nota-

tions are closer to the problem domain in question than the notation
offered by general-purpose programming languages. The notation
should be able to express the key abstractions and operations in the
domain succinctly so that the DSEL programs become more read-
able and maintainable than the programs written in general-purpose
programming languages. For object structure querying, the key ab-
stractions are the objects and typed collections of the objects while
the basic operation performed is navigation of associations (mostly
composition) from one type of object to another.

An important constraint imposed by the host language while de-
signing a notation for a DSEL is to remain within the limits of the
user-definable operator syntax offered by the host language. Quite
often trade-offs must be made to seek a balance between the ex-
pressiveness and intuitiveness of the embedded notation against the
ease of implementation. In the following, we describe the notation
we chose for LEESA that can be embedded in a C++ program with-
out sacrificing its expressiveness.

Resolution. Listing 1 shows an example of a LEESA query
that returns a set of all the Properties in the model rooted at
the RootFolder. This notation is an immediate improvement over
traditional iterative techniques of querying objects. Using the tra-
ditional approach, a programmer will have to write at least two
nested for loops: one to iterate over all the StateMachines under
the RootFolder and another to iterate over all the States under
each StateMachine. Finally, a set of Properties must also be
populated iteratively.

RootFolder() >> StateMachine() >> State() >> Property()

Listing 1: A LEESA Expression to Find All The Properties in a
FSM Model

The example in Listing 1 is based on the composition relation-
ship only as every type (except RootFolder) is strictly contained
inside its left side type. However, LEESA is capable of traversing
other arbitrary associations defined between different types of ob-
jects. For example, Listing 2 shows a LEESA query that returns all
the states that have at least one incoming transition. Note that such
a set can be conceptually visualized as a set of states that are at the
destination end of a transition.

RootFolder() >> StateMachine() >> Transition()
>>& Transition::dstTransition

Listing 2: A LEESA Expression to Find All The States With an
Incoming Transition

To improve the readability of LEESA expressions, several ad-
ditional syntactic elements are introduced in Listing 2, which are
designed to easily distinguish between the composition associa-
tions and user-defined associations in a LEESA expression. The
operator “�&” is used to find objects at either ends of an asso-
ciation provided the expression to the left of the operator yields a
set of associations. For example, the expression to the left side of
the operator�& in Listing 2 yields a set of Transitions, which
represents associations between States. The remaining expression
to the right side of the �& operator, returns a State that is in
the dstTransition role with respect to every Transition in the
previously obtained set. Finally, LEESA provides support for nav-
igating composition relationships in the reverse (i.e., from child to
parent) direction using the left shift (i.e., “�”) notation.

2.4 Supporting Intermediate Result Processing Using Query
Operators

Writing queries over object structures often requires processing the
intermediate results before the rest of the query is executed (e.g.,

filtering objects that do not satisfy a user-defined predicate, sorting
objects using user-defined comparison functions.)

Resolution. LEESA provides a set of query operators that pro-
cess the intermediate results produced by the partial execution of
the query. These query operators are in fact higher-order functions
that take user-defined predicates or comparison functions as param-
eters and apply them on a collection of objects.

int comparator (State, State) { ... }
bool predicate (Property) { ... }
RootFolder() >>
StateMachine() >> SelectByName(StateMachine(),"C.*")
>> State() >> Sort(State(), comparator)
>> Property() >> Select(Property(), predicate)

Listing 3: A LEESA Expression Written Using Query Operators

Listing 3 shows an example of a LEESA query that uses three
predefined query operators: SelectByName, Sort, and Select.
The SelectByName operator accepts a regular expression as its
second parameter and returns a collection of objects of type
StateMachine that have names that match the regular expression.
The Sort function, as the name suggests, sorts a collection using
a user-defined comparator. Finally, Select filters out objects that
do not satisfy the user-defined predicate. LEESA can be extended
easily to support additional operators if needed.

The result of the query in Listing 3 is a set of Properties,
however, the intermediate results are processed by the query opera-
tors before navigating composition relationships further. Therefore,
the final or any intermediate result of the query could be a null set.
Sort and Select are examples of higher-order functions that ac-
cept conventional functions as parameters as well as stateful objects
that behave like functions, commonly known as functors.

2.5 Adding Visitors: Combining Querying with Traversal
Although the object structure querying capability is useful for ob-
taining a collection of objects, implementing the notion of traversal
with querying is hard because traversal involves not only selecting
the right set of objects, but also performing a set of operations on
those objects in a specific order. As mentioned before, we call such
actions to be performed at each traversed object as visitation ac-
tions. It is desirable to modularize visitation actions without overly
coupling them with the order of traversal. Moreover, it should be
possible to reuse and extend the visitation actions without having
to deal with the object structure or the order of traversal.

Resolution. The Visitor [3] pattern has been successfully used
to create extensible designs where no changes to the object struc-
ture are necessary to add new visitation actions. Therefore, we com-
bine the declarative querying capability of LEESA with first class
support for the Visitor pattern. Listing 4 shows a LEESA expres-
sion that combines a visitor of type PrintVisitor with the query
shown in Listing 3.

PrintVisitor pv; // instantiate a visitor
RootFolder() >>
StateMachine()>> SelectByName(StateMachine(),"C.*")>>pv
>> State() >> Sort(State(), comparator) >> pv
>> Property() >> Select(Property(), predicate)

Listing 4: Combining A LEESA Expression With a Visitor

The PrintVisitor has been implemented as a concrete C++
class that inherits from an abstract class Visitor as shown in List-
ing 5. When instances of subtypes of Visitor are combined with
LEESA expressions, appropriate Visit* functions of the visitor

are invoked where specified. This also allows visitor objects to ac-
cumulate state during traversal. For example, in the LEESA expres-
sion shown in Listing 4, Visit StateMachine and Visit State
member functions of pv (an object of type PrintVisitor) are in-
voked on the collections of objects returned by the query operators
SelectByName and Sort, respectively.

class PrintVisitor : public Visitor {
public:

/// ... constructors, members, if any.
virtual void Visit_StateMachine(StateMachine);
virtual void Visit_State(State);
virtual void Visit_Property(Property);
virtual void Visit_Transition(Transition);

};

Listing 5: Definition of the PrintVisitor Class in C++

As described in Section 1, the coupling between visitors and
the object structure increases if different visitors require different
traversals. However, our approach of combining LEESA with a vis-
itor is an improvement over the traditional Visitor pattern because
the visitor implementation is completely modularized away from
the object structure and the traversal order. The PrintVisitor
class in Listing 5 deals purely with its associated visitation actions.
Any change in the traversal order or the query operators does not
affect the PrintVisitor class in any way. This loose coupling
between the traversal and visitation actions facilitates reuse of the
visitor implementation in future even when the new visitor is based
on a different order of traversal.

2.6 Visiting Sibling Types
Composition of multiple types of objects in a composite object is
commonly observed in practice. For example, the FSM language
has a composite called StateMachine that consists of two types
of siblings: State and Transition. Support for object structure
traversal in LEESA would not be complete unless support for
visiting multiple types of siblings is provided. Moreover, such a
decision of visiting siblings could be made dynamically depending
upon the result of some predicate. Therefore, it is desirable to
support selection of the course of traversal based on conditionals.

Resolution. Listing 6 shows an example of how LEESA sup-
ports sibling traversal. The example query visits all the States in a
StateMachine before all the Transitions. The MembersOf no-
tation is designed to improve readability as its first parameter is the
common parent (i.e., StateMachine) followed by a comma sep-
arated list of LEESA subexpressions for visiting the members of
the parent in the given order. LEESA also supports Branch nota-
tion that accepts a predicate as a parameter and depending upon the
result of the predicate, one of the two possible traversal are cho-
sen. However, we do not discuss the Branch notation further due
to space considerations.

PrintVisitor pv;
RootFolder() >> StateMachine()

>> MembersOf(StateMachine(), State() >> pv,
Transition() >> pv)

Listing 6: A LEESA Expression for Traversing Siblings: States
and Transitions

2.7 Supporting Flexible Strategies of Traversal
The examples of traversals presented in earlier sections and List-
ing 7 are designed to perform a breadth-first traversal of the object
structure. For example, using the LEESA expression in Listing 7,

all the StateMachine objects are visited before all the State ob-
jects and all the State objects are visited before all the Property
objects. However, for certain applications such as, serializing a
FSM model into XML form, requires depth-first traversal of the
structure. Therefore, it is desirable to have a notation that supports
multiple strategies for traversal and combines them in ways that are
suitable for the problem at hand.

PrintVisitor pv;
RootFolder() >> StateMachine() >> pv

>> State() >> pv
>> Property() >> pv

Listing 7: A LEESA Expression for Breadth-first Traversal of an
FSM Model

Resolution. Depth-first traversal is expressed using operator
“�=” in LEESA. For example, Listing 8 shows a LEESA expres-
sion that traverses all the objects in depth-first order. In particu-
lar, when a StateMachine object is visited by the PrintVisitor,
all of its children States and grandchildren Property objects are
visited before moving on to the next StateMachine object. Simi-
larly, Property object, if any, of each State object is visited be-
fore visiting the next State object. Finally, it is also possible to
combine breadth-first traversal notation with depth-first traversal
notation in a LEESA expression.

PrintVisitor pv;
RootFolder() >>= StateMachine() >>= pv

>>= State() >>= pv
>>= Property() >>= pv

Listing 8: A LEESA Expression for Depth-first Traversal of an
FSM Model

3. Embedding LEESA’s Language Processor in
C++

In this section we describe how LEESA expressions shown in the
previous section are embedded in a C++ program using program-
ming idioms such as operator overloading and Expression Tem-
plates [13, 14].

class RootFolder {
template <class T> set<T> children (); };

class StateMachine {
template <class T> set<T> children (); };

class State {
template <class T> set<T> children (); };

class Transition {
State srcTransition();
State dstTransition();

};
class Property;

Listing 9: C++ Classes Generated by The UDM Tools

3.1 Realization of Generic Data Access Layer
In our existing implementation of LEESA, we used the program-
matic interface provided by the Universal Data Model (UDM) [1]
framework, which defines a development process and provides a
set of supporting tools that are used for development of domain-
specific modeling tools. The UDM tools generate the C++ classes
shown in Listing 9 for the FSM meta-model shown in Figure 2.
Each of these classes define a member function template that re-
turns a set of children objects. For example, when the children()
member function in class StateMachine is parameterized with

State, it returns a set of States whereas it returns a set of
Transitionswhen the function is parameterized with Transition.

RootFolder::children<StateMachine>()
StateMachine::children<Transition>()
Transition::dstTransition() //returns State

Listing 10: Functions Invoked While Executing the LEESA Query
in Listing 2

Using the generic interface shown in Listing 9, the LEESA
expression shown in Listing 2, is mapped to a sequence of function
calls shown in Listing 10. To bridge the gap between the declarative
specifications in LEESA and the underlying generic data access
layer, we use expression templates which are described next.

3.2 Expression Templates: Bridging LEESA and the Object
Structure

Expression Templates [13, 14] is a powerful generic programming
technique in C++ that allows lazy evaluation of expressions which
is not supported natively in C++. Lazy evaluation is important for
LEESA because LEESA expressions, which are declarative query
specifications over an object structure, can be passed as parameters
to functions in a C++ program to extract results when needed.
The computation required to extract the results is embodied in
a rather complex C++ type that behaves like a function at run-
time, commonly known as functors. Construction of such complex
C++ types is enabled using repetitive instantiations of a function
template combined with the ability of C++ to redefine certain built-
in operators for user-defined types, known as operator overloading.

template <class L, class H>
ChainExpr<L, GetChildren<L, H> > // return type
operator >> (L l, H h) {

typedef GetChildren<L, H> Operator;
return ChainExpr<L, Operator>(l, h);

}

Listing 11: An Example of an Expression Template in LEESA

Listing 11 shows an example of an overloaded� operator func-
tion template in LEESA. The function is parameterized with two
type parameters (L and H) and returns a composite type that is pa-
rameterized with both the formal parameter types. The key idea in
expression templates is compile-time recursive objects [15], which
are instances of class templates that contain other instances of the
same template as member variables. A rather clever arrangement
of the parameters and the return type of a function template is used
in such a way that repetitive instantiations of the template create
multiple compile-time recursive objects resulting into an abstract
syntax tree (AST) of types.

Figure 3. An Abstract Syntax Tree Created During Compilation
of LEESA Expression Template in Listing 11

An example of an AST created while compiling the LEESA
expression in Listing 1 is shown in Figure 3. GetChildren is one

of the operators defined in LEESA that invokes the children()
function on an object of its first parameter type (L) and yields
a set of children of its second parameter type (H). Finally, the
ChainExpr acts like a Composite [3], which allows construction
of large LEESA expressions from smaller subexpressions.

The AST is evaluated in the order shown in Figure 3, which
produces a set of Properties as its end result. In step (1), a set of
StateMachines is obtained by applying GetChildren operator
on the RootFolder. In step (2), the GetChildren operator is
applied again on every StateMachine object yielding a set of
States. Finally, in step (3), a set of Properties is obtained by
applying the same operator on the set of States.

4. Open Issues
We discuss two issues: the first focuses on the relationship of
LEESA with Adaptive Programming [4] while the second focuses
on effective error reporting in LEESA.

Adaptive Programming presents an idea of “structure shyness”
[4], which allows one to specify traversal strategies that ignore cer-
tain parts of the concrete structure and focus on the essential struc-
ture only. This lowers the coupling of code from the concrete struc-
ture and results in programs that are more resilient to the changes in
the object structure. LEESA allows separation of traversal specifi-
cations from visitation actions, however, the traversal specifications
are not “structure-shy” since all the intermediate concrete parts of
the structure must be mentioned in a LEESA traversal specifica-
tion. Naturally, it opens a question whether it is possible to ignore
non-essential parts of the structure using an embedded language
such as LEESA. Towards this end, we are investigating different
approaches to substitute wildcard expressions in LEESA.

A second issue deals with effective error reporting of syntac-
tic as well as semantic violations to improve usability of LEESA.
DSELs are often unable to produce intuitive messages to the user
indicating the exact location and the cause of the violations because
they reuse the language processor of the host language, which has
little or no knowledge of the syntax and semantics of the expres-
sions in the embedded language. As a result, error reporting is often
in terms of the host language artifacts instead of the DSEL artifacts.
LEESA being an embedded language in C++ is no exception to this
rule. However, we are investigating a novel approach to mitigate
this inherent difficulty using new features in C++ that have been
voted into the upcoming ISO standard for C++: C++0x.

C++0x has included Concepts [16] to express the syntactic and
semantic behavior of types and to constrain the type parameters in a
C++ template. Moreover, using concepts, the compiler can produce
user-friendly error messages when types fail to satisfy template
constraints. We are investigating how concepts might be used to
express constraints on the LEESA expression templates to produce
meaningful error messages when the constraints are not satisfied.
Our initial results are promising.

5. Related Work
Significant research on domain-specific languages for object struc-
ture traversal exists. S-XML [17] and XML Translation Lan-
guage [18] are functional languages embedded in Scheme and
Haskell, respectively, for creating and processing XML-like trees.
These DSELs are designed to exploit the functional characteristics
of their host languages. Particularly, S-XML is a parenthesized lan-
guage just like Scheme. LEESA, however, is based on C++, which
is a procedural language. Moreover, LEESA has first class support
for visitor-based designs with different traversal strategies, unlike
the above-mentioned functional languages.

Gray et al. [6] and Ovlinger et al. [5] present an approach in
which traversal specifications are written in a specialized language
separate from the visitation actions. A code generator is used to

transform the traversal specifications into procedural code based on
the Visitor pattern. This approach, as mentioned before, is heavy-
weight compared to the embedded approach because it incurs a
high cost for the development and maintenance of the language
processor.

Language Integrated Query (LINQ) [19] is a Microsoft tech-
nology used to support SQL-like queries natively in a program to
search, project and filter data in arrays, XML, relational databases,
and other third-party data sources. LINQ expressions are designed
to be embedded in .NET languages, particularly C#. We believe
that LINQ is confined to query capabilities only and does not sup-
port visitor-based traversal like LEESA. Learning from the suc-
cess of LINQ, the design goals of LEESA have included bringing
a small subset of LINQ capabilities, such as, hierarchical object
structure querying to standard C++, provided an appropriate data
access layer is available.

Czarnecki et al. [9] compare staged interpreter techniques
in MetaOCaml with the template-based techniques in Template
Haskell and C++ to implement DSELs. Two approaches – type-
driven and expression-driven – of implementing a DSEL in C++
are presented with an example from the domain of scientific
computing. Within this context, our approach in LEESA is an
expression-driven approach of implementing DSELs. Spirit(http:
//spirit.sourceforge.net) and Blitz++ [20] are two other
prominent examples of expression-driven DSELs in C++. Spirit
is an object-oriented recursive descent parser framework whereas
Blitz++ is a high-performance scientific computing library with
support for mathematical abstractions such as, dense vectors and
multidimensional arrays. Although LEESA shares a significant
number of implementation techniques with the above DSELs,
querying and traversal of in-memory hierarchical object structure
cannot be developed using Spirit or Blitz++.

Finally, Hofer et al. [21] propose an approach to provide mul-
tiple interpretations for a DSEL using polymorphic embedding
whereas Seefried et al. [10] propose a way of optimizing DSELs
using template techniques. We are investigating these approaches
to enhance the applicability of LEESA to different hierarchical data
sources as well as to improve its efficiency.

6. Conclusion
In this paper we reinforced the fact that domain-specific languages
(DSLs) raise the level of abstraction closer to the domain in ques-
tion using language constructs (notation) and their associated se-
mantics, which results into higher productivity. We presented a case
for embedding as a significantly cost-effective way of implement-
ing a DSL particularly in the domain of hierarchical object struc-
ture traversal where mature implementations of iterative data ac-
cess layer abound. Reduction in the development cost is mainly
attributed to the reuse of the host language infrastructure such as a
lexer, parser, code generator, and standard libraries, which must be
developed from scratch in the non-embedded DSL approach.

To show the feasibility of our approach, we developed the
Language for Embedded quEry and traverSAl (LEESA), which is
an embedded DSL in C++ for hierarchical object structure traver-
sal. LEESA improves the modularity of the programs operating on
complex hierarchical object structures (e.g., domain-specific mod-
els) by separating the knowledge of the object structure from the
actions performed when the nodes of interest are visited. LEESA
provides equivalent modularization capabilities to that of the ex-
isting non-embedded DSLs while keeping the cost of DSL devel-
opment as low as possible. We are investigating how usability of
LEESA can be improved by proper domain-specific error reporting
by combining new C++ features such as Concepts [16] with es-
tablished generative programming techniques such as Expression
Templates [13, 14].

LEESA is available in open source at
http://www.dre.vanderbilt.edu/LEESA

References
[1] E. Magyari and A. Bakay and A. Lang and T. Paka and A. Vizhanyo

and A. Agrawal and G. Karsai: UDM: An Infrastructure for
Implementing Domain-Specific Modeling Languages. In: The 3rd
OOPSLA Workshop on Domain-Specific Modeling. (October 2003)

[2] Gray, J., Tolvanen, J., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.:
Domain-Specific Modeling. In: CRC Handbook on Dynamic System
Modeling, (Paul Fishwick, ed.). CRC Press (May 2007) 7.1–7.20

[3] Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, MA (1995)

[4] Lieberherr, K.J.: Adaptive Object-Oriented Software: The Demeter
Method with Propagation Patterns. PWS Publishing Company (1996)

[5] Ovlinger, J., Wand, M.: A Language for Specifying Recursive
Traversals of Object Structures. SIGPLAN Not. 34(10) (1999) 70–81

[6] Gray, J., Karsai, G.: An Examination of DSLs for Concisely
Representing Model Traversals and Transformations. In: 36th
Hawaiian International Conference on System Sciences (HICSS).
(2003) 325–334

[7] Crew, R.F.: ASTLOG: A Language for Examining Abstract Syntax
Trees. In: Proceedings of the USENIX Conference on Domain-
Specific Languages, Oct. 1997. (1997) 229–242

[8] Mernik, M., Heering, J., Sloane, A.M.: When and How to Develop
Domain-specific Languages. ACM Computing Surveys 37(4) (2005)
316–344

[9] Czarnecki, K., O’Donnell, J., Striegnitz, J., Taha, W.: DSL
Implementation in MetaOCaml, Template Haskell, and C++. In:
Domain Specific Program Generation 2004. (2004) 51–72

[10] Seefried, S., Chakravarty, M., Keller, G.: Optimising Embedded
DSLs using Template Haskell (2003)

[11] Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, Reading, Massachusetts
(2000)

[12] Hudak, P.: Building domain-specific embedded languages. ACM
Computing Surveys (1996)

[13] Langer, A., Kreft, K.: C++ Expression Templates: An Introduction to
the Principles of Expression Templates. Dr. Dobb’s J. (March 2003)

[14] Veldhuizen, T.: Expression Templates. C++ Report 7(5) (June 1995)
26–31

[15] Järvi, J.: Compile Time Recursive Objects in C++. In: TOOLS ’98:
Proceedings of the Technology of Object-Oriented Languages and
Systems. (1998)

[16] Gregor, D., Järvi, J., Siek, J., Stroustrup, B., Reis, G.D., Lumsdaine,
A.: Concepts: Linguistic Support for Generic Programming in C++.
In: Proceedings of the Object Oriented Programming, Systems,
Languages, and Applications (OOPSLA). (2006) 291–310

[17] Clements, J., Felleisen, M., Findler, R., Flatt, M., Krishnamurthi, S.:
Fostering Little Languages. Dr. Dobb’s J. (March 2004)

[18] Wallace, M., Runciman, C.: Haskell and XML: Generic combinators
or type-based translation? In: Proc. of the Fourth ACM SIGPLAN
International Conference on Functional Programming (ICFP‘99)

[19] Anders Hejlsberg et al.: Language Integrated Query (LINQ).
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx

[20] Veldhuizen, T.L.: Arrays in blitz++. In: Proceedings of the
2nd International Scientific Computing in Object-Oriented Parallel
Environments (ISCOPE’98). LNCS, Springer-Verlag (1998)

[21] Hofer, C., Ostermann, K., Rendel, T., Moors, A.: Polymorphic
Embedding of DSLs. In: Proc. of Generative Programming and
Component Engineering (GPCE). (2008)

