
0 74 0 - 74 5 9 / 0 9 / $ 2 5 . 0 0 © 2 0 0 9 I E E E 	 July/August 2009 I E E E S o f t w a r e � 47

focus

However, this narrow scope makes it hard to reuse
a DSL for a new set of requirements (see the “Re-
using and Adapting Domain-Specific Languages”
sidebar).

We’ve developed two ways to improve reusabil-
ity and decrease language reuse errors for DSLs
and DSL compositions. First, a DSL can incorpo-
rate variability and codified configuration rules to
enable its refinement for multiple domains. Second,
we use software product line (SPL) techniques to
codify the usage rules for a DSL composition’s con-
stituent DSLs, the concerns that the DSLs cover,
and the variations in DSL usage. Codifying these
concepts provides developers with a map of how to
correctly modify and reuse DSLs and DSL compo-
sitions across projects.

Although previous research (see the “Related
Research in Software Product Lines and Domain-
Specific Languages” sidebar) provides a good start-
ing point for addressing DSL reusability challenges,

it has limitations. First, researchers have extensively
studied SPL techniques in the context of software
but not in the context of DSL design. So, we need
new methodologies to codify how we can use SPL
techniques to manage DSL refinement and compo-
sition adaptation. Although some researchers have
applied SPL techniques to individual DSLs,2 they
haven’t yet extrapolated generalized methodologies
for applying these techniques to arbitrary DSLs.
Moreover, they haven’t applied SPL variability
management techniques to DSL composition and
reuse. In this article, we present a general method-
ology for using feature models to manage DSL and
DSL composition reuse.

Four Related DSLs
Vanderbilt University’s Institute for Software Inte-
grated Systems has developed many DSLs and asso-
ciated tools for a range of modeling concerns, such
as component-based application design, deploy-

C omplex software systems, such as traffic management systems and shipboard
computing environments, raise several concerns (such as performance, reli-
ability, and fault tolerance) that developers must manage throughout the soft-
ware life cycle. Domain-specific languages (DSLs)1 have emerged as a power-

ful mechanism for capturing and reasoning about these diverse concerns. For each system
concern, you can design a DSL to precisely capture key domain-level information while
shielding developers and users from the technical solution’s implementation-level details.

Techniques from
software product
lines can make DSLs,
DSL compositions,
and supporting tools
more reusable by
providing traceability
of language concepts
to DSL design.

Jules White, James H. Hill, Sumant Tambe, Aniruddha S. Gokhale,
and Douglas C. Schmidt, Vanderbilt University

Jeff Gray, University of Alabama at Birmingham

Improving Domain-
Specific Language
Reuse with Software
Product Line Techniques

dom a in - sp e c i f i c m o de l ing

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

48	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

ment and configuration of applications in distrib-
uted real-time and embedded (DRE) systems, and
system execution modeling. We’re frequently devel-
oping DSLs for new domains.

In this article, we focus on four DSLs we devel-
oped (see Figure 1):

PICML■■ (Platform-Independent Component
Modeling Language) is for visually composing
Corba Component Model (CCM) applications;
it focuses on modeling the solution domain.
Scatter■■ is for modeling deployment of software
components to hardware nodes in a distributed
system; it focuses on the problem domain.
CQML■■ (Component Quality Modeling Lan-
guage) is for specifying quality-of-service (QoS)

constraints on systems; it focuses on the solu-
tion domain.
CUTS■■ (Component Utilization Test Suite) is for
analyzing the performance of DRE system ar-
chitectures; it focuses on the problem domain.

These DSLs are available at www.dre.vanderbilt.
edu.

PICML, CQML, and CUTS are built atop the
Generic Modeling Environment (GME; www.isis.
vanderbilt.edu/Projects/gme). Scatter is built atop
the Generic Eclipse Modeling System (GEMS;
www.eclipse.org/gmt/gems), which is built atop the
Eclipse Modeling Framework (EMF; www.eclipse.
org/emf).

We’ve expended significant effort developing
the four DSLs and their associated tooling. We’ve
developed PICML over five years, and it continues
to evolve. We’ve developed Scatter and CUTS over
a period of four years. CQML is the youngest DSL,
with roughly two years of development.

These DSLs form a closely related family. For
example, we can build a CUTS model of the be-
havior of DRE system QoS and use it to test the
response time of critical end-to-end request paths
through the system. CUTS models, however, de-
pend on an external model of how the software
should map to hardware nodes. PICML and Scat-
ter provide facilities for capturing this missing de-
ployment information.

Scatter focuses on capturing deployment re-
sources and real-time scheduling constraints and
uses this information to automate the decision
of how to map software to hardware. PICML
focuses on letting developers manually specify
software-to-hardware mappings but doesn’t cap-
ture resource or scheduling constraints. It can be
augmented with CQML, however, to capture
scheduling constraints.

We developed a complex DSL composition
from PICML, CUTS, and Scatter in the context
of the Lockheed Martin Naomi (New Associative
Object Model of Integration) project,3 which in-
volves using multiple DSLs to model software de-
velopment for controlling traffic lights at intersec-
tions. Naomi uses PICML to model the software
components, Scatter to derive suitable deployment
topologies in Naomi, and CUTS to evaluate the
traffic software’s QoS.

After Naomi’s development began, we addressed
similar problems related to modeling deployment
topologies and testing software performance in the
context of the US Air Force Research Lab’s Spruce
(Systems and Software Producibility Collabora-
tion and Experimentation Environment; www.

Reusing and Adapting
Domain-Specific Languages

To create a domain-specific language (DSL), developers must carefully ana-
lyze the domain to design the language and produce the supporting tooling
infrastructure for editing, compiling, running, and analyzing instances of the
language. Not only are these DSL development activities complex, but devel-
opers might need to evolve a DSL over time to find the right abstractions. Each
evolution can have from a small to massive impact on the tooling, depending
on the infrastructure and type of changes. So, DSL-based development pro-
cesses can incur relatively high overhead with respect to overall project time
and effort.1 One way to decrease this overhead is to amortize DSL develop-
ment costs across projects (for example, by reusing existing DSL tooling infra-
structure across development projects).

However, DSLs often focus on specific system concerns. Their narrow
scope provides much of their power but can overly couple them to a particu-
lar group of assumptions, making it hard to reuse a DSL for a new set of re-
quirements. Therefore, developers need a technique for systematically reusing
DSLs and DSL compositions to simplify their adaptation to new requirements.

One solution is to apply software product lines. SPLs are a systematic re-
use technique that supports

building a family of software products such that you can customize vari-■■

ability for specific requirement sets,
capturing how individual points of variability affect each other, and■■

configuring product variants that meet a range of requirements and ■■

satisfy constraints governing variability point configuration.2

Developers use SPLs in domains where software development costs are high,
safety and performance are critical, and redeveloping software from scratch
is economically infeasible. SPLs have been successfully employed in domains
such as avionics mission computing, automotive systems, and medical imag-
ing systems.

References
	 1.	 M. Mernik, J. Heering, and A.M. Sloane, “When and How to Develop Domain-Specific Lan-

guages,” ACM Computing Surveys, vol. 37, no. 4, 2005, pp. 316–344.
	 2.	 P. Clements and L. Northrop, Software Product Lines: Practices and Patterns, Addison-Wesley,

2002.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 49

sprucecommunity.org) project. In Spruce, we mod-
eled and tested the deployment of software to hard-
ware in avionics systems. Owing to the similarity
between the Naomi and Spruce requirements, we
wanted to reuse as much of the original DSL com-
position as possible. Here, we use these four DSLs
to illustrate the need for—and complexity of—
reusing DSLs and DSL compositions for new re-
quirements sets.

DSL Reuse Challenges
Tension exists between a DSL’s domain specificity
and reusability. The more precisely a DSL matches
its domain, the easier and more accurately it can de-
scribe a solution. However, developing DSLs and
their supporting infrastructure can be expensive, so
reusability is desirable. Here, we explore the chal-
lenges of maintaining DSL specificity and accuracy
while facilitating reuse.

DSL Refinement
Developing a robust DSL that accurately describes
domain concepts and is intuitive for domain ex-
perts can be a long, iterative process. Developers
create an initial prototype of the DSL; then, over
a period of time, they refine the DSL concepts and
notations by modeling existing and new systems.
This refinement might take a substantial amount of
time. Developing code generators, constraint check-
ers, model execution engines, and other dependent
tools also requires significant time and effort.

Developers often find a group of domains that
exhibit substantial similarities but enough differ-
ences to warrant separate DSLs. For example, we
originally developed PICML to model CCM appli-
cations. However, the need arose to model Enter-
prise JavaBeans (EJB) applications, which are similar
to CCM (for example, they have similar component
and home concepts) but don’t share event source
and sink features. Similarly, we originally created
Scatter (a DSL aimed at specifying deployment con-
straints and topologies) to model deployment prob-
lems in the automotive domain. Since its original
development, we needed to use it in other domains
(such as flight avionics) that didn’t share exactly the
same types of deployment constraints.

To reduce DSL development cost, we could reuse
PICML for EJB applications. However, this would
expose EJB developers to certain details, such as
event sources and sinks, that aren’t relevant to their
target domain. Reusing Scatter in the avionics do-
main would expose developers to crash survivabil-
ity constraints that aren’t relevant for planes. Such
exposure to unnecessary details would eliminate
many of the benefits of reusing a DSL.

Another reuse approach would be to refine the
PICML metamodel for EJB or generalize it for
component-based software by eliminating CCM-
specific modeling elements. For example, PICML
provides a modeling element to represent event
sources on components and event sinks on compo-
nents that consume the events. The event sources
and sinks don’t apply directly to EJB. Removing
the related notations from the PICML metamodel
is nontrivial, however, because PICML has more
than 700 interrelated metamodel elements. Elimi-
nating these notations requires removing more than
30 other metamodel elements—for example, more

Related Research
in Software Product Lines

and Domain-Specific Languages
Our reuse techniques for domain-specific languages (DSLs), which are based
on software product lines (SPLs), build on previous research, particularly re-
garding feature models and DSL refinement.

Feature models codify a software product’s points of variability and the
rules governing the settings for each variability point.1 A feature model is a
tree-based structure in which each node represents a variability point or unit
of functionality in the product. The tree’s root represents the most generalized
concept in the product, and successively deeper levels indicate software re-
finement. The parent-child relationships indicate configuration constraints that
you must satisfy when choosing values for variability points.

Kyo Kang and his colleagues1 and Danilo Beuche and his colleagues2
have successfully applied feature modules to manage SPL variability in sev-
eral domains. Feature models provide a solid foundation for improving reus-
ability by codifying reuse rules. Moreover, other researchers have developed
techniques to formally analyze feature models and identify configuration er-
rors,3 identify constraint inconsistencies,4 and automate feature selection.5

DSL refinement is the adaptation of a DSL for a new set of requirements. A
DSL is defined by a metamodel, which is a specification of the DSL’s key con-
cepts and syntax. Markus Voelter has used model transformations to refine an
architectural DSL.6 His technique describes an architectural DSL’s variability
using a feature model. To refine the architectural DSL, developers select a set
of architectural modeling features that should be in the refined language. On
the basis of the feature selection for the new domain, model transformations
automatically add or remove the corresponding metamodel elements.

References
	 1.	 K.C. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Product Line Engineering,” IEEE Soft-

ware, vol. 19, no. 4, 2002, pp. 58–65.
	 2.	 D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability Management with Feature

Models,” Science of Computer Programming, vol. 53, no. 3, 2004, pp. 333–352.
	 3.	 J. White et al., “Automated Diagnosis of Product-Line Configuration Errors in Feature Models,”

Proc.12th Int’l Conf. Software Product Lines, IEEE CS Press, 2008, pp. 225–234.
	 4.	 D. Batory, “Feature Models, Grammars, and Propositional Formulas,” Proc. 9th Int’l Conf.

Software Product Lines, LNCS 3714, Springer, 2005, pp. 7–20.
	 5.	 D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated Reasoning on Feature Models,”

Proc. 17th Conf. Advanced Information Systems Eng., LNCS 3250, Springer, 2005, pp.
491–503.

	 6.	 M. Voelter, “A Family of Languages for Architecture Description,” Proc. OOPSLA Workshop
Domain-Specific Modeling, Springer, 2008, pp. 86–93, www.dsmforum.org/events/DSM08/
Papers/15-Voelter.pdf.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

50	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

than 15 elements are related to specifying properties
of event channels that aren’t needed if we remove
event sources and sinks.

Reusable code libraries, aspect-oriented pro-
gramming, and other language features can help
modularize the software implementation. Simi-
larly, various techniques, such as MetaEdit+’s frag-
ments (www.metacase.com), GME’s metamodel
composition, the Atlas Model Management Ar-
chitecture’s model management techniques (www.
sciences.univ-nantes.fr/lina/atl), or openArchitec-
tureWare’s (oAW) aspect-oriented features (www.
openarchitectureware.org), can help modularize
DSLs. To properly leverage these implementation-
level modularization techniques, however, devel-
opers must still have design-level information, such
as composition rules for software components or
traceability between a domain concept and a DSL
language element.

A key problem in refining or modifying an exist-
ing DSL, regardless of the implementation tool used,
is having traceability information for mapping

concepts to the DSL metamodel or grammar ■■

(requirements to design) and
the metamodel or grammar specification to its ■■

implementation in a particular tool, such as
EMF (design to implementation).

Moreover, developers need additional informa-
tion to ensure that the modification or refinement
of the DSL doesn’t violate design integrity, such as
the completeness of the representation of concepts
or the implementation correctness. Capturing these
elements of traceability and DSL design integrity is
important and is an issue regardless of the tool in-
frastructure used to build a DSL.

Multi-DSL Composition
DSLs are often tightly aligned with a single, narrow
slice of system concerns. So, to capture the concerns
relevant to a system’s requirements, multiple DSLs
might be necessary. When devising a multi-DSL de-

velopment process, developers must ensure that the
DSLs adequately cover the concerns.

For example, in the Naomi project, developers
must ensure that the DSL composition properly cap-
tures the traffic light system’s real-time scheduling,
deployment, and performance concerns. Naomi
could potentially use several DSLs to capture the in-
formation related to the system’s hardware nodes’
capabilities. For instance, developers could use Scat-
ter to model each piece of hardware, the real-time
scheduling constraints on components, and the re-
sources, such as RAM, available on each node. Or,
they could model the nodes through PICML. If de-
velopers must ensure that the nodes have sufficient
resources to host the provided components, Scat-
ter is a better choice. PICML wouldn’t adequately
cover the resource allocation concern. If develop-
ers needed real-time scheduling constraints, they
could use Scatter or a combination of PICML and
CQML.

The traffic light system has roughly a dozen con-
cerns related just to the deployment of software com-
ponents to hardware. These concerns are captured
by multiple DSLs implemented on several tooling
platforms. For example, developers must capture
information regarding component replication for
fault tolerance, node resource constraints, compo-
nent real-time scheduling requirements, and cost
information for budgeting. Crafting a DSL compo-
sition to properly cover a large set of concerns isn’t
easy without traceability from the design concepts
that must be covered to the individual DSLs provid-
ing the concepts. This traceability challenge of map-
ping and understanding the relationships between
concepts and DSL design decisions is independent
of the tools used to implement the DSL.

Variability in the DSLs themselves further com-
plicates a DSL composition’s design. For example,
developers can refine PICML for EJB by removing
event and deployment information. Removing the
deployment-modeling capabilities from PICML,
however, leaves CUTS without needed deployment
information to generate experiments.

Figure 1. The (a) PICML
(Platform-Independent
Component Modeling
Language), (b) Scatter,
(c) CQML (Component
Quality Modeling
Language), and
(d) CUTS (Component
Utilization Test Suite)
family of domain-
specific languages.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 51

Developers must also ensure that refinement of
the deployed DSLs provides the required concern
coverage and adheres to any composition con-
straints.4 Doing this is difficult without the explicit
traceability we just discussed.

Applying SPL
Configuration Techniques
Although DSLs are domain-specific, they possess
points of variability, such as concepts that can be
added or removed. For example, PICML can have
metamodel elements removed as long as develop-
ers have traceability and constraint information to
know how to perform the modifications properly.
Moreover, if developers know why a DSL compo-
sition has a particular structure and how they can
legally modify it, they can adapt the composition to
new concerns.

The missing ingredient that produces the reuse
challenges we mentioned earlier is that no model
traces how concepts map to language design and
captures the variability points and their interre-
lationships in DSL refinement, composition, and
tools. Here, we show how to use SPL techniques to
fill in this gap and increase DSL, DSL composition,
and DSL tool chain reusability.

Managing Refinement via Feature Models
As we mentioned earlier, developers don’t have
concept-to-design traceability information or the
rules for modifying a DSL’s metamodel to ensure
that they produce a semantically valid DSL refine-
ment. One approach to solving this problem is to
build a configurable DSL and use a feature model
to document how concepts map to metamodel el-
ements and what semantic dependencies exist be-
tween metamodel elements. The feature model de-
scribes why specific DSL language elements exist,

which elements are semantically related, the seman-
tic constraints for adding or removing elements, and
the rules for determining what metamodel refine-
ments are valid. The DSL elements are represented
at the tool-independent level, and we can also define
mappings to tool-specific implementations. Each re-
finement of the DSL’s metamodel maps to a feature
selection that developers can check for semantic
validity.

Figure 2 shows a simplified feature model of the
metamodel elements related to the PICML event
elements we discussed earlier. The feature model
is constructed in stages, capturing the most gen-
eral tool-independent concepts at the top levels and
gradually refining more specific concepts until it
reaches actual metamodel elements or tool-specific
metamodel element mappings at the leaves. For ex-
ample, the general concept PICML component architecture
is refined to the more specific concepts of Component
interfaces and Events. The leaves beneath Events capture
concepts in terms of actual metamodel elements,
such as InEventPort and OutEventPort, which in this case
map directly to GME metamodel elements.

Developers can use this PICML feature model to
build semantically correct refinements of the DSL.
For example, if developers want to remove the con-
cept of events to refine for EJB, they can find the
Events feature and remove all the language elements
and mappings to metamodel elements that appear
as children beneath it. Moreover, if they want a
more precise refinement, they can keep the concept
of events—possibly to model EJB’s Java Messaging
Service (JMS)—but remove the CCM-specific con-
cept of event channels. The feature model precisely
captures traceability from concepts to language de-
sign and rules for correctly modifying the PICML
metamodel’s 700 language elements to refine con-
cept coverage.

Other
features

PICML
deployment

PICML

Other
features

Other
features Colocation

constraints
Manual

deployment

ColocationGroup Node

A A requires B

B is an optional
feature of A

B

A

B

A requires either B
or C but not both

A

B C

Component
interfaces Events

Event ports EventChannel

EventChannelCon�gOutEventPortInEventPort

PICML component
architecture

Figure 2. A PICML
feature model snippet
for event elements.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

52	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

DSL Family Configuration
with Feature Models
As we mentioned earlier, developers often don’t
know why a particular set of DSLs was composed
and how the composition covered a set of concepts,
owing to lack of traceability information. For ex-
ample, it isn’t clear how using PICML to describe
deployment capabilities differs in concern cover-
age from using Scatter. Moreover, when develop-
ers must modify a DSL composition to cover a new
concern (such as the Spruce aeronautics domain),
they don’t have a road map of the interactions be-
tween DSLs. This makes it hard to determine the
features they can add or remove.

To address this issue, developers can use feature
models to codify what concerns each member of a
DSL composition covers, what dependencies or ex-
clusions exist between DSLs, and how DSL refine-
ments affect concern coverage. Figure 3 presents a
feature model of the DSL composition covering the
four DSLs. The DSL composition is the root fea-
ture. Beneath the root feature are features providing
a general categorization (such as Deployment and Perfor-
mance) of the DSLs in the composition. Beneath the
categorization features are the actual DSL concepts
that developers can use to capture the concern. For
example, either Scatter deployment or PICML deployment can
capture deployment information. The leaves be-
neath the DSL concepts are modeling capabilities
the DSL provides—for example, Scatter provides
Automated deployment, but PICML doesn’t.

The feature model not only tells developers what
DSLs can be used and their capabilities but also
specifies how DSL refinements affect each other.
For example, if developers refine PICML to re-
move the Deployment concepts, they can use Scatter

and PICML together. If developers want to evaluate
how different wide area network (WAN) properties
affect performance, they need to use a refinement of
CUTS that includes CUTS EmuLab and a refinement of
PICML that includes WAN concepts.

The Cost of DSL Reuse
Using SPL techniques to produce reusable DSLs
has an associated cost. Generally, we can represent
the cost of developing a DSL using standard tech-
niques as

Cost(DSL) = Metamodel + Editors +
Generators.

To develop a reusable DSL and infrastructure,
developers pay an upfront cost:

Cost(DSLR) =
	 C1 × Metamodel + C2 × Editors
	 + C3 × Generators.

C1 is a multiplier for the extra effort to build a fea-
ture model of the language or language family. C2
is the cost of building a more advanced editing in-
frastructure that can be reconfigured on the basis
of the features selected for a variant of the DSL. C3
is the overhead of creating code generation and
analysis infrastructure that can be reconfigured
for different DSL variations.

In our experience, C1 (the cost of producing
the feature model of a language after the DSL’s
metamodel is developed) isn’t high. C2 is also typi-
cally low, owing to the excellent support for au-
tomatically generating graphical and textual edi-
tors for DSLs that tools such as GME, GEMS,
GMF (Graphical Modeling Framework),1 oAW’s
xText, and the Textual Concrete Syntax project

Performance

Deployment + performance
DSL composition

Deployment

Scatter
deployment

Resource
constraints

Colocation
constraints

Automated
deployment

Manual
deployment QoSML

Resource
constraints

Component
performance

Component
performance

WAN impact on
performance

LAN impact on
performance

Colocation
constraints

Manual
deployment

CUTS
EmuLab

CUTS
std. LAN LAN WAN Gateway

PICML
deployment CUTS

Scatter
network
model

PICML
network
model

Network

Components
interfaces Events

PICML
component
architecture

Software
architecture

A A requires B

B is an optional
feature of A

B

A

B

A requires either B
or C but not bothA

B C

RequiresRequires

Figure 3. A feature
model for the PICML/
CUTS/Scatter/CQML
DSL family. This figure
shows how feature
models can help capture
the numerous DSL
composition constraints
that must be adhered
to in order to reuse DSL
compositions.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

	 July/August 2009 I E E E S o f t w a r e � 53

(TCS) provide.2 For example, if developers re-
move the networking concepts from the Scatter
metamodel, GEMS can automatically update the
graphical editor, which results in the regeneration
of roughly 4,700 lines of code. Markus Voelter
has shown how to model transformations and use
xText to automatically regenerate a textual editor
with code completion and syntax highlighting as
a DSL’s feature selection changes.2

Our experience shows that the major difficulty
in reusing DSLs lies in modularizing the code gen-
eration and analysis infrastructure, C3. Some plat-
forms, such as GME, have code generators written
in third-generation languages, such as C++, that
require more effort to achieve modularity. Tools
that leverage other code generation platforms, such
as oAW, can use advanced modularization fea-
tures, such as oAW’s support for aspect-oriented
programming in code generation templates.

In the end, developers must perform a cost-
benefit analysis. The cost of developing three sep-
arate DSLs without a reusable approach is

3 × Cost(DSL).

With a reusable approach, the upfront cost is
higher but subsequent DSLs cost less:

Cost(DSLR) + 2 × Reuse(DSLR)

Reuse(DSLR) < Cost(DSL)

Reuse(DSLR), the price of refining and reusing
an existing DSL, is typically dominated by the im-
pact of C3. For each scenario, developers must es-
timate whether the DSL will be reused enough to
make the reduced price, Reuse(DSLR), overcome
the initial overheads of C1, C2, and C3. In our re-
search, we’ve found numerous instances where
the initial price of reusability paid off.

T he need to reduce costs and time to mar-
ket has motivated SPL-based reuse. We
expect these needs will also motivate

DSL-based reuse. With the growing complexity
and functionality of DSLs and DSL tools, their de-
velopment cost will also likely increase. In partic-
ular, model compositions that span multiple tools
are hard to develop and maintain manually. These
trends underscore the need for technologies that
can manage and reuse DSL assets effectively.

Acknowledgments
We thank the Lockheed Martin Advanced Technol-
ogies Lab, the US Air Force Research Laboratory,
and the US National Science Foundation (NSF-CA-
REER-0643725) for supporting this work.

References
	 1.	 M. Mernik, J. Heering, and A.M. Sloane, “When and

How to Develop Domain-Specific Languages,” ACM
Computing Surveys, vol. 37, no. 4, 2005, pp. 316–344.

	 2.	 M. Voelter, “A Family of Languages for Architecture
Description,” Proc. OOPSLA Workshop Domain-
Specific Modeling, 2008, pp. 86–93; www.dsmforum.
org/events/DSM08/Papers/15-Voelter.pdf.

	 3.	 T. Denton et al., “Naomi: An Experimental Platform
for Multi-Modeling,” Model Driven Engineering Lan-
guages and Systems, LNCS 5301, Springer, 2008, pp.
143–157.

	 4.	 D. Batory, J.N. Sarvela, and A. Rauschmayer, “Scaling
Step-Wise Refinement,” IEEE Trans. Software Eng.,
vol. 30, no. 6, 2004, pp. 355–371.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/csdl.

About the Authors
Jules White is a research assistant professor in Vanderbilt University’s Electrical Engi-
neering and Computer Science Department. His research focuses on applying a combination of
modeling and constraint-based optimization techniques to the deployment and configuration
of complex software systems. White has a PhD in computer science from Vanderbilt University.
Contact him at jules@dre.vanderbilt.edu.

Jeff Gray is an associate professor in the Computer and Information Sciences Department
at the University of Alabama at Birmingham, where he codirects research in the SoftCom
Laboratory. His research interests include model-driven engineering, aspect orientation, code
clones, and generative programming. Gray has a PhD in computer science from Vanderbilt
University. Contact him at gray@cis.uab.edu.

Aniruddha S. Gokhale is an assistant professor in Vanderbilt University’s Depart-
ment of Electrical Engineering and Computer Science. His research combines model-driven
engineering and middleware for distributed real-time and embedded systems. Gokhale has a
PhD in computer science from Washington University. Contact him at gokhale@dre.vanderbilt.
edu.

James H. Hill is a research scientist in Vanderbilt University’s Institute for Software
Integrated Systems (ISIS). His research focuses on using model-based analysis to identify
quality-of-service flaws in distributed real-time and embedded systems. Hill has a PhD in
computer science from Vanderbilt University. Contact him at hillj@dre.vanderbilt.edu.

Sumant Tambe is a PhD candidate in electrical engineering and computer science at
Vanderbilt University. His research interests include model-driven engineering for distributed
real-time and embedded systems. Tambe has an MSc in computer science from New Mexico
State University. Contact him at sutambe@dre.vanderbilt.edu.

Douglas C. Schmidt is a professor of computer science and an associate chair of
Vanderbilt University’s Computer Science and Engineering program. His research interests
include patterns, domain-specific languages, and distributed real-time and embedded systems
middleware. Schmidt has a PhD in computer science from the University of California, Irvine.
Contact him at schmidt@dre.vanderbilt.edu.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on June 19, 2009 at 14:39 from IEEE Xplore. Restrictions apply.

