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focus

However, this narrow scope makes it hard to reuse 
a DSL for a new set of requirements (see the “Re-
using and Adapting Domain-Specific Languages” 
sidebar).

We’ve developed two ways to improve reusabil-
ity and decrease language reuse errors for DSLs 
and DSL compositions. First, a DSL can incorpo-
rate variability and codified configuration rules to 
enable its refinement for multiple domains. Second, 
we use software product line (SPL) techniques to 
codify the usage rules for a DSL composition’s con-
stituent DSLs, the concerns that the DSLs cover, 
and the variations in DSL usage. Codifying these 
concepts provides developers with a map of how to 
correctly modify and reuse DSLs and DSL compo-
sitions across projects.

Although previous research (see the “Related 
Research in Software Product Lines and Domain-
Specific Languages” sidebar) provides a good start-
ing point for addressing DSL reusability challenges, 

it has limitations. First, researchers have extensively 
studied SPL techniques in the context of software 
but not in the context of DSL design. So, we need 
new methodologies to codify how we can use SPL 
techniques to manage DSL refinement and compo-
sition adaptation. Although some researchers have 
applied SPL techniques to individual DSLs,2 they 
haven’t yet extrapolated generalized methodologies 
for applying these techniques to arbitrary DSLs. 
Moreover, they haven’t applied SPL variability 
management techniques to DSL composition and 
reuse. In this article, we present a general method-
ology for using feature models to manage DSL and 
DSL composition reuse.

Four Related DSLs
Vanderbilt University’s Institute for Software Inte-
grated Systems has developed many DSLs and asso-
ciated tools for a range of modeling concerns, such 
as component-based application design, deploy-

C omplex software systems, such as traffic management systems and shipboard 
computing environments, raise several concerns (such as performance, reli-
ability, and fault tolerance) that developers must manage throughout the soft-
ware life cycle. Domain-specific languages (DSLs)1 have emerged as a power-

ful mechanism for capturing and reasoning about these diverse concerns. For each system 
concern, you can design a DSL to precisely capture key domain-level information while 
shielding developers and users from the technical solution’s implementation-level details. 
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ment and configuration of applications in distrib-
uted real-time and embedded (DRE) systems, and 
system execution modeling. We’re frequently devel-
oping DSLs for new domains.

In this article, we focus on four DSLs we devel-
oped (see Figure 1):

PICML■■  (Platform-Independent Component 
Modeling Language) is for visually composing 
Corba Component Model (CCM) applications; 
it focuses on modeling the solution domain.
Scatter■■  is for modeling deployment of software 
components to hardware nodes in a distributed 
system; it focuses on the problem domain.
CQML■■  (Component Quality Modeling Lan-
guage) is for specifying quality-of-service (QoS) 

constraints on systems; it focuses on the solu-
tion domain.
CUTS■■  (Component Utilization Test Suite) is for 
analyzing the performance of DRE system ar-
chitectures; it focuses on the problem domain.

These DSLs are available at www.dre.vanderbilt.
edu.

PICML, CQML, and CUTS are built atop the 
Generic Modeling Environment (GME; www.isis.
vanderbilt.edu/Projects/gme). Scatter is built atop 
the Generic Eclipse Modeling System (GEMS; 
www.eclipse.org/gmt/gems), which is built atop the 
Eclipse Modeling Framework (EMF; www.eclipse.
org/emf).

We’ve expended significant effort developing 
the four DSLs and their associated tooling. We’ve 
developed PICML over five years, and it continues 
to evolve. We’ve developed Scatter and CUTS over 
a period of four years. CQML is the youngest DSL, 
with roughly two years of development.

These DSLs form a closely related family. For 
example, we can build a CUTS model of the be-
havior of DRE system QoS and use it to test the 
response time of critical end-to-end request paths 
through the system. CUTS models, however, de-
pend on an external model of how the software 
should map to hardware nodes. PICML and Scat-
ter provide facilities for capturing this missing de-
ployment information.

Scatter focuses on capturing deployment re-
sources and real-time scheduling constraints and 
uses this information to automate the decision 
of how to map software to hardware. PICML 
focuses on letting developers manually specify  
software-to-hardware mappings but doesn’t cap-
ture resource or scheduling constraints. It can be 
augmented with CQML, however, to capture 
scheduling constraints.

We developed a complex DSL composition 
from PICML, CUTS, and Scatter in the context 
of the Lockheed Martin Naomi (New Associative 
Object Model of Integration) project,3 which in-
volves using multiple DSLs to model software de-
velopment for controlling traffic lights at intersec-
tions. Naomi uses PICML to model the software 
components, Scatter to derive suitable deployment 
topologies in Naomi, and CUTS to evaluate the 
traffic software’s QoS.

After Naomi’s development began, we addressed 
similar problems related to modeling deployment 
topologies and testing software performance in the 
context of the US Air Force Research Lab’s Spruce 
(Systems and Software Producibility Collabora-
tion and Experimentation Environment; www. 

Reusing and Adapting 
Domain-Specific Languages

To create a domain-specific language (DSL), developers must carefully ana-
lyze the domain to design the language and produce the supporting tooling 
infrastructure for editing, compiling, running, and analyzing instances of the 
language. Not only are these DSL development activities complex, but devel-
opers might need to evolve a DSL over time to find the right abstractions. Each 
evolution can have from a small to massive impact on the tooling, depending 
on the infrastructure and type of changes. So, DSL-based development pro-
cesses can incur relatively high overhead with respect to overall project time 
and effort.1 One way to decrease this overhead is to amortize DSL develop-
ment costs across projects (for example, by reusing existing DSL tooling infra-
structure across development projects).

However, DSLs often focus on specific system concerns. Their narrow 
scope provides much of their power but can overly couple them to a particu-
lar group of assumptions, making it hard to reuse a DSL for a new set of re-
quirements. Therefore, developers need a technique for systematically reusing 
DSLs and DSL compositions to simplify their adaptation to new requirements.

One solution is to apply software product lines. SPLs are a systematic re-
use technique that supports

building a family of software products such that you can customize vari-■■

ability for specific requirement sets,
capturing how individual points of variability affect each other, and■■

configuring product variants that meet a range of requirements and ■■

satisfy constraints governing variability point configuration.2

Developers use SPLs in domains where software development costs are high, 
safety and performance are critical, and redeveloping software from scratch 
is economically infeasible. SPLs have been successfully employed in domains 
such as avionics mission computing, automotive systems, and medical imag-
ing systems.
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sprucecommunity.org) project. In Spruce, we mod-
eled and tested the deployment of software to hard-
ware in avionics systems. Owing to the similarity 
between the Naomi and Spruce requirements, we 
wanted to reuse as much of the original DSL com-
position as possible. Here, we use these four DSLs 
to illustrate the need for—and complexity of— 
reusing DSLs and DSL compositions for new re-
quirements sets.

DSL Reuse Challenges
Tension exists between a DSL’s domain specificity 
and reusability. The more precisely a DSL matches 
its domain, the easier and more accurately it can de-
scribe a solution. However, developing DSLs and 
their supporting infrastructure can be expensive, so 
reusability is desirable. Here, we explore the chal-
lenges of maintaining DSL specificity and accuracy 
while facilitating reuse.

DSL Refinement
Developing a robust DSL that accurately describes 
domain concepts and is intuitive for domain ex-
perts can be a long, iterative process. Developers 
create an initial prototype of the DSL; then, over 
a period of time, they refine the DSL concepts and 
notations by modeling existing and new systems. 
This refinement might take a substantial amount of 
time. Developing code generators, constraint check-
ers, model execution engines, and other dependent 
tools also requires significant time and effort.

Developers often find a group of domains that 
exhibit substantial similarities but enough differ-
ences to warrant separate DSLs. For example, we 
originally developed PICML to model CCM appli-
cations. However, the need arose to model Enter-
prise JavaBeans (EJB) applications, which are similar 
to CCM (for example, they have similar component 
and home concepts) but don’t share event source 
and sink features. Similarly, we originally created 
Scatter (a DSL aimed at specifying deployment con-
straints and topologies) to model deployment prob-
lems in the automotive domain. Since its original 
development, we needed to use it in other domains 
(such as flight avionics) that didn’t share exactly the 
same types of deployment constraints.

To reduce DSL development cost, we could reuse 
PICML for EJB applications. However, this would 
expose EJB developers to certain details, such as 
event sources and sinks, that aren’t relevant to their 
target domain. Reusing Scatter in the avionics do-
main would expose developers to crash survivabil-
ity constraints that aren’t relevant for planes. Such 
exposure to unnecessary details would eliminate 
many of the benefits of reusing a DSL.

Another reuse approach would be to refine the 
PICML metamodel for EJB or generalize it for 
component-based software by eliminating CCM-
specific modeling elements. For example, PICML 
provides a modeling element to represent event 
sources on components and event sinks on compo-
nents that consume the events. The event sources 
and sinks don’t apply directly to EJB. Removing 
the related notations from the PICML metamodel 
is nontrivial, however, because PICML has more 
than 700 interrelated metamodel elements. Elimi-
nating these notations requires removing more than 
30 other metamodel elements—for example, more 

Related Research 
in Software Product Lines 

and Domain-Specific Languages
Our reuse techniques for domain-specific languages (DSLs), which are based 
on software product lines (SPLs), build on previous research, particularly re-
garding feature models and DSL refinement.

Feature models codify a software product’s points of variability and the 
rules governing the settings for each variability point.1 A feature model is a 
tree-based structure in which each node represents a variability point or unit 
of functionality in the product. The tree’s root represents the most generalized 
concept in the product, and successively deeper levels indicate software re-
finement. The parent-child relationships indicate configuration constraints that 
you must satisfy when choosing values for variability points.

Kyo Kang and his colleagues1 and Danilo Beuche and his colleagues2 
have successfully applied feature modules to manage SPL variability in sev-
eral domains. Feature models provide a solid foundation for improving reus-
ability by codifying reuse rules. Moreover, other researchers have developed 
techniques to formally analyze feature models and identify configuration er-
rors,3 identify constraint inconsistencies,4 and automate feature selection.5

DSL refinement is the adaptation of a DSL for a new set of requirements. A 
DSL is defined by a metamodel, which is a specification of the DSL’s key con-
cepts and syntax. Markus Voelter has used model transformations to refine an 
architectural DSL.6 His technique describes an architectural DSL’s variability 
using a feature model. To refine the architectural DSL, developers select a set 
of architectural modeling features that should be in the refined language. On 
the basis of the feature selection for the new domain, model transformations 
automatically add or remove the corresponding metamodel elements.
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than 15 elements are related to specifying properties 
of event channels that aren’t needed if we remove 
event sources and sinks.

Reusable code libraries, aspect-oriented pro-
gramming, and other language features can help 
modularize the software implementation. Simi-
larly, various techniques, such as MetaEdit+’s frag-
ments (www.metacase.com), GME’s metamodel 
composition, the Atlas Model Management Ar-
chitecture’s model management techniques (www.
sciences.univ-nantes.fr/lina/atl), or openArchitec-
tureWare’s (oAW) aspect-oriented features (www. 
openarchitectureware.org), can help modularize 
DSLs. To properly leverage these implementation-
level modularization techniques, however, devel-
opers must still have design-level information, such 
as composition rules for software components or 
traceability between a domain concept and a DSL 
language element.

A key problem in refining or modifying an exist-
ing DSL, regardless of the implementation tool used, 
is having traceability information for mapping

concepts to the DSL metamodel or grammar ■■

(requirements to design) and
the metamodel or grammar specification to its ■■

implementation in a particular tool, such as 
EMF (design to implementation).

Moreover, developers need additional informa-
tion to ensure that the modification or refinement 
of the DSL doesn’t violate design integrity, such as 
the completeness of the representation of concepts 
or the implementation correctness. Capturing these 
elements of traceability and DSL design integrity is 
important and is an issue regardless of the tool in-
frastructure used to build a DSL.

Multi-DSL Composition
DSLs are often tightly aligned with a single, narrow 
slice of system concerns. So, to capture the concerns 
relevant to a system’s requirements, multiple DSLs 
might be necessary. When devising a multi-DSL de-

velopment process, developers must ensure that the 
DSLs adequately cover the concerns.

For example, in the Naomi project, developers 
must ensure that the DSL composition properly cap-
tures the traffic light system’s real-time scheduling, 
deployment, and performance concerns. Naomi 
could potentially use several DSLs to capture the in-
formation related to the system’s hardware nodes’ 
capabilities. For instance, developers could use Scat-
ter to model each piece of hardware, the real-time 
scheduling constraints on components, and the re-
sources, such as RAM, available on each node. Or, 
they could model the nodes through PICML. If de-
velopers must ensure that the nodes have sufficient 
resources to host the provided components, Scat-
ter is a better choice. PICML wouldn’t adequately 
cover the resource allocation concern. If develop-
ers needed real-time scheduling constraints, they 
could use Scatter or a combination of PICML and 
CQML.

The traffic light system has roughly a dozen con-
cerns related just to the deployment of software com-
ponents to hardware. These concerns are captured 
by multiple DSLs implemented on several tooling 
platforms. For example, developers must capture 
information regarding component replication for 
fault tolerance, node resource constraints, compo-
nent real-time scheduling requirements, and cost 
information for budgeting. Crafting a DSL compo-
sition to properly cover a large set of concerns isn’t 
easy without traceability from the design concepts 
that must be covered to the individual DSLs provid-
ing the concepts. This traceability challenge of map-
ping and understanding the relationships between 
concepts and DSL design decisions is independent 
of the tools used to implement the DSL.

Variability in the DSLs themselves further com-
plicates a DSL composition’s design. For example, 
developers can refine PICML for EJB by removing 
event and deployment information. Removing the 
deployment-modeling capabilities from PICML, 
however, leaves CUTS without needed deployment 
information to generate experiments.

Figure 1. The (a) PICML 
(Platform-Independent 
Component Modeling 
Language), (b) Scatter, 
(c) CQML (Component 
Quality Modeling 
Language), and  
(d) CUTS (Component 
Utilization Test Suite) 
family of domain-
specific languages.
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Developers must also ensure that refinement of 
the deployed DSLs provides the required concern 
coverage and adheres to any composition con-
straints.4 Doing this is difficult without the explicit 
traceability we just discussed.

Applying SPL  
Configuration Techniques
Although DSLs are domain-specific, they possess 
points of variability, such as concepts that can be 
added or removed. For example, PICML can have 
metamodel elements removed as long as develop-
ers have traceability and constraint information to 
know how to perform the modifications properly. 
Moreover, if developers know why a DSL compo-
sition has a particular structure and how they can 
legally modify it, they can adapt the composition to 
new concerns.

The missing ingredient that produces the reuse 
challenges we mentioned earlier is that no model 
traces how concepts map to language design and 
captures the variability points and their interre-
lationships in DSL refinement, composition, and 
tools. Here, we show how to use SPL techniques to 
fill in this gap and increase DSL, DSL composition, 
and DSL tool chain reusability.

Managing Refinement via Feature Models
As we mentioned earlier, developers don’t have  
concept-to-design traceability information or the 
rules for modifying a DSL’s metamodel to ensure 
that they produce a semantically valid DSL refine-
ment. One approach to solving this problem is to 
build a configurable DSL and use a feature model 
to document how concepts map to metamodel el-
ements and what semantic dependencies exist be-
tween metamodel elements. The feature model de-
scribes why specific DSL language elements exist, 

which elements are semantically related, the seman-
tic constraints for adding or removing elements, and 
the rules for determining what metamodel refine-
ments are valid. The DSL elements are represented 
at the tool-independent level, and we can also define 
mappings to tool-specific implementations. Each re-
finement of the DSL’s metamodel maps to a feature 
selection that developers can check for semantic 
validity.

Figure 2 shows a simplified feature model of the 
metamodel elements related to the PICML event 
elements we discussed earlier. The feature model 
is constructed in stages, capturing the most gen-
eral tool-independent concepts at the top levels and 
gradually refining more specific concepts until it 
reaches actual metamodel elements or tool-specific 
metamodel element mappings at the leaves. For ex-
ample, the general concept PICML component architecture 
is refined to the more specific concepts of Component 
interfaces and Events. The leaves beneath Events capture 
concepts in terms of actual metamodel elements, 
such as InEventPort and OutEventPort, which in this case 
map directly to GME metamodel elements.

Developers can use this PICML feature model to 
build semantically correct refinements of the DSL. 
For example, if developers want to remove the con-
cept of events to refine for EJB, they can find the 
Events feature and remove all the language elements 
and mappings to metamodel elements that appear 
as children beneath it. Moreover, if they want a 
more precise refinement, they can keep the concept 
of events—possibly to model EJB’s Java Messaging 
Service (JMS)—but remove the CCM-specific con-
cept of event channels. The feature model precisely 
captures traceability from concepts to language de-
sign and rules for correctly modifying the PICML 
metamodel’s 700 language elements to refine con-
cept coverage.

Other
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Figure 2. A PICML 
feature model snippet 
for event elements.
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DSL Family Configuration  
with Feature Models
As we mentioned earlier, developers often don’t 
know why a particular set of DSLs was composed 
and how the composition covered a set of concepts, 
owing to lack of traceability information. For ex-
ample, it isn’t clear how using PICML to describe 
deployment capabilities differs in concern cover-
age from using Scatter. Moreover, when develop-
ers must modify a DSL composition to cover a new 
concern (such as the Spruce aeronautics domain), 
they don’t have a road map of the interactions be-
tween DSLs. This makes it hard to determine the 
features they can add or remove.

To address this issue, developers can use feature 
models to codify what concerns each member of a 
DSL composition covers, what dependencies or ex-
clusions exist between DSLs, and how DSL refine-
ments affect concern coverage. Figure 3 presents a 
feature model of the DSL composition covering the 
four DSLs. The DSL composition is the root fea-
ture. Beneath the root feature are features providing 
a general categorization (such as Deployment and Perfor-
mance) of the DSLs in the composition. Beneath the 
categorization features are the actual DSL concepts 
that developers can use to capture the concern. For 
example, either Scatter deployment or PICML deployment can 
capture deployment information. The leaves be-
neath the DSL concepts are modeling capabilities 
the DSL provides—for example, Scatter provides 
Automated deployment, but PICML doesn’t.

The feature model not only tells developers what 
DSLs can be used and their capabilities but also 
specifies how DSL refinements affect each other. 
For example, if developers refine PICML to re-
move the Deployment concepts, they can use Scatter 

and PICML together. If developers want to evaluate 
how different wide area network (WAN) properties 
affect performance, they need to use a refinement of 
CUTS that includes CUTS EmuLab and a refinement of 
PICML that includes WAN concepts.

The Cost of DSL Reuse
Using SPL techniques to produce reusable DSLs 
has an associated cost. Generally, we can represent 
the cost of developing a DSL using standard tech-
niques as

Cost(DSL) = Metamodel + Editors + 
Generators.

To develop a reusable DSL and infrastructure, 
developers pay an upfront cost:

Cost(DSLR) =  
	 C1 × Metamodel + C2 × Editors  
	 + C3 × Generators.

C1 is a multiplier for the extra effort to build a fea-
ture model of the language or language family. C2 
is the cost of building a more advanced editing in-
frastructure that can be reconfigured on the basis 
of the features selected for a variant of the DSL. C3 
is the overhead of creating code generation and 
analysis infrastructure that can be reconfigured 
for different DSL variations.

In our experience, C1 (the cost of producing 
the feature model of a language after the DSL’s 
metamodel is developed) isn’t high. C2 is also typi-
cally low, owing to the excellent support for au-
tomatically generating graphical and textual edi-
tors for DSLs that tools such as GME, GEMS, 
GMF (Graphical Modeling Framework),1 oAW’s 
xText, and the Textual Concrete Syntax project 
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(TCS) provide.2 For example, if developers re-
move the networking concepts from the Scatter 
metamodel, GEMS can automatically update the 
graphical editor, which results in the regeneration 
of roughly 4,700 lines of code. Markus Voelter 
has shown how to model transformations and use 
xText to automatically regenerate a textual editor 
with code completion and syntax highlighting as 
a DSL’s feature selection changes.2

Our experience shows that the major difficulty 
in reusing DSLs lies in modularizing the code gen-
eration and analysis infrastructure, C3. Some plat-
forms, such as GME, have code generators written 
in third-generation languages, such as C++, that 
require more effort to achieve modularity. Tools 
that leverage other code generation platforms, such 
as oAW, can use advanced modularization fea-
tures, such as oAW’s support for aspect-oriented 
programming in code generation templates. 

In the end, developers must perform a cost-
benefit analysis. The cost of developing three sep-
arate DSLs without a reusable approach is

3 × Cost(DSL).

With a reusable approach, the upfront cost is 
higher but subsequent DSLs cost less:

Cost(DSLR) + 2 × Reuse(DSLR)

Reuse(DSLR) < Cost(DSL)

Reuse(DSLR), the price of refining and reusing 
an existing DSL, is typically dominated by the im-
pact of C3. For each scenario, developers must es-
timate whether the DSL will be reused enough to 
make the reduced price, Reuse(DSLR), overcome 
the initial overheads of C1, C2, and C3. In our re-
search, we’ve found numerous instances where 
the initial price of reusability paid off.

T he need to reduce costs and time to mar-
ket has motivated SPL-based reuse. We 
expect these needs will also motivate 

DSL-based reuse. With the growing complexity 
and functionality of DSLs and DSL tools, their de-
velopment cost will also likely increase. In partic-
ular, model compositions that span multiple tools 
are hard to develop and maintain manually. These 
trends underscore the need for technologies that 
can manage and reuse DSL assets effectively.

Acknowledgments
We thank the Lockheed Martin Advanced Technol-
ogies Lab, the US Air Force Research Laboratory, 
and the US National Science Foundation (NSF-CA-
REER-0643725) for supporting this work.

References
	 1.	 M. Mernik, J. Heering, and A.M. Sloane, “When and 

How to Develop Domain-Specific Languages,” ACM 
Computing Surveys, vol. 37, no. 4, 2005, pp. 316–344.

	 2.	 M. Voelter, “A Family of Languages for Architecture 
Description,” Proc. OOPSLA Workshop Domain-
Specific Modeling, 2008, pp. 86–93; www.dsmforum.
org/events/DSM08/Papers/15-Voelter.pdf.

	 3.	 T. Denton et al., “Naomi: An Experimental Platform 
for Multi-Modeling,” Model Driven Engineering Lan-
guages and Systems, LNCS 5301, Springer, 2008, pp. 
143–157.

	 4.	 D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling 
Step-Wise Refinement,” IEEE Trans. Software Eng., 
vol. 30, no. 6, 2004, pp. 355–371.

For more information on this or any other computing topic, please visit our 
Digital Library at www.computer.org/csdl.

About the Authors
Jules White is a research assistant professor in Vanderbilt University’s Electrical Engi-
neering and Computer Science Department. His research focuses on applying a combination of 
modeling and constraint-based optimization techniques to the deployment and configuration 
of complex software systems. White has a PhD in computer science from Vanderbilt University. 
Contact him at jules@dre.vanderbilt.edu.

Jeff Gray is an associate professor in the Computer and Information Sciences Department 
at the University of Alabama at Birmingham, where he codirects research in the SoftCom 
Laboratory. His research interests include model-driven engineering, aspect orientation, code 
clones, and generative programming. Gray has a PhD in computer science from Vanderbilt 
University. Contact him at gray@cis.uab.edu.

Aniruddha S. Gokhale is an assistant professor in Vanderbilt University’s Depart-
ment of Electrical Engineering and Computer Science. His research combines model-driven 
engineering and middleware for distributed real-time and embedded systems. Gokhale has a 
PhD in computer science from Washington University. Contact him at gokhale@dre.vanderbilt.
edu.

James H. Hill is a research scientist in Vanderbilt University’s Institute for Software 
Integrated Systems (ISIS). His research focuses on using model-based analysis to identify 
quality-of-service flaws in distributed real-time and embedded systems. Hill has a PhD in 
computer science from Vanderbilt University. Contact him at hillj@dre.vanderbilt.edu.

Sumant Tambe is a PhD candidate in electrical engineering and computer science at 
Vanderbilt University. His research interests include model-driven engineering for distributed 
real-time and embedded systems. Tambe has an MSc in computer science from New Mexico 
State University. Contact him at sutambe@dre.vanderbilt.edu.

Douglas C. Schmidt is a professor of computer science and an associate chair of 
Vanderbilt University’s Computer Science and Engineering program. His research interests 
include patterns, domain-specific languages, and distributed real-time and embedded systems 
middleware. Schmidt has a PhD in computer science from the University of California, Irvine. 
Contact him at schmidt@dre.vanderbilt.edu.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore.  Restrictions apply.


