
Contents

W. Abdelmoez, I. Shaik, R. Gunnalan, M. Shereshevsky, K. Goseva-Popstojanova,
H.H. Ammar, A. Mili, C. Fuhrman: Architectural level Maintainability Based Risk Assessment 4

Francoise Balmas, Harald Wertz, Rim Chaabane:
Visualizing Dynamic Data Dependences as a Help to Maintain Programs .8

Feng Chen and Hongji Yang, He Guo and Tianyang Liu:
Aspect-Oriented Programming based Software Evolution with Microsoft .NET 12

Rodrigo Santos de Espindola, Azriel Majdenbaum, Jorge Luiz Nicolas Audy:
Requirements Engineering Challenges for Software Maintenance Projects
in Distributed Software Development Environments .16

Beatriz Florián, Ángela Lozano, Silvia Takahashi:
Automatic Detection of Bad Smells Using Software Metrics .20

Grace Gui, Holger M. Kienle and Hausi A. Müller: REGoLive:
Adding Web Site Comprehension to Adobe GoLive .24

Tracy Hall and Paul Wernick:
Using Program Slicing Metrics to Predict the Maintenance of Software .27

Igor Ivkovic and Kostas Kontogiannis:
Model Synchronization through Pattern-Based Association Grammars .31

László Lengyel, Tihamér Levendovszky and Hassan Charaf:
Supporting Continuous Evolution of Software Systems with Transformation Maintenance 35

Grace Lewis, Edwin Morris, Liam O’Brien, Dennis Smith:
Analyzing the Reuse Potential of Migrating Legacy Components
to a Service-Oriented Architecture .39

Nuo Li, Jin-liang Ou, Mao-zhong Jin, Chao Liu:
Evaluate Java Program by an Extensible Metrics Reporter .43

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz:
An Empirical Approach to Software Archaeology .47

Oscar M. Rodríguez-Elias, Ana I. Martínez-García,
Aurora Vizcaíno, Jesús Favela, Mario Piattini:
Constructing a Knowledge Map for a Software Maintenance Organization .51

Serguei Roubtsov and Ella Roubtsova: Incremental Product Line Modelling 55

M.P. Ware & F. G. Wilkie:
A Study of Evolving Complexity in a Re-Structured Business Application .59

Filip Van Rysselberghe and Serge Demeyer: Clone Evolution in Open Source Software Systems:
When, How and Why do Software Maintainers Remove Clones .63

Mehmet Sahinoglu: Quantitative Risk Assessement
for Software Maintenance with Bayesian Principles .67

Sumant Tambe, Navin Vedagiri, Naoman Abbas, Jonathan E. Cook:
DDL: Extending Dynamic Linking for Program Customization, Analysis, and Evolution 71

Richard Wettel, Radu Marinescu: Archeology of Code Duplication:
Recovering Duplication Chains From Small Duplication Fragments .75

Hui Zeng, David Rine: An Empirical Study on Software Defect Fix Effort Estimation
with Incomplete Historical Data .79

Ned Chapin: Experience Report on Maintaining Executable UML Software .83

Foreword to the Poster Session
By the General Chair

We are very proud to be able to include an excellent poster session in this year’s International Conference
for Software Maintenance. Poster sessions serve an important function in conferences of this type since
they give the attendants an opportunity to discuss with the poster presenters. Posters are intended to pro-
voke a discussion and to help conference participants learn from one another. The formal presentations are
one means of communication, the informal discussions provoked by the poster sessions are another.
The hosting hotel of the conference – the Budapest Thermal Hotel on Margaret’s Island – with it’s many
lobbies, health facilities and open cafes is particularly suitable for such small group discussions. We are
integrating the poster presentations with the coffee breaks so that all participants will have the opportuni-
ty to take part in the discussions. We trust that these discussions will be fruitful for both parties – the pre-
senters and the attendants.
In any case, the array of porters promises to be very informative. They include such hot topics as aspect-
oriented programming, predicting software evolution trends, software measurement, maintenance process-
es, dealing with duplicate code, program comprehension, reengineering software architecture, assessing
maintenance risks and extending dynamic linking for program customization. I heartily recommend every-
one taking part in these vital discussions.
Finally, I want to thank the authors of the poster presentations for their contribution to the technical excel-
lence of this year’s conference and to their help in making this a milestone event in promoting the signif-
icance of software maintenance and evolution.

Harry Sneed
General Chair

ICSM

8:30am-4:00pm Bugac puszta excursion
SCAM

ICSM- Technical sessions
11:00am-6:00pm
T1: Aspect Mining
T4: Maintenance
T7: Maintenance in Practice

ICSM- Technical sessions
11:00am-6:00pm
T2: Components & Frameworks
T5: Re- and Reverse Engineering
T8: Process

ICSM- Technical sessions
11:00am-6:00pm
T3: Distributed Systems
T6: Source Code Analysis
T9: Program Comprehension

ICSM- Technical sessions
9:00am-6:00pm
T10: Feature Extraction and

Analysis
T13: Theoretical Maintenance
T15: Evolution

ICSM- Technical sessions
9:00am-5:30pm
T11: Refactoring
T14: Testing I.
T16: Testing II.

ICSM- Technical & Panel
9:00am-5:30pm
T12: Regression Testing
P1: Panel 1
P2: Panel 2

ICSM- Technical & Short papers
9:00am-3:30pm
T17: Web maintenance &

Reengineering
S3: AOP & Web

ICSM- Short papers
9:00am-3:30pm
S1: Maintenance & Evolution
S4: Testing

ICSM- Short papers &
Dissertation
9:00am-3:00pm
S2: Program Comprehension
D1: PhD Dissertation session

Program overview

Tuesday

(Sept 27)

Saturday

(Sept 24)

ICSM

8:30am-11:00am Registration
9:00am-10:30am Opening

STEP

Sunday

(Sept 25)
STEP, VISSOFT

Monday

(Sept 26)
WSE, Software Evolvability, Industrial Truck, Tutorial

ICSM

7:00pm Banquet Dinner in the Grand Hotel Restaurant

Wednesday

(Sept 28)
ICSM

9:00am-10:00am Keynote

ICSM

7:00pm Csárdás Evening in the Wine Cellars of Budafok

Thursday

(Sept 29)
ICSM

9:00am-10:00am Keynote

ICSM

3:30pm Closing

SCAM

Friday

(Sept 30)

Saturday

(Oct 1)

Architectural level Maintainability Based Risk Assessment1

W.Abdelmoez, I. Shaik, R. Gunnalan,
M. Shereshevsky, K. Goseva-Popstojanova, H.H. Ammar

Lane Department of Computer Science,
 West Virginia University
Morgantown WV 26506

{rabie, isrars, gunnalan, smark, katerina,
ammar}@csee.wvu.edu

A. Mili
College of Computer

Science,
New Jersey Institute of

Technology
Newark NJ 07102
 mili@cis.njit.edu

C. Fuhrman
Department of Sofware and IT

Engineering
École de technologie supérieure

Montreal, Canada H3C 1K3
christopher.fuhrman@etsmtl.ca

Abstract
Software maintenance accounts for a large part of

the software life cycle cost. Systems with good
maintainability can be easily modified to fix faults or to
adapt to changing environments. In this paper, we define
maintainability-based risk as a combination of two
factors: the probability of performing maintenance tasks
and the impact of performing these tasks. An estimation
procedure based on change propagation probabilities
from architectural artifacts is presented. We illustrate
how to apply the procedure on a case study which uses
design patterns to improve system quality. This type of
risk assessment helps in managing software maintenance
process. It can be used to identify the most risky parts of
the system and assign them to the most experienced
maintainers.

1 This work is supported by the National Science Foundation through ITR program grant No CCR 0296082, and by NASA
through a grant from the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program
(SARP) managed through the NASA Independent Verification and Validation (IV&V) Facility, Fairmont, West Virginia.

Copyright © Abdel-Moez W. 2005

Keywords: Maintainability-based risk, software
architectures, software metrics, software maintenance,
change propagation probability.

1. Introduction
Software maintenance is defined as modification of a

software product after delivery to correct faults, to
improve performance or other attributes, or to adapt the
product to a modified environment [8]. Basically, there
are three types of software maintenance; corrective
maintenance deals with error corrections, perfective
maintenance tries to improve the quality of the system,
and adaptive maintenance concerned with system changes
as requirements and environment changes. Software
maintainers usually are not involved in the original
software development cycle. They must learn how a
program functions before they can change it. They often
interact with complex and difficult to comprehend
systems. The status of system documentation,

programmer skill and experience and the attributes of the
system itself are some of the variables that affect the
maintenance process. According to [14], the cost of
software maintenance averages from 60% to 80% of the
overall software system cost. Furthermore, enhancements
(perfective and adaptive maintenance) account for 78%-
83% of the maintenance effort. As a result,
maintainability is an important software quality factor.
IEEE computer society defines maintainability as the ease
with which a software system or a component can be
modified to correct fault, improve performance or other
attributes, or adapt to a changed environment [9].

The research effort aimed at quantifying software
maintainability is rather limited. Moreover, to the best of
our knowledge there are no attempts to quantify
maintainability-based risk for software systems. In
general, risk assessment provides useful means for
identifying potentially troublesome software components
that require careful development and allocation of more
testing effort. According to NASA-STD-8719.13A
standard [12] risk is a function of the anticipated
frequency of occurrence of an undesired event, the
potential severity of resulting consequences, and the
uncertainties associated with the frequency and severity.
This standard defines several types of risk, such as for
example reliability risk, availability risk, acceptance risk,
performance risk, cost risk, schedule risk, etc.

In this paper, we focus on perfective maintenance
and refactoring activities in particular. Refactoring is
defined as a change made to the internal structure of
software to make it easier to understand and cheaper to
modify without changing its observable behaviors.
Refactoring to improve the design of the system requires
knowing which parts of the system need to be improved.
In [5], Fowler and Beck presented a list of bad smells that

 4

mailto:ammar}@csee.wvu.edu

help to identify where refactoring is needed. Examples of
bad smells include large class, lazy class, data class, and
switch statements. It should be noted that not all of the
smells can be identified at the architectural level.

One way to refactor the software is to use design
patterns. According to [10], there are practical situations
where patterns help to improve the quality of the design.
The intent is to improve maintainability by reducing or
removing duplication, simplifying what is complicated
and making the design development better at
communicating. Design pattern is a software engineering
problem-solving discipline. It has roots in many
disciplines, including literate programming, and most
notably in Alexander's work on urban planning and
building architecture [3]. The goal of the pattern
community is to build a body of literature to support
design and development. The Gang of Four’s book [6]
presented the first well-described and documented
catalog of design patterns for object-oriented design.

In our research effort, we are concerned with
maintainability-based risk that takes into account the
probability that the software product will need to endure a
certain type of maintenance and the consequences of
performing this maintenance on the system.
Maintainability-based risk can be used to improve the
maintainability of the system architecture, to manage
system maintenance process, and to identify the risky
components of the system in terms of maintainability.
This study is part of a wider effort that considers other
types of architectural level risk such as reliability-based
risk [7] and performance-based risk [4].

The rest of the paper is organized as follows. In
Section 2, we briefly discuss the literature background of
our study. In Section 3, we define how maintainability-
based risk can be estimated based on change propagation
probabilities and illustrate our estimation procedure on a
case study using design patterns as means of refactoring.
Finally, in Section 4, we summarize our results and
discuss the directions for future research.

2. Background

2.1. Software Maintenance Risks
Many types of risk are ushered when software

systems undergo maintenance. They are similar to those
we face when developing new software systems, but with
different level of risk. These types of risk are [16]:
• Project risk— Maintenance project cannot be carried

out within the budget or on time.
• Usability risk— Systems will cause problems and

failures after the maintenance is conducted.

• Maintainability risk—It will be difficult to maintain the
system in the future because of the way we conducted
this maintenance.

In this paper, we focus on maintainability risk. In
particular perfective maintenance achieved by refactoring
activities.

There have been some studies trying to characterize
and quantify software maintainability. One of the famous
studies [13] introduced the Maintainability Index (MI)
measure which is calculated using a polynomial of widely
used code level measures such as Halstead measures and
McCabe’s cyclomatic complexity. In [11], Muthanna et
al. conducted a similar study which used design level
metrics to statistically estimate the maintainability of
software systems. They constructed a linear model based
on a minimal set of design level software metrics to
predict Software Maintainability Index. In [15], Prechelt
et al. conducted a controlled experiment to study the
effect of applying design patterns on maintenance effort.
They concluded that unless there is a clear reason to
prefer a simpler solution, it is probably wise to choose the
flexibility provided by the design pattern.

2.2. Change Propagation
The estimation procedure of maintainability-based

risk builds on our previous work on change propagation
probabilities [1]. Let us consider a software architecture
modeled by components and connectors. We are
interested in the maintainability of the products
instantiated from it. In corrective or perfective
maintenance tasks, change propagation probability
matrix for an architecture reflects on the probability of
changing component Cj as a result of a change to
component Ci. The estimation of the elements cpij of the
change propagation matrix CP is based on the following
definition [1] :

Definition. Given components Ci and Cj of a system S,
the change propagation probability from Ci to Cj is
denoted by cpij and defined as the following conditional
probability

cpij = Pr(([Cj]≠[Cj’])|([Ci]≠[Ci’])∧([S]=[S’])), (1)

where [X] denotes the functionality of component/system
X and S’ is the system obtained from S by changing Ci
into Ci’ (and possibly Cj into Cj’ as a consequence).

To estimate the change propagation probabilities, we
first analyze the architecture of the system under
investigation using a structural diagram or a class
diagram. From these artifacts, we can identify the
components and the connectors of the component-based
system architecture. Then, we analyze message protocols
between every pair of components in the system which

 5

provide us with the messages exchanged between
components Ci and Cj. With the help of case tools, we can
get message sets for any pair of components in the system
[2]. This information can also be obtained from static
analysis tools of the source code.

Shotgun surgery is a phenomenon when every time a
change is made to a component many little changes need
to be made to a lot of different components [5]. For
example, whenever we change a database we must
change several components. To identify a shotgun smell
using the CP matrix, we examine if we have high values
in a row corresponding to a component Ci. Changes to
such a component need to be avoided because they
propagate throughout the system.

An architecture can be seen as a collection of
components Ci, i=1,…,N. With every component Ci, we
associate the set Vi of the interface elements of the
provided functions of Ci. We determine the usage
coefficient value for every interface element ν∈Vij

vπ

ij
vπ

ij
vπ

i
and every other component Cj, j≠i. They take binary
values:

Thus, maintainability-based risk is proportional to:
α Divergent change * Shotgun surgery
α Average (columns CP) * Sum (rows CP)

• =1, if the interface element ν provided by Ci is
required by Cj. This means that any signature change in
component Ci associated with interface element ν will
propagate to component Cj.

α (3) ∑∑
≠==

N

ijj
ij

N

i
ij cpcp

N ,11
.1

We use equation (3) to estimate components’
maintainability risk of the original system and the
refactored system after applying a design pattern. As a
case study, we use an open source calendar and task
tracking software written in Java [17]. The design of the
calendar depends on MVC (Model view controller)
design pattern. We studied two versions of the calendar.
The first version implements only the view and the model
of the MVC design pattern. The second version
incorporates the controller. Due to the space limitation,
only the results of the estimation procedure are presented.
The details of the case study will be presented in the
poster.

• =0, otherwise.
Hence, for every pair of components Ci and Cj, i≠j,

the change propagation probability cpij can be estimated
based on the values of the usage coefficients π iνj by [1] :

cpij = , (2) ∑
∈ iV

ij
v

iV ν

π
||

1

3. Maintainability Based Risk
We define maintainability-based risk as a

combination of two factors: the probability of performing
maintenance tasks and the impact of performing these
tasks. In this paper, we limit our scope to refactoring
activities that are used to reorganize the system in order
to make it more adaptable to add requirements or improve
its quality. Accordingly, maintainability-based risk for a
component is defined as:
Probability of changing the component * Maintenance
impact of changing the component.
We use bad smells of the architecture to estimate
components’ maintainability-based risk. In particular, we
consider two smells: divergent change and shotgun
surgery.

Divergent change is when one component is
commonly changed in different ways for different reasons
[5]. For example, we have to modify the same component
whenever we change the database or add a new
calculation formula. To identify a divergent change smell
using the CP matrix, we examine if we have high values
in a column corresponding to a component Ci. Such a
component is likely to undergo frequent changes in the
maintenance phase due to changes in other components.

Figure 1. Components maintainability-based risk for the

case study

Figure 1 shows components maintainability-based
risk for the case study before and after implementing the
controller of the MVC pattern. We can identify that
errmsg is the most risky component. This component is
responsible of showing an error message whenever an

 6

exception occurs. The risk factor of this component is not
affected by adding the controller class of the MVC
pattern because this modification does not address the
errmsg component. However, there are improvements in
the maintainability-based risk of some components (e.g.
borg, apptgui, and tdgui). We restrict the analysis to the
components that existed before adding the controller to
the MVC pattern. The biggest improvement in
maintainability risk factor is in borg component. This is a
result of adding the controller class, as it causes the
coupling of the borg component to decrease because it is
redirected to the added controller class. On the other
hand, this modification causes other components to be
more coupled (e.g. taskmodel and taskgui) because they
need to interact with the added controller class. As a
result the maintainability risk factor of these components
is increased.

[3] Alexander, C., S. Inshikawa, M. Silverstiein, M.
Jacobson, I. Fiksdahl-king, and S. Angel. “A Pattern
Language”, Oxford University Press, New York, 1977.

[4] Cortellessa V., K. Goseva-Popstojanova, K. Appukkutty,
A. Guedem, A. Hassan, R. Elnaggar, W. Abdelmoez, and
H. Ammar, “Model-Based Performance Risk Analysis”,
IEEE Transaction on Software Engineering, Vol.31,
No.1, January 2005, pp.3-20.

[5] Fowler M.and Beck K, Refactoring: Improving the Design
of Existing Code, Addison-Wesley, 2004.

[6] Gamma E., R. Helm, R. Johnson and J. Vlissides,
"Design Patterns: Elements of Object-Oriented Software",
Addison-Wesley, 1995.

[7] Goseva-Popstojanova K., A. Hassan, A. Guedem, W.
Abdelmoez, D. Nassar, H. Ammar, A. Mili,
“Architectural-Level Risk Analysis using UML”, IEEE
transaction on software engineering, Vol.29, No.10,
October 2003, pp. 946-960.

[8] IEEE Standard for Software Maintenance, The Institute of
Electrical and Electronics Engineers, Inc.,New York,
1998.

4. Conclusion
In this paper, we introduce the concept of

architectural level maintainability-based risk assessment.
Maintainability-based risk is defined as a combination of
two factors: the probability of performing maintenance
tasks and the impact of performing these tasks. We
present an estimation procedure based on change
propagation probabilities using architectural information
of the system. We discuss its capability to assess the
effect of applying design patterns on the components
maintainability. Maintainability-based risk assessment
can be used to guide software maintenance management.
Also, it can identify the risky parts of the system, so that
they can be assigned to the most experienced maintainers.

[9] IEEE Standard Glossary of Software Engineering
Terminology, The Institute of Electrical and Electronics
Engineers, Inc.,New York, 1990.

[10] Kerievsky J., Refactoring to Patterns, Addison-Wesley,
2004.

[11] Muthanna S., K. Ponnambalam, K. Kontogiannis and B.
Stacey, “A Maintainability Model for Industrial Software
Systems Using Design Level Metrics”, Seventh Working
Conference on Reverse Engineering (WCRE'00),
Brisbane, Australia, November 23 - 25, 2000

[12] NASA Technical Std. NASA-STD-8719.13A, Software
Safety, 1997.
http://satc.gsfc.nasa.gov/assure/nss8719_13.html

Among our venues of future research, we plan to
carry out more experiments to examine how other design
patterns affect the maintainability-based risk of the
software components. We also plan to automate the
computation of the maintainability-based risk by
extending the Software Architectures Change
Propagation Tool (SACPT) [2].

[13] Oman, P. & Hagemeister, J. "Constructing and Testing of
Polynomials Predicting Software Maintainability."
Journal of Systems and Software 24, 3 (March 1994): pp.
251-266.

[14] Pigoski T.M., Practical Software Maintenance: Best
Practices for Managing Your Software Investment, John
Wiley & sons, 1996.

[15] Prechelt, L.; Unger, B.; Tichy, W.F.; Brossler, P.; Votta,
L.G.; “A controlled experiment in maintenance:
comparing design patterns to simpler solutions”, IEEE
Transactions on Software Engineering,Vol. 27, No. 12,
Dec. 2001, pp.1134-1144

References
[1] AbdelMoez W., M. Shereshevsky, R. Gunnalan, H.H.

Ammar, Bo Yu, S. Bogazzi, M. Korkmaz, A. Mili ,
“Quantifying Software Architectures: An Analysis of
Change Propagation Probabilties”, ACS/IEEE
International Conference on Computer Systems and
Applications (AICCSA 05), Cairo, Egypt, January 3-6,
2005.

[16] Sherer S., “ Using Risk Analysis to Manage Software
Maintenance ,” Software Maintenance: Research and
Practice, Vol. 9, 345-364, 1997.

[17] Source Forge Project: BORG Calendar
http://sourceforge.net/projects/borg-calendar/ [2] Abdelmoez W., R. Gunnalan, M. Shereshevsky, H.H.

Ammar, Bo Yu, M. Korkmaz, A. Mili, “Software
Architectures Change Propagation Tool (SACPT)”, Proc.
20th IEEE International Conference on Software
Maintenance (ICSM 2004), Chicago, IL, September 2004.

 7

http://satc.gsfc.nasa.gov/assure/nss8719_13.html
http://sourceforge.net/projects/borg-calendar/

Visualizing Dynamic Data Dependences as a Help to Maintain Programs

Françoise Balmas Harald Wertz Rim Chaabane
Laboratoire Intelligence Artificielle

Université Paris 8
93526 Saint-Denis (France)

{fb,hw,lysop}@ai.univ-paris8.fr

Abstract

This paper is on a project to evaluate the impact of visu-
alizing dynamic data dependences in the context of mainte-
nance activities.

Our work is based on previous work in displaying static
data dependences and on experience with large sets of de-
pendence displaying strategies that we adapted to deal with
problems where dynamic information is crucial. We devel-
oped a prototype around a Lisp interpreter and applied it
to a highly complex AI program. This permitted us to build
efficient visualizations and to evaluate the benefits of using
dynamic dependences for program understanding, debug-
ing and correctness checking.

In this paper, we present our prototype, detailing espe-
cially the different visualizations we introduced to allow
users to deal with hard to understand programs, and we
discuss how dynamic dependences permit to see what re-
ally happens during program executions.

1. Introduction

In the past, we used static data dependences to help un-
derstand and document programs [1], and developed dis-
playing strategies to deal with large sets of dependences [2].
In this context, we showed that visualizing sample values
of variables, for a well chosen execution, was very efficient
to help understand what a program does and how it works.
That’s why we decided to explore computing dynamic de-
pendences and to evaluate the benefits of visualizing them
for those activities where knowledge about given executions
is crucial, that is program understanding, debugging and
correctness checking.

For the sake of evaluation, we developed a prototype
around the Lisp language; actually, modifying an interpreter
is much easier than modifying a compiler, and hard to un-
derstand Lisp programs are still small enough to prevent al-

gorithmic and optimization problems which arise when ma-
nipulating huge amounts of data.

To evaluate our approach, we applied our tool to a ver-
sion of the classical AI Blocks World program [4]. In our
version, the world is a table with different objects on it
which can be manipulated by a one-handed robot. Basi-
cally, the program presents itself as an interpreter the user
interacts with in order to create objects, make the robot
move them to other places or ask for information about the
current state of the world.

The program is around 1200 LOC long1 and includes
more than 125 functions and macros, many global variables
modified through pointers, indirect recursive calls, thus long
circularities, and escapes (i.e. non standard return controls).
It evolved over time, since first developed for teaching pur-
pose and then modified several times to add further rea-
sonning capabilities. All these features make this program
rather complex, hard to understand for newcomers to the
program and difficult to maintain for the one of us who de-
veloped it.

In this paper, we report on this evaluation, discussing
both the different kinds of visualizations we defined and the
way they let us see what happened during execution of our
program, helping us to understand, debug and check it for
correctness.

2. The tool

Our tool relies on three modules: a modified Lisp inter-
preter (a C version is under construction), a database (cur-
rently a Lisp program) and a GUI (implemented in Tcl/Tk).
We modified a Lisp interpreter to make it, in addition to
normal execution of programs, extract dependences at run-
time. These dependences are sent to a Lisp program that
acts as a database, storing the dependences and producing,

1Note that LOC in Lisp is very different from LOC in more usual pro-
gramming languages such as C, because of the compactness of code and
the powerfull functional primitives it offers.

8

(de square (a)
(* a a))

(de som2 (x y)
(+ (square x) (square y)))

? (som2 3 5)
= 34

Figure 1. Sample code

on demand, the corresponding graph – in dot [3] format. Fi-
nally, a Tcl/Tk GUI displays the graph, using mechanisms
to reduce its size, and allows users to interact with it to tune
several kinds of visualizations.

The full set of dependences for a given call is unlikely to
be displayed as is, since it is usually to large to be readable.
We thus group together nodes (that is pieces of code) be-
longing to the same function call. For example, in the sam-
ple code of Fig. 1, wich computes the sum of the square of
two numbers, we have nodes belonging to the two calls to
function square and we aggregate them to form two groups.
These two groups, as well as other nodes, belong to function
som2 and are aggregated to form the main group. We can
then display dependences showing only these groups, thus
only the calls, and the dependences between them. Fig. 2
gives the corresponding graph for the call (som2 3 5) and
shows how values are transmitted between calls. Alterna-
tively, we can also get a graph with only the toplevel call
visible (see Fig. 3), showing just input and output of the
whole program. Such views are very helpful when global
variables are used and modified by the program (see Sec-
tion 4).

ENV

A2 = 5 A1 = 3

som2

A1 = 5 A1 = 3R-som2 = 34

square

R-square = 9

square

R-square = 25

Figure 2. Data dependence graph with all calls
visible

For a large program, the number of function calls may
become also too large to get readable graphs. For this rea-

som2

R-som2 = 34

3
Toplevel

A1 = 3

5
Toplevel

A2 = 5

Figure 3. Data dependence graph with only
the toplevel call visible

son, we introduced a tagging mechanism to classify func-
tions into control structures (they are functions in Lisp),
primitives (those standard functions that are implemented
in Lisp itself) routines (small reusable functions related to
the program at hand) and user functions (all the remaining
functions). The next Section will show different visualiza-
tions that depend on this classification to filter out given set
of calls.

3. Visualizations

In this section, we introduce the different visualizations
our tool offers to help users analyze programs. The first four
are variants of call graphs: we noticed that navigation inside
data dependences graphs is often tedious and call graphs
provide a good ’map’ to support this navigation. The last
four visualizations are variants of data dependence graphs.

Call graph Such a visualization offers a global overview
of the functions the program evaluted and the way they are
organized. It also permits the user to ask for a given data
dependence graph by interactively selecting a call: this call
then becomes the focus of the displayed data dependence
graph (see below).

User call graph This is a restricted version of the call
graph just described, where only user functions are shown.
This permits to get a graph with much fewer calls – from
more than 3600 calls in the whole call graph for a ‘move-
object’ instruction to our robot we could get down to about
30 calls –, thus more easily readable. This also permits to
get a global overview of the main function calls from a pro-
grammer’s conceptual perspective.

One level user call graph This visualization is a mix of
the two previous ones: a call graph beginning at a given user

9

function and ending at the next call of a user function. That
is: when traversing the call tree, we stop drawing the graph
when we reach leaves or we encounter user functions. This
visualization gives all necessary details but locally bounded
by user functions.

Return graph The Blocks World program uses inten-
sively the ‘escape’ mechanism of Lisp2 that allows the pro-
gram control to directly return to a calling function up in the
call tree. It is then often hard to conceptually follow where
the control is supposed to get back and how the program
is supposed to continue after the activation of the ‘escape’.
That’s why we integrated the possibility to extend the call
graphs with the return graph: whenever control gets back
to another function than the one that called the current one,
the return arrow is displayed in red.

Data dependence graph This visualization provides the
standard data dependence graph we introduced in Section
2, with either only the toplevel call, or all calls. It may
focus on a given call, this way considering only the sub tree
beginning at this call.

Filtered data dependence graphs This visualization is
obtained whenever classes of functions are tagged to be
filtered out. It is especially useful with data dependence
graphs where all calls are to be displayed, since it per-
mits to hide functions of lesser interest for the task at hand.
For example, to focus on the dependences from a program-
mer’s conceptual perspective, it is useful to filter out control
strucutres, primitives and routines that often fill a graph with
irrelevant information.

First level graphs The two basic possibilities to examine
calls – only the toplevel call visible, or every call visible –
proved to be insufficient in several cases, since giving either
too few or too many details. We extended our tool function-
nalities with a view where the function call focused upon is
visible along with each first level call. This allows the user
to examine how a given action – implemented by a function
call – is decomposed into smaller actions, without the need
to examine the actual code of the call.

Sets of calls Sometimes, the automatically built views we
just described are not satisfying because centered on one
call, while we might need the ability to see a set of specific
calls, especially to examine the values of global variables
before and after these different calls (see Section 4). For
this reason, selecting a few calls on a call graph results in

2Sometimes called ‘catch-and-throw’, this mechanism is similar to the
‘setjmp-longjmp’ mechanism of C.

a data dependence view where only these calls are shown
while all others are hidden.

The different visualizations presented in this section were
inspired by the needs we encountered during the process
of trying to understand and evolve a rather large and com-
plex program. They showed to be very useful for interactive
goal-directed exploration. In the next Section we will dis-
cuss more specifically the use of dynamic data dependences
for different programming activities.

4. Dynamic data dependences for program-
ming activities

Program discovery The first context where our visual-
izations proved to be useful is program discovery, that is
the task a programmer faces when s/he has to get aquainted
with a program s/he didn’t implement her/himself. Even if
interacting with the robot, on the Lisp terminal, was easy to
grasp, trying to understand how the program works in or-
der to handle object creation, placement and moving was
another question!

A data dependence graph focused on the toplevel call is a
good view to start with, since it shows how global variables
are modified during the call. For example, Fig. 4 shows how
the table, the object list and the object itself are modified
during the creation of an object, showing this way the real
effect of the call. The user-call-graph permitted us then to
get a global overview of the actions performed, while tuning
data dependence graphs for these different actions gave us
futher information on how they affect the global variables.

Finding bugs While working on the discovery of the
Blocks World program, we encountered graphs with wrong
variable values, incorrect number of function calls or unex-
pected calls. Refining different graphs, we could navigate
backward and forward to find the source of the problem.

For example, we noticed that when finding a place where
to put a square object of 2x2, the robot only checked
three positions on the table, while of course it should have
checked at least four. This example shows that our visual-
izations may direct users to problems they don’t even sus-
pect: we didn’t search for any problem in finding a place,
we just saw there was one. We could then detect more pre-
cisely why there was this problem and how to solve it.

Correctness checking As an extension of the two former
points, we also used our views to verify that the program
was behaving properly. For instance, careful inspection of
visualizations of the program’s execution after correction of
the ’finding place’ bug permitted us to see its correctness.

10

creObjet

a =
 ((sur . Table) (at 1 1 0)

 (surfaceInterne (nil nil) (nil nil))
 (surface (nil nil) (nil nil))

 (etat . ouverte) (taille 2 2 3) (forme . boite))

Table =
 ((a a nil nil)
 (a a nil nil)
 (nil nil nil nil)
 (nil nil nil nil))

Objets = (a) R-creObjet = "c’est fait"

’a
Toplevel

A1 = a

’(2 2 3)
Toplevel

A4 = (2 2 3)

’taille
Toplevel

A3 = taille

’boite
Toplevel

A2 = boite

Table =
 ((nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil)
 (nil nil nil nil))

Objets = nil

Figure 4. Overview of computation performed

We also used our views to verify that the program was
behaving the way we expected it to do. As usually in AI
programs, in many contexts large parts of the program –
a function along with every call it performs – are reused
and reused again, resulting in deep and broad call trees, ex-
tremely difficult to capture. To check that such functions
were correctly implemented, we looked at user call graphs
to check whether they were recursively called the correct
number of times. We also looked at data dependence graphs
where we rendered visible only calls to these functions, to
examine the values of the global variables at the different
steps of the program execution and to verify that they were
modified the way we expected.

5. Conclusion

From our experience working with the Blocks World
program, as well as several other programs, we can affirm
that the major benefit given by the dynamic dependences
our tool handles is that precise information about a program
execution is recorded and visible, after execution, for exam-
ination: details about how execution was driven from one
expression to another, as well as about the values variables
had at any point of the program and how these values are
transmitted from point to point.

The different visualizations we propose were designed
to minimize the conceptual overload in order to allow users
to see the exact information they need, otherwise barely ac-
cessible in the database. Clearly, dynamic information is
of great help when working on problems like debugging,
verifying that a program works properly, or even optimiz-
ing, since it gives information only for one given execution,

when static dependences would give too much information.
On the other hand, the weakness of this approach is that

it requires enough knowledge from the user on the possi-
ble paths in the programs: verifying that a program behaves
properly means checking many possible executions, and the
user has to find which ones are necessary. However, our ap-
proach also makes possible to discover some unforseen ex-
ecution pathes, as static analysis would. Combining static
information with dynamic dependences is one of our main
perspectives. Two other perspectives are to extend our fil-
tering mechanism to global variables – when they are not
of interested at the same time, filtering out some would be
useful – and to develop a query language permitting us to
find, thus to jump to, parts of the execution corresponding
to given criteria.

References

[1] F. Balmas. Using dependence graphs as a support to document
programs. In Proceedings of the Workshop on Source Code
Analysis and Manipulation, Montreal, Canada, 2002.

[2] F. Balmas. Displaying dependence graphs: a hierarchical ap-
proach. Journal on Software Maintenance and Evolution: Re-
search and Practice, 16(3):151 – 185, May/June 2004.

[3] E. Koutsofios and S. North. Drawing graphs with dot. AT&T
Labs – Research, Murray Hill, NJ, March 1999.

[4] T. Winograd. Understanding Natural Language. Academic
Press, New York, 1972.

11

Aspect-Oriented Programming based Software Evolution with Microsoft .NET

Feng Chen and Hongji Yang

Software Technology Research Laboratory
De Montfort University, Leicester, UK

fengchen, hyang@dmu.ac.uk

 He Guo and Tianyang Liu
Computer ScienceDepartment

Dalian University of Technology, Dalian, China
guohe@dlut.edu.cn

Abstract
Software system evolution often requires adding new
general functions, which are distributed in many
components of the system. A normal method is to insert
code into every corresponding class, which is a trivial task.
It may also increase the risk of introducing errors and
destroy the structure of the system. In this paper, an
Aspect-Oriented Programming (AOP) based software
evolution approach with Microsoft .NET is introduced. By
utilising ‘Joinpoints’, the proposed approach can insert
new code into the evolving system without any
modifications to the existed class structures. A prototype
tool is developed for supporting the system evolution and
case studies are used for illustrating and testing the
proposed approach. Finally, a conclusion is drawn, which
shows that the proposed approach is feasible and
promising in its domain.
Keywords: Aspect-Oriented Programming, Software
Evolution, Microsoft .NET, Dynamic Weaving.

1. Introduction

A software system is often required to add new general

functions, which are distributed into many components of
the system, at the stage of maintenance. There are many
disadvantages if these functions are inserted into every
needed place directly: firstly, it is too complex to do so;
secondly, it may dramatically increase the risk of
introducing errors into the software system. If k out of m
modules are modified, the number of module interface
checks required, N, is N = (k*(m-k) + k*(k-1))/2, which
means that more testing needs to be done [11].
Furthermore, such an approach may destroy the structure
and the encapsulation of the system, which will lead to
‘tangled’ code. In this paper, an AOP-based software
evolution approach with Microsoft .NET is introduced. By
deploying ‘Joinpoints’, the proposed approach can insert
new code into the evolving system without any
modifications to the existed class structures.

The remainder of this paper is organised as follows:
Section 2 reviews characteristics of software evolution
and AOP. Section 3 proposes an approach to AOP based

software evolution with Microsoft .NET. In Section 4,
prototype tool is demonstrated. In Section 5, case studies
are used for illustrating and testing the approach. Finally,
conclusion is drawn and further research directions are
discussed.

2. Software Evolution and AOP

2.1 Characteristics of Software Evolution

Software evolution is defined as a kind of software

maintenance that takes place only when the initial
development was successful [1]. Much attention should be
paid to the following principles when a software system is
evolved:

• the evolved system should be reliable,
• the evolved system should be functional,
• the evolved system should be efficient, and
• the cost of the evolution should be acceptable.

2.2 AOP

In 1997, a new programming methodology, Aspect-

Oriented Programming [8], was proposed. The core
concept in AOP is the Joinpoint, which is first mentioned
in AspectJ and is a well-defined point in the execution of
a program-like method calls, loop beginnings and object
constructions [13]. AOP enables a programmer to
modularise common behaviours and encapsulate them in a
new component [4, 8], which can be coded and revised
independently and be injected into the existing component
code with a ‘weaver’ [7]. This kind of injection can be
either static or dynamic.

2.3 AOP Based Software Evolution

When a proposed evolution requires changes to more

than one module, it is said to be crosscutting evolution.
The need to address crosscutting evolution is crucial in
software product lines as a change can affect different
variants and branches [10]. The tasks of software
evolution involve both the analysis of the source code and

12

the injection of the new functions. Separating the aspects
of systems that perform different roles may have many
benefits for software development [14].

AOP supports evolution via crosscuts, which are sets of
events (method calls, exception raises, etc.) that are to be
intercepted, and Advice that is to be executed when these
events are activated. Crosscuts and Advice are integrated
into a static scoping device called an Aspect that allows
AOP programmers to conceptualise and integrate
otherwise scattered changes to a system. Both the Advice
and the crosscuts are language-specific mechanisms [3].

Recent studies on software evolution focus on dynamic
evolution in distributed and heterogeneous system.
Devanbu and Wohlstadter have proposed a multi-tiered,
eclectic approach, and the design of the evolution
specification language both draw from AOP languages [3,
2].

3. Proposed Approach

3.1 AOP with Microsoft .NET

As in Figure 1, Microsoft .NET uses the base-class

RealProxy as a delegation class. The Aspect functions will
be implemented separately in each Aspect class and the
instances of these classes will be linked in the message
chain during the run time. Each object in the message
chain transfers message to the next object by using
SyncProcessMessage function. An abstract class,
AspectAttribute, will be created as a base-class and all the
Aspect classes will be derived from this abstract base-
class.

All the messages, including constructor invocation,
will be captured by the Delegation. For the first time,
when the Delegation captures the message of constructor,
the instance of target class will be created, and then the
message chain can be constructed, in which the head node
is the Delegation and the last node is the instance of target
class. From this moment, all the messages will be
transferred to the target object along the message chain.

A class that can be bound to a Context is called a
context-bound class. A private Context object set up by
the Microsoft .NET for an instance of a context-bound
object provides the means for externally defined Aspects
to hook into the message chain, because the creation of

the private Context forces the creation of delegation class
[5]. If an attribute class is derived from ProxyAttribute
and used to decorate a context-bound class, then, the
CreateInstance event of the attribute class can be triggered
to construct the Delegation and establish the message
chain before the creation of the instance of target class.

3.2 Analysis Rules

Not all the classes in the system are suitable for

applying Aspect functions. Some rules are proposed to
analyse the system and help the maintainer to make a
better decision.

3.2.1 Rules for the Target Class Selection

Rule 1: Aspect functions can only be applied to a class
that can be derived from ContextBoundObject.

Using this rule, the class, which is derived from a
compiled class or COM object, cannot apply Aspect
functions.

Rule 2: Aspect functions can only be applied to a class
that has no recursive public member functions.

If there are recursive public member functions in the
target class, the invocation of these functions will lead to
too many checks in Delegation so that the system
efficiency will be unbearable.

3.2.2 Rules for Joinpoint Selection

Rule 3: If the public member function can be invoked
before the creation of the instance of target class, it
cannot be defined as a Joinpoint.

If a member function, e.g., a static function, can be
invoked before the creation of the instance of target class,
it means that this function can be invoked before the
creation of the Delegation, and accordingly, cannot be
defined as a Joinpoint.

3.2.3 Rules for Benefits and Efficiency

Assuming: m = the number of target classes; k = the
number of Joinpoints in one target class; l = the total line
number of the source code, which is used to invoke the
Aspect function; s = the total line number of the source
code of Aspect function; δ = the total line number of the
source code of Aspect base-class; the code conciseness
rate, Cr, can be computed as:

r = m k l sC
m s δ
× × +

+ +

m k l s× × + represents the tangled code sizes in non-
AOP-based implementation, m s δ+ + represents the
code sizes in AOP-based implementation.

Rule 4: Cr should be higher than 1.

(1)

Delegation

Target class

Function call
Function call return

Figure 1. Delegation Structure

RealProxy

Function call forward

13

Assuming: m = the number of target classes; Counti =
the number of public member functions of the ith target
class. It should be noticed that the public property will be
treated as a kind of special public member function; k =
the number of Joinpoints in one target class; the system
efficiency rate, Er, can be computed as:

1

1
r m

i
i

E
k Count

=

=
×∑

The value of denominator in formula (2) is the number
of additional checks after applying Aspect function.

Rule 5: If Er is smaller than the low limit, the system
efficiency cannot be accepted.

The low limit depends on the computer environment
and system configuration, which is still an estimative
value drawn from static analysis of source code and will
be different in varied applications.

4. Tool Support

Automation is one of the key goals of software

evolution. The prototype tool, EvoWeaver, is a semi-
automatic tool, which aims at helping software engineers
in a comprehensive process of the AOP-based software
evolution.

Figure 2. EvoWeaver Tool

Figure 2 shows the main window of EvoWeaver tool.

Treeview 1 shows all the classes in the evolving system.
Treeview 2 shows all the classes, which satisfy rule 1 and
rule 2. If a class in the Treeview 2 is selected, rule 3 will
be applied and all the properties and selected public
member functions of this class will be shown in Treeview 3.
After the target classes and Aspect functions are selected,
the code conciseness rate and the efficiency rate of the
evolving system can be calculated so that the maintainer
can evaluate whether the evolved system is acceptable.

5. Case Studies

5.1 Example I: SQL Verification

Figure 3 depicts an existing software system [6], which

needs to be evolved. The project is composed of one
control class and several entity classes. The control class,
DATAACCESS, is used to access the database system
and invoked by several entity classes with the same
method, e.g., SelectBySQL. A new task is required to add
SQL verification function into some entity classes so that
the SQL string can be verified before it is executed by
database system. If there are suspicious or illegal
characters in the SQL string, the operation will be
interrupted.

Figure 3. Class Diagram of SQL Verification

5.2 Example II: Event Logger

Event Logger is the function, which crosscuts all the

entity classes and has been frequently talked in AOP. An
Event Logger should track many elements, such as
operator, operation and operation time, which can be
gotten from the context in the event ‘doAfterOperation’,
and record them into a log file. Event Logger is used to
show the ability of continuous evolution with proposed
approach, which new function can be inserted into the
evolved system easily by adding the Logger attribute
behind other attributes, like ‘<Verify(),Logger()>’.

5.3 Result Analysis

Table 1 is a general analysis of above two cases. The

biggest benefit of AOP-based evolution is that the
encapsulation of the classes and the structure of the
system will not be destroyed and few interface checks
need to be undertaken. It also shows that AOP technique
can gain a positive outcome of concise code.

(2)

Treeview 1
Treeview 2

Treeview 3

Entity class

ExecLaw

Departement
OperationTime

+SelectAll
+SelectBySQL
+SaveInfo
+SaveBySQL

Interview

DATAACCESS

+DASelectAll
+DASelectBySQL
+DASaveInfo
+DASaveBySQL

…

Departement
OperationTime
+SelectAll
+SelectBySQL
+SaveInfo
+SaveBySQL

IsNew
IsDirty

Joinpoint

Entity class Control class

Entity class

14

Table 1: Performance Analysis
 SQL

Verification
Event

Logger
Number of target classes 39 64

Joinpoints in each target class 1 6
Code line number without AOP 408 1824

Code line number with AOP 296 295
Rate of code conciseness 1.38 6.18

Decrease of interface checks 38 363
Additional judgements 439 5380

Efficiency rate 0.0023 0.0002
Many factors will influence the efficiency of a system,

such as the number of Aspect classes, the number of the
target classes and the number of the public member
functions of each class.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

8 48 88 128
Number of target classes

Ef
fic

ie
nc

y
ra

te

k=1

k=3

k=5

k=7

Figure 4. Efficiency Rate as a Function of the

Number of Target Classes for Different k’s Value
Figure 4 shows the efficiency rate as a function of m,

the number of target classes, for various values of k. The
conclusions can be drawn as follows:

1) The number of target classes has great influence on
the system efficiency.

2) The efficiency rate decreases rapidly at first and
remains almost constant after the number of target classes
reaches 48.

3) When the number of Joinpoints (k in formula (2))
increases, the efficiency rate decreases rapidly.

6. Conclusions and Future Work

This study indicates that AOP technique is suitable for

system evolution if the crosscut concern needs to be
enhanced. New crosscut functions can be added to the
system without destroying the system structure and
encapsulation. With the proposed analysis rules, the
prototype tool can help to apply Asepct functions, and
evaluate the system benefits and efficiency.

Although a unified approach for AOP-based software
evolution with Microsoft .NET has been presented, there
are still issues to be addressed:

(1) Currently, the prototype tool can only analyse the
system programmed in VB.NET. It should be enhanced to
support more languages in .NET.

(2) The rules in EvoWeaver tool are still weak and
should be strengthened.

(3) The low limit of the efficiency rate is still a
empirically obtained value. Detailed rules should be given
for different applications to get more exact values.

(4) There is still no mechanism to show how the
system has been evolved and when the corresponding
Aspect action can be preformed, as UML diagram does.

Finally, the Microsoft .NET supports the possibility of
creating executing code at runtime, which is named as
Dynamic Compile [12]. How to utilise this technique to
build the Weaver and conquer the above disadvantages is
still under research.

References

[1] K. H. Bennett and V. T. Rajlich, “Software Maintenance and
Evolution: a Roadmap”, The Future of Software Engineering,
ACM Press, New York, USA, 2000, pp. 75–87.
[2] Y. Coady, G. Kiczales, M. Feeley and G. Smolyn, “Using
AspectC to Improve the Modularity of Path-Specific
Customization in Operating System Code”, 9th ACM SIGSOFT
international symposium, ACM Press, Vienna, Austria, 2001.
[3] P. Devanbu and E. Wohlstadter, “Evolution in Distributed
Heterogeneous Systems”, Workshop on Reflection, AOP and
Meta-Data for Software Evolution ,Oslo, Norway, June 2004.
[4] P. Fradet and M. Sudholt, “AOP: towards a Generic
Framework using Program Transformation and Analysis”,
International Workshop on Aspect-Oriented Programming at
ECOOP'98, Brussels, Belgium, July 1998.
[5] E. Garson, “Aspect-Oriented Programming in C#/..NET”,
Visual Systems Journal (VSJ), Bearpark, London, February 2004.
[6] H. Guo, F. Chen and Y. Wang, “A Reusable Software
Architecture Model for Manufactory Management Information
System”, 26th IEEE International Conference on Computer
Software and Application, Oxford, England, September 2002.
[7] G. Kiczales, E. Hilsdale, et al, “An Overview of AspectJ”,
European Conference on Object-Oriented Programming,
Budapest, Hungary, June 2001.
[8] G. Kiczales, J. Lamping, et al, “Aspect-Oriented
Programming”, Proceedings of ECOOP’97, Finland, June 1997.
[9] R. Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming, Manning Publications, Greenwich, USA, 2003.
[10] N. Loughran1, A. Rashid1, W. Zhang and S. Jarzabek,
“Supporting Product Line Evolution with Framed Aspects,
RAM-SE'04 ECOOP'2004 Workshop on Reflection, AOP and
Meta-Data for Software Evolution” ,Oslo, Norway, 2004.
[11] S. L. Pfleeger, Software Engineering; Theory and Practice
(2nd Edition), Pearson Education, USA, 1998.
[12] G. T. Sullivan, “Aspect-Oriented Programming Using
Reflection and Meta-Object Protocols”, Communications of the
ACM, 2001, Vol. 44, No. 10, pp. 95-97.
[13] D. Vollmann, “Visibility of Join-Points in AOP and
Implementation Languages”, Second Workshop on Aspect-
Oriented Software Development, Bonn, 2002, pp. 65-69.
[14] J. Zhao, H. Yang, L. Xiang and B. Xu, “Change Impact
Analysis to Support Architectural Evolution”, Journal of
Software Maintenance and Evolution: Research and
Practice, John Wiley & Sons, 2002, Vol. 14, pp. 317-333.

15

Requirements Engineering Challenges for Software Maintenance Projects in
Distributed Software Development Environments

Rodrigo Santos de Espindola, Azriel Majdenbaum, Jorge Luiz Nicolas Audy
Programa de Pós-Graduação em Ciência da Computação

Faculdade de Informática
Pontifícia Universidade Católica do Rio Grande do Sul
{respindola, audy}@inf.pucrs.br , azm57@hotmail.com

Abstract

The growing market of distributed software
development (DSD) creates new challenges for
software maintenance and evolution. This kind of
environment can increase the difficulties traditionally
found on software maintenance, particularly in those
ones that are related to Requirements Engineering
(RE). The goal of this paper is analyze the challenges
found on RE for software maintenance in DSD
environments. For this purpose, it was made a case
study on a multinational organization that uses DSD
for maintenance of your legacy systems. This case
study, of exploratory nature, made possible to identify
the main difficulties found in this context. This case
study, with exploratory nature, made possible to
identify the main difficulties found in this context. As
contribution for computer science, on software
engineering area, this paper presents an initial
proposal for the development of an approach for
requirements management that it made possible to
address the identified difficulties.

1. Introduction

The Software Engineering (SE) already has about
forty years, but many of its first products, software
systems developed in the decades of 60 and 70,
continue being used until today. These systems,
frequently called Legacy Systems, have high cost of
maintenance and even small changes can bring
problems for its maintainers [8].

Moreover, the development and the maintenance of
computer-based systems come facing several
difficulties in the last forty years. There are not a
simple explanation for this phenomenon, but several
studies point deficiencies in the systems requirements

as one of the main causes of failures on software
projects [2][3][4][5]. Such verifications have been
taking some authors to consider RE as one of most
important discipline of SE [6].

In software maintenance projects several factors
make the RE work more difficult, mainly the
requirements management process. In DSD, factors
like distance, communication and cultural differences
contribute to make deeper the difficulties inherent to
requirements management process, which acquires a
still more critical character. However, taking into
account the software maintenance importance and the
growing adoption of DSD, still there are few studies
about the impact they have on RE and, particularly, in
requirements management process.

2. Problem characterization

According [11], with the increase of the business
and with the changes on business process, several
systems information become improperly in terms of
capacity and functionality. These systems cannot be
simply retired, they need to be improved and integrated
to the organizational information infrastructure.

However, the lack of precision in the system
documentation or, in the worst case, the non-existence
of documentation and the original stakeholders
unavailability make the work expensive and hard. This
scenario is very common in practice, as pointed by
several authors [10][6][12][7][11].

Another important factor to be considered is that,
according [7], the RE is, usually, treated as an initial
phase on software development. However, as show up
by [7], the requirements knowledge requires a
continuous effort in progressive refinement of the
needs embedded in the organization business rules and

16

on accommodating the stakeholders’ needs, during all
the software life cycle.

The RE theoretical bases of this paper was the
works of [2], [3], [4], [5] and [6]. In software
maintenance was used the works of [6], [7], [8], [10],
[11] and [12]. It was not identified in the literature a
study with the same focus proposed in this paper. It
was found only related studies about RE in DSD where
the focus was on software development project instead
of software maintenance.

3. Case Study

The method used in this research was the case study,
adopted as proposed by [9]. The teams involved in two
software maintenance projects executed in a software
development center located in Brazil had participated
of this research. In project 1, both business analyst and
final users are located in the USA. In project 2,
business analyst and final users are located in a
Brazilian branch office of the organization, located in
another city.

With the accomplishment of the interviews and the
application of the technique of content analysis were
possible to identify the main difficulties found in the
RE when it is applied on software maintenance project
in DSD environments. Besides, it was possible relate
the difficulties found in both empirical and theoretical
studies.

After the analysis of the gotten answers and after the
discussion among researchers, had been defined the
following categories (Table 1):

Table 1. Identified difficulties
N°°°° Difficulty Frequency
1 Lack of adequate documentation 5
2 Lack of knowledge in the application 4
3 Lack of methodology or standard for

writing of requirements
4

4 Lack of planning 1
When questioned about the activities where these

difficulties had been found, the majority of the
respondents answered that the difficulties related to the
requirements appeared in all the activities of the
maintenance. Table 2 presents the identified
categories.

Table 2. Affected activities
Activities Frequency
All 5
Tests 2
Requirements Elicitation 1

The main difficulty pointed for the respondents, the
lack of adequate documentation, confirm the theory,

because diverse authors ([10] [11] [6] [12] [7]) point it
as the main difficulty found in projects of maintenance
of legacy systems. However, the DSD environment
used in the unit adds new elements to this difficulty,
because this situation also could be related to the
difficulty of access to the documentation, caused for
the geographic distribution between the team of
maintainers and the others stakeholders of the project.
Usually, the documentation used in projects developed
in this kind of environment is divided among several
distributed teams.

The lack of knowledge in the application, second
difficulty pointed for the respondents, reinforces the
theoretical study, once it is directly related to the
unavailability of the original stakeholders. Besides, in
DSD environments, factors as cultural and language
differences make difficult the process of application
knowledge transfer among the stakeholders
geographically distributed.

Another difficulty cited for the respondents was lack
of methodology or standard for writing of requirements
in maintenance projects. The requirements currently
are written in natural language, without the use of none
formal technique of specification.

Only one of the respondents pointed the lack of
planning as a difficulty faced in the RE. This
respondent believes that the problems could be
minimized if it had more planning to address to the
requirements and the modifications in the requirements.

3.1. Critical analysis of results

With the results of the case study it was possible to
get relevant information as much to the requirements
engineering process on software maintenance projects
in DSD environments and the main difficulties faced
for the respondents.

One important aspect observed during the study is
related to the requirements management process in the
maintenance projects. This difficulty is related in part
with the lack of proper documentation that allows the
recovery of the original requirements of the systems
submitted to the maintenance and the correct record of
the changes made in these requirements. Being the
difficulties relative to the documentation of the system
can be aggravated in DSD environment where the
projects are accomplished. Therefore that the
documentation containing the requirements of the
system exists, it can be in another site of development,
or writing in another language and context. It makes
difficult to maintain traceability information.
Moreover, in DSD the requirements need to be created
or updated in different sites, for different stakeholders.

17

Once more, the case study results had confirmed the
theory, showing the practices that bond requirements to
the project scope, instead of software product scope
that is being developed or maintained.

This approach leads to a fragmentation of the
requirements process and the requirements
specifications, such as illustrated for Figure 1. For each
project the requirements engineering process (R.E.) is
executed again, aiming at the creation of the
requirements document contemplating the needs for the
maintenance that must be executed. Soon after this the
requirements management process is executed (R.M.),
contemplating only the requirements changes occurred
in the project on this last created document. This
fragmentation of the requirements specifications
contributes for the difficulties of attainment of legacy
application knowledge, such as pointed by the
respondents.

Project X
(Development)

Project Y
(M aintenance)

Project Z
(M aintenance)

Product: Information System

Create Modify Enhance

Requirements
document

V 1.0

Requirements
document

V 2.0

Requirements
document

V 3.0

Software life cycle

Create Create Create

R.E. R.M. R.E. R.M. R.E. R.M.

R
eq

. P
ro

ce
ss

Fr

ag
m

en
ta

tio
n

Sp
ec

if
ic

at
io

n
Fr

ag
m

en
ta

tio
n

Figure 1. Fragmented requirement process.

In the bibliographical research accomplished,

relevant contributions had not been found in literature
that allows solving the difficulties identified in this case
study. The contributions that are more closed to the
context of this study are limited to the requirements
engineering process in DSD environments on software
development projects, lacking of mechanisms that deal
with the reality found in the legacy systems
maintenance.

4. Proposed approach

To contribute for the solution of the difficulties
explained in sections 2 and 3, this paper presents initial
proposal for development of an approach for
requirements management process for maintenance in

DSD. The basic idea behind of this proposal consists of
an integrated requirements management process that
prevents the fragmenting of the requirements
specifications.

In [5] it is presented an approach of RE focused on
software development projects where stakeholders are
co-located. The requirements management process
proposed here, aims at to adapt this approach for
creation of a requirements process for DSD that
contemplates the complete software life cycle, which
includes the software development and its evolution
throughout several maintenance projects. Figure 2
illustrates the integrated nature of the requirements
management process and the context where this is
inserted.

Requirements
repository

Project X
(Development)

Project Y
(M aintenance)

Project Z
(M aintenance)

Product: Information System

Create Modify Enhance

Create ChangeChange

Requirements
document

V 1.0

Requirements
document

V 2.0

Requirements
document

V 3.0

Extract ExtractExtract

Software life cycle

R.E. R.M. Recover Recover

Figure 2. Requirements process integrated to

the software life cycle.

In this approach, the requirements engineering
process continues being used in the beginning of the
product life cycle. The difference is in its objective.
Instead of creating the requirements document for each
project, this process aims at creates a requirements
repository for the software product.

This characteristic of the proposed approach aims to
change the requirements engineering focus to create
and maintain only one requirements specification
through all software product life cycle, independently
of the stakeholder’s location or the several maintenance
projects to be developed. This way, this work intends
eliminate the difficulties caused by adoption of

18

practices that bond the requirements to the project
scope, instead of software product scope that is being
developed or maintained, as presented in sections 2 and
3.

This work intends also to reduce the impact of
difficulties caused by the lack of original stakeholders
and the lack of application knowledge, as presented in
sections 2 and 3. This is due the fact that the
maintenance of a complete and updated requirements
specification can reduce the need of asking help to
alternative sources to recovery the information about
the original software requirements before each
maintenance project. This way, the maintainers can
obtain the necessary knowledge in original and current
application requirements before starting the
maintenance work.

Hence, the requirements repository is a key part of
this approach and can be implemented in a database
management system (DBMS) or using a tool
specialized on software requirements, such as
RequisitePro or DOORS.

After the requirements repository creation and the
initial baseline of requirements approval, the
requirements management process starts to be
executed. This process keeps the original purpose, that
is, to manage the software requirements changes. The
difference is that in this approach the process is not
restricted to the system development project, but
continues being executed throughout all the software
life cycle. With this approach it expects to maintain the
requirements specification up to date and to guarantee
a source of information that allows improving the
knowledge in the legacy system, thus addressing the
two main difficulties identified in both case study and
theory.

In addition, this process has an optional activity for
requirements recovery. This activity must be executed
when the legacy system not has a requirements
repository. In this case, reverse engineering and
requirements recovery techniques must be used, such as
AMBOLS [11] e CelLEST [1], for the creation of the
repository, being another point of flexibility of the
process. The inclusion of this activity aims at to
address to the difficulties caused for the typical
scenario of legacy systems maintenance, where it does
not exist proper documentation, as was already
presented in sections 2 and 3.

5. Final Considerations

The RE in DSD comes to stimulating increasing
interest in the academic community. However, relevant
studies about this subject are still not found in legacy

systems maintenance area. This is a context particularly
problematical to the RE, considering that the
difficulties usually found on software maintenance and
evolution areas tends to be aggravated when this work
must be done in a geographically distributed way.

As the main contribution this paper presents an
initial proposal for the development of an approach for
requirements management in DSD environments.
Finally, this study aims to contribute with practical
when taking care of an increasing organizational
demand for improvements in the RE processes, as well
as, for dealing with difficulties faced in the software
maintenance in DSD environments.

6. References

[1] El-Ramly, M., Stroulia, E., Sorenson, P. Recovering
Software Requirements from System-user Interaction Traces.
In Proc. SEKE’02, Ichia, Italy, July 2002, ACM, pp.447-
454.
[2] Standish Group. “CHAOS Report”. Captured in:
http://www.standishgroup.com , 1995.
[3] Sommerville, I., Sawyer, P. Requirements Engineering –
a good practice guide. John Wiley & Sons Ltd, New York,
1997.
[4] Leffingwell, D., Widrig, D. Managing Software
Requirements – A Unified Approach. Addison-Wesley.
2000.
[5] Kotonya, G., Sommerville, I. Requirements Engineering:
process and techniques. John Wiley & Sons Ltd, New York ,
1998.
[6] Pressman, R. S. Software Engineering: a practitioner’s
approach. McGraw Hill, New York, 5th ed., 2001.
[7] Zanlorenci, E. P., Burnett, R. C. “Abordagem de
Engenharia de Requisitos em Software Legado”. Workshop
em Engenharia de Requisitos, Piracicaba-SP, Brasil, 2003,
pp 270-284.
[8] Lucia, A., Fasolino, A. R., Pompella, E. “A Decisional
Framework for Legacy System Management”. International
Conference on Software Maintenance, 2001.
[9] Yin, R. Estudo de Caso: planejamento e métodos.
Bookman, São Paulo, 2001.
[10] Ebner, G., Kaindl, H., “Tracing All Around in
Reengineering”, IEEE Software, May 2002, pp.70-76.
[11] Liu, K., Alderson, A., Qureshi, Z., “Requirements
Recovery from Legacy Systems by Analysing and Modelling
Behaviour”. Proceedings of the International Conference on
Software Maintenance, 1999, IEEE Computer Society, Los
Alamitos, pp3-12.
[12] White, Stephanie M. “Capturing Requirements for
Legacy Systems”. Proceedings of the International
Symposium and Workshop on Systems Engineering of
Computer Based Systems, 1995. pp 251-256.

19

Automatic Detection of Bad Smells Using Software Metrics

Beatriz Florián
Universidad de los Andes

befloria@yahoo.com

Ángela Lozano
Universidad de los Andes

ang-loza@uniandes.edu.co

Silvia Takahashi
Universidad de los Andes

stakahas@uniandes.edu.co

Abstract

When dealing with the maintenance of legacy

software systems, we must start by fixing structural
problems with evolutionary and safe changes. These
initial changes are mere refactorings that do not
change the program’s functionality. However, we must
first detect the parts of the code that present problems
or bad smells, as they are commonly known. .

This paper deals with this detection problem. We
propose that certain metrics which can be computed
statically can be used to detect bad smells.

Keywords: Reengineering, maintenance, refactoring,
bad smells

1 Introduction

Refactoring is a technique used to enhance an
application’s maintainability by improving its internal
design and making the source code easier to
understand. Changes do not change the application’s
functionality. One of the most difficult issues in
refactoring is the identification of which parts of the
source code need refactoring.

This paper summarizes the results of Beatriz
Florian’s Master’s Thesis [11]. It is the first phase of a
larger project that aims to develop a methodology for
detecting bad smells.

The rest of this paper is organized as follows.
Section 2 gives a brief summary of the state of the art
in refactoring, particularly in what pertains to bad
smells. In Section 3, we describe the bad smells that we
studied in our research and outline and our approach
for automatically detecting them. In Section 5, we
describe how we tested our approach and we present
the results we obtained. Finally, Section 6 presents
some conclusions and directions for future research.

2 Background

The most well known is the work of Fowler [1] who

enumerates a set of patterns, called bad smells that may
represent a source code flaw. However, he
emphatically states that human intuition cannot be
replaced for detecting bad smells. Many other authors
have attempted to find ways to detect bad smells
automatically.

One of the most important contributions to the study
of bad smells is the taxonomy proposed by Wake [2].
This guided the development of the techniques that we
propose in this paper.

Other authors have attempted to define mechanisms
for detecting bad smells automatically. The most
significant papers on which we based our work were:
[3], [8], [7], [6], [10], and [4].

3 Detecting Bad Smells for Refactoring

We deal four of the groups of bad smells from
Wake’s taxonomy [2] (See Table 1).

Grupo Bad Smell Defined Implemented

Long Method � �
Large Class � �
Long
Parameter List

� � Measured
Smells

Comments �

Duplication
Duplicated
Code

�

Data Class � �
Data Clump Data
Primitive
Obsesión

Lazy Class �
Speculative
Generality

�
Unnecessary
Code

Temporary
Field

�

Table 1: Bad Smell Detection

One of the contributions of this paper is to present a

uniform structure to describe the approach for the
detection of each bad smell.

20

We propose a worksheet that should be completed
for each bad smell. The worksheet includes the
following information: Name, Description, Motivation,
Proposed strategies for detection, and Metrics used for
each strategy. If there is more than one strategy, then it
states which one is chosen. Finally, the criteria, which
will indicate whether or not the bad smell is present,
must be described. The rationale used to choose the
strategy and the criteria used to determine whether or
not a bad smell is present is also included.

The rest of this section includes the worksheets for
some of the bad smells we studied.

3.1 Large Class

Description: Large classes that attempt to carry out too
many tasks or that have many attributes. Large classes
usually have a many attributes or methods.
Maintenance is difficult. Program understanding is also
affected.
Motivation: Improve maintainability and
understanding.
Strategies and Metrics:

Strategy Metrics
Detect classes that have
many methods and
attributes.

• Number of Fields (NOF),
• Number of Methods

(NOM)
Measure the cohesion of a

class.
• Lack of Cohesion

Methods (LCOM)
Determine the weight of a

class in terms of the
weight of its methods.

• Number of Methods
(NOM),

• Weighted Methods/Class
(WMC).

First we detect classes that
depend strongly on light
classes without
considering small
cohesive classes [8].

• Access Of Foreign Data
(AOFD),

• Weighted Method Count
(WMC),

• Tight Class Cohesion
(TCC).

Table 2: Strategies and Metrics for Large Class

Selected Strategy: We chose the third option.
Criteria: WMC > 10*NOM.
Rationale: Use WMC to measure a class’ complexity.
This metric will also be used to determine if a class has
too much responsibility. The accepted range for CC is
between 1 y 10 (see[10]). If WMC is determined using
CC, the sum of complexities for WMC, should be less
than 10 times the number of methods in the class. If the
average of the complexities of the methods is greater
than 10, the class has many alternate paths and can be
perceived as a large class.

3.2 Long Method

Description: A very long method which is difficult to
understand, to change, and to extend.
Motivation: Long methods can be decomposed to
improve clarity and ease maintenance.
Strategies and Metrics:

Strategy Metrics
Detect an excessive
number of statements
and temporal values in
a method.

• (lLOC): Number of
Statements

• (NOTM): Number Of
Temporal values of
Method

Measure number of
statements and also the
complexity.

• (lLOC) Number of
Statements

• (VG) McCabe´s
Cyclomatic Complexity

Measure complexity
using the weight of a
class’ methods.

(WMC) Weighted Method
Count

Table 3: Strategies and Metrics for Long Method

Selected Strategy: We chose option 2.
Criteria: ((VG > 10) && (lLOC > 20)).
Rationale: Though option 3 also measures method
complexity, option 2 also considers the number of
declarations; we feel that option 2 is better. Option 2 is
also better than option 1 because it measures
complexity instead of temporary values. To determine
the criteria we used the following rationale: Both
metrics should be above the accepted values defined in
[10].

3.3 Long Parameter List

Description: Long parameter lists often make methods
difficult to understand. It may indicate that classes are
not well defined.
Motivation: This problem can be fixed by
encapsulating various parameters in one class. By
doing this, the overall design of the application can be
improved. By reducing long parameter lists, we obtain
methods that can be understood and maintained easily.
Strategies: In this case, we propose only one strategy
with its corresponding metric and criteria. Many
authors only consider the number of parameters as an
isolated value. In fact, some authors (see [10]) have
determined that the number of parameters should be no
more that four. We do not believe that the number of
parameters is enough. We must relate it to the number
of statements in the method.

21

Metrics: To implement the option, we need two
metrics: number of parameters (PAR) and number of
statements (ILOC).
Criteria and rationale: When (PAR > (0.2) ILOC),
the bad smell should be detected. Though 20%, was
determined intuitively, in the testing phase we were
able to compare it with other values and confirmed that
it provided a high level of accuracy.

3.4 Data Class

Description: Classes that only contain data with no
logic other than methods to get values and modify
attributes.
Motivation: Program Understanding.
Strategy: Find light classes that provide few services
and only have sets and gets. In Java programs,
declaring public fields is also a bad smell [8].
Metrics:

• (WOC): Weight of a classs
• (NOPA): Number of public attributes
• (NOAM): Number of accessing methods
• (NOM): Number of methods

Criteria:
(WOC < 2/3) ∨ (NOAM > 2/3NOM) ∨ (NOPA < 2/3NOM)
Rationale: The first two conditions set a limit on the
percentage of getters and setters in comparison to the
other methods. The third condition is used to determine
the presence of public fields.

3.5 Speculative Generality

Description: Many times programmers include code
that may be used in a later time. There are methods,
attributes, or parameters that are not being used.
Motivation: Code like this is often difficult to
understand. By removing unused variables and
methods we improve the code’s overall structure.
Strategy: Detect unused methods and attributes. Detect
abstract methods that are not defined.
Metrics:

• (UNV): Unused variables
• Unused Method
• Unused Parameter
• Abstract method not implemented

Criteria: In this case, we decided to be very strict. If
any of the metrics is greater than zero, we detect the
bad smell.

3.6 Lazy Class

Description: A class that does not have much
responsibility. Many times its methods can be included
in another class.
Motivation: By removing lazy classes we can improve
program understanding.
Strategy: Find light cohesive classes.
Metrics:

• (WMC): Weighted Method Count
• (TCC): Tight Class Cohesion
• (NOM): Number of Methods

Criteria:
((WMC < NOM*2) ∨ (TCC > (0.2)(NOM/2))).

Rationale: The first condition indicates that the sum
of complexity is low because, in average, it is less than
two paths per method. The second condition indicates
that the number of methods that are directly connected
is greater than 20%.

3.7 Comments

Description: Though uncommented code clearly is a
bad software practice, comments can also be used to
compensate for a defective software structure.

Motivation: By eliminating unnecessary comments
where these indicate design errors, the overall structure
of the application can be improved.

Strategies, metrics and criteria: In this case, we also
propose only one strategy: we detect the percentage of
comments in the code. There is a metric for this
purpose: comment percentage (CP). In [10], it states
that an appropriate value for this metric is 30%. We use
the same criteria.

3.8 Duplication

Description: This is one of the worst smells. It occurs
when the same code structure appears many times
throughout the code. This duplication can be syntactic
or semantic. It is easier to detect when it is syntactic
duplication.

Motivation: Improve software understanding and
maintainability. Many times when we have duplicated
code and it has to be modified, it will have to be
modified everywhere it appears.

Strategies, metrics and criteria: We propose only one
strategy: use the abstract syntax tree to detect syntactic
duplication. We propose to carry out this analysis by

22

phases: within the same method; among methods of the
same class and finally among methods of the same
class hierarchy. There is no metric for this purpose, so
we propose a new one: percentage of duplicated code
in a class. Since this one of the worst patters of bad
software coding we believe that only 10% duplication
should be allowed. We did not implement this strategy
because of time constraints. Therefore, we cannot be
sure whether or not the 10% value is adequate.

4 Tests and Results

We developed an Eclipse plug-in that obtained data

from other tools that compute metrics ([12], [13]).
To test our technique we chose a large application

[9]. This application has 14 packages and 70 classes.
We used our tool to detect bad smells and compared it
to results obtained by two programmers. When
evaluating methods we studied 176 methods from 10
different classes. The tables below show the results we
obtained. In Table 4, we show the number of bad
smells detected by our tool and the ones detected by at
least one of the human subjects. Table 5 shows the
percentage number of matches (where both the human
subjects and the detection tool detected the bad smell);
false positives (where a bad smell was detected by the
tool but not by the human subject); and false negatives
(detected by the human subject, but not the tool).

Bad Smell Human

Detection
Automatic
Detection

Large Class 22 26
Long Method 7 6
Long Parameter List 4 4
Data Class 6 8

Table 4: Human vs Automatic Bad Smell Detection

Bad Smell Matches False
Positives

False
Negatives

Large Class 50.00% 31.25% 18.75%
Long Method 44.44% 22.22% 33.33%
Long Parameter List 60.00% 20.00% 20.00%
Data Class 75.00% 25.00% 0.00%

Table 5: Matches, False Positives and False Negatives
Percentiles

 We can see that there is a high incidence of

matches for all the bad smells we studied which seem
to suggest that automatic detection can compete with
human intuition. The false positives can be due to the
fact that the human subjects incorrectly missed the bad
smell. We need to incorporate more human test
subjects for our future research. These values are
acceptable for the bad smells Data Class and Long
Parameter List.

5 Conclusions and Future Research

This paper summarized the results of a research
project in which techniques for detecting some of the
well-known bad smells using metrics were designed,
developed and tested. In comparison with the work of
other authors, our proposal addresses more bad smells
and it is one of the few ones that deal specifically with
Java code.

Future research should deal with the detection of all
the bad smells that were described in this project. This,
of course, leads to the characterization and
implementation of detection strategies for other bad
smells. The tool should allow the user to change the
criteria so that it can be adjusted according to the
results.

6 References

[1] M. Fowler. “Refactoring: Improving the Design of

Existing Code”. Addison-Wesley, 1999
[2] W. C., Wake. “Refactoring Workbook”. Addison-

Wesley, August 2003
[3] F. Muñoz Bravo. “A Logic Meta-Programming

Framework for Supporting the Refactoring Process”.
Thesis of Master of Science in Computer Science,
University of Brussel. 2003.

[4] S. Ducasse, M. Rieger, and S. Demeyer, “A Language
Independent Approach for Detecting Duplicated Code,”
International Conf. Software Maintenance, pp. 109-118,
1999.

[5] T. Tourwé, T. Mens, “Identifying Refactoring
Opportunities Using Logia Meta Programming”. Proc.
European conf. Sortware Maintenance and Reeng., pp.
91-100, 2003.

[6] E. Van Emden and L. Moonen, “Java Quality Assurance
by Detecting Code Smells”. Proc. Working Conf.
Reverse Eng., pp. 97-108, 2002.

[7] F. Simmon, F. Steinbrückner, and C. Lewerentz,
“Metrics Based Refactoring”. Proc. European Conf.
Software Maintenance an Reeng., pp. 30-38, 2001

[8] R. Marinescu. “Detecting Desing Flaws Via Metrics In
Object Oriented Systems”.

[9] Fernando Solano Donado,
http://bcds.eia.udg.edu.es/fsolanod Universidad de
Girona, 2004

[10] http://www.refactorit.com/?id=29605. Metrics Table
and References.

[11] Beatriz Florian, Detección de Bad Smells en
Aplicaciones JAVA Utilizando Métricas de Software,
Master’s Thesis, Universidad de los Andes, Bogotá,
Colombia, 2005.

[12] http://www.teaminabox.co.uk/downloads/metrics/versio
ns.html TEAMINABOX Eclipse Metrics Plugin

[13] http://www.sourceforge.net/projects/metrics. Source
Forge Eclipse Metrics Plugin

23

REGoLive: Adding Web Site Comprehension to Adobe GoLive

Grace Gui, Holger M. Kienle, and Hausi A. Müller
Computer Science Department
University of Victoria, Canada

{gracegui,kienle,hausi}@cs.uvic.ca

Abstract

This paper describes a demonstration of the REGoLive
reverse engineering tool. REGoLive extends Adobe GoLive
with sophisticated reverse engineering functionality for Web
site comprehension. This functionality was realized via pro-
grammatic customization of GoLive with JavaScript, and
the use of Web services to communicate with our SVG graph
visualization engine. The paper explains how we imple-
mented REGoLive, and addresses why leveraging of pop-
ular off-the-shelf components such as GoLive has a number
of potential benefits from the user’s perspective.

1. Introduction

The reverse engineering and program comprehension
community has developed many tools to understand bet-
ter complex software systems. Nowadays, many Web sites
are in fact highly complex software systems [6]. This
has caused the emergence of Web site reverse engineering,
which proposes to apply reverse engineering approaches to
the domain of Web sites. There are a number of research
tools that help Web site comprehension (e.g., [9] [8] [2]).

Traditionally, program comprehension functionality is
implemented with stand-alone tools. As a result, software
engineers typically have to switch between various tools
during comprehension activities. Each of these tools has its
own idiosyncratic user interface and interaction paradigm,
causing an unfavorable learning curve. As a result, many
program comprehension tools fail to be adopted. Software
engineering activities that involve program comprehension
(e.g., maintenance) require the use of forward engineering
tools (e.g., compilers) as well as reverse engineering tools
(e.g., class hierarchy visualizers). Thus, extending forward
engineering tools such as IDEs (e.g., Eclipse) or Web au-
thoring tools (e.g., GoLive) by seamlessly adding program
comprehension functionality helps software engineers and
improves the adoption of comprehension functionality [5].
REGoLive is an example of an adoption-centric tool devel-

opment approach that leverages an existing popular Web au-
thoring tool, GoLive, by grafting functionality for Web site
comprehension on top.

2. GoLive

We chose to use GoLive as host product for our tool im-
plementation because of its popularity, maturity, and exten-
sive customization support. GoLive is a mature product that
has evolved through several major releases; currently we are
using Version 6.0.

GoLive already provides rudimentary support for Web
site comprehension activities for redocumentation, program
analysis, data gathering, knowledge management, and in-
formation exploration. Information in GoLive is presented
to the user with views. There are a large number of views,
showing various properties of the Web site. The Files view
lists the files (e.g., pages, images, and scripts) belonging to
a Web site. Some views focus on a single page (e.g., Source
Code Editor and Layout Preview), while others show re-
lationships between pages (e.g., In & Out Links and Nav-
igation). Whereas GoLive offers information exploration
with views, it has no graph visualization, which is the pre-
ferred visualization of most program comprehension tools.
As a result, information in GoLive is dispersed over several
views. However, it would be desirable to have a comple-
mentary graph visualization providing a unified view of a
Web site, and allowing sophisticated manipulations such as
building of hierarchies.

The GoLive Extend Script Software Developer’s Kit
(SDK) enables programmatic customization via so-called
Extend Scripts. The SDK provides numerous JavaScript
objects and methods to programmatically manipulate files
and folders as well as the contents of documents written
in HTML, XML, JSP, etc. The document content that has
been read into memory is made available in GoLive through
a Document Object Model (DOM), which allows to query
and to manipulate markup elements. Thus, batch processing
of changes to an entire Web site can be easily accomplished.

24

3. REGoLive

Program comprehension tools are usually handcrafted
and stand-alone. Our tool-building approach for REGoLive
is different, because we are leveraging an existing prod-
uct and augmenting it with program comprehension func-
tionality. When doing this, we can take advantage of the
(program comprehension) functionality already offered by
the host product, focusing on the missing pieces. As a re-
sult, GoLive users engaged in program comprehension can
seamlessly transition back and forth between GoLive and
REGoLive functionality.

Figure 1. Architecture of REGoLive

The architecture of the REGoLive tool is depicted in
Figure 1. REGoLive allows the reverse engineer to com-
prehend a Web site with three distinct viewpoints [1]: the
developer view, which shows the Web site as a developer
sees it (by using a Web authoring tool such as GoLive); the
server view, which is the result of telling the Web authoring
tool to deploy the site on a Web server; and the client view,
which represents the Web site as a user sees it (by using a
Web browser).

In order to support the three viewpoints, different fact
extractors for each view had to be written. The developer-
view extractor retrieves information that is provided by Go-
Live about the currently loaded Web site (cf. left tree-view
in Figure 3). The artifacts in the developer view include
files (such as Web pages, CSS files, and JSPs) as well as
tool-specific objects (such as templates and smart objects).
The server-view and client-view extractors work on their re-
spective viewpoints, extracting similar artifacts. All extrac-

tors are implemented as extensions to GoLive and written
in JavaScript.

The extractors write the extracted facts into a repository,
which is currently implemented as a flat file in GXL format
[3]. Then data analysis constructs the mappings between
different views. These mappings show how artifacts in one
view are related to artifacts in other views.

The visualization engine presents the result of the data
analysis to the reverse engineer. Figure 2 shows a screen-
shot of the developer view of a Web site. Artifacts are vi-
sualized as nodes in a graph editor (e.g., blue nodes rep-
resent HTML pages while yellow nodes represent GoLive
templates). Relationships between artifacts are shown as
arcs between nodes (e.g., a yellow arc from a blue node
to a yellow node indicates that a HTML page makes use
of a template). The graph is rendered with Scalable Vec-
tor Graphics (SVG) [7] in a Web browser. We currently
use Adobe’s SVG viewer to render the SVG in Internet
Explorer. The SVG graph editor allows interactive explo-
ration of the graph, including moving of nodes, filtering of
arcs and nodes, searching, and applying graph layouts. The
graph editor has been implemented in JavaScript and is a
separate component that can be customized for different do-
mains [4]. Control integration between REGoLive and the
SVG graph editor is achieved via Web services, which al-
low us to send messages between the two components. For
example, selecting a graph node in SVG sends a message to
GoLive to select the corresponding entities in the views.

Figure 3. REGoLive adds a drop-down menu
to GoLive to access the viewpoints of the cur-
rently active Web site

A reverse engineer can call up the different views from
an extra pull-down menu (“RE Tool”) in GoLive. Figure 3
shows a screenshot of the added menu. It is also possible to

25

Figure 2. REGoLive’s developer view

navigate from nodes shown in the SVG graph editor to the
corresponding artifacts in GoLive (and vice versa).

REGoLive can be seen as a proof-of-concept of our tool-
building approach, which strives to make reverse engineer-
ing tools more adoptable by building new program com-
prehension functionality on top of existing, popular off-the-
shelf products.

Acknowledgments

This work has been supported by the IBM Toronto Cen-
ter for Advanced Studies (CAS), the Natural Sciences and
Engineering Research Council of Canada (NSERC), and the
Consortium for Software Engineering (CSER).

References

[1] G. Gui, H. M. Kienle, and H. A. Müller. REGoLive: Web
site comprehension with viewpoints. 13th IEEE International
Workhop on Program Comprehension (IWPC’05), May 2005.

[2] A. E. Hassan and R. C. Holt. Towards a better understanding
of web applications. 3rd International Workshop on Web Site
Evolution (WSE 2001), pages 112–116, Nov. 2001.

[3] R. C. Holt, A. Winter, and A. Schürr. GXL: Towards a stan-
dard exchange format. Seventh Working Conference on Re-
verse Engineering (WCRE ’00), pages 162–171, Nov. 2000.

[4] H. M. Kienle, A. Weber, and H. A. Müller. Leveraging SVG
in the Rigi reverse engineering tool. SVG Open / Carto.net
Developers Conference, July 2002.

[5] H. A. Müller, A. Weber, and K. Wong. Leveraging cogni-
tive support and modern platforms for adoption-centric re-
verse engineering (ACRE). 3rd International Workshop on
Adoption-Centric Software Engineering (ACSE 2003), pages
30–35, May 2003.

[6] J. Offutt. Quality attributes of web software applications.
IEEE Software, 19(2):25–32, Mar./Apr. 2002.

[7] A. Quint. Scalable vector graphics. IEEE MultiMedia,
10(3):99–101, July–Sept. 2003.

[8] F. Ricca and P. Tonella. Web site analysis: Structure and evo-
lution. International Conference on Software Maintenance
(ICSM ’00), pages 76–86, Oct. 2000.

[9] P. Warren, C. Boldyreff, and M. Munro. The evolution of
websites. 7th International Workshop on Program Compre-
hension (IWPC ’99), pages 178–185, 1999.

26

Using Program Slicing Metrics to Predict the Maintenance of Software

Tracy Hall and Paul Wernick

Systems and Software Group, School of Computer Science
University of Hertfordshire

College Lane, Hatfield, Hertfordshire AL10 9AB, England
tel. ++1707 286323/284782; fax ++1707 284303

{t.hall, p.d.wernick}@herts.ac.uk

Abstract

Previous research has identified a number of
metrics derived from program slicing. In this paper we
discuss how these metrics relate to the effort required
to maintain an existing software-based system. Whilst
our interest in this work stems from our development
of simulation models of long-term software
maintenance processes, it will also be directly relevant
to the managers of software maintenance activities.

Keywords: software maintainability, program

slicing, metrics, simulation

1. Introduction

In this paper we investigate how program slicing
metric data can be used to measure the maintainability
of software systems. We suggest that values for
program slicing-based metrics, used in combination
with size data, can assist in the prediction of the
maintainability of systems over time. This extends our
work on modelling and predicting long-term software
maintenance trends [7].

Historically measuring maintainability has been
performed rather unsatisfactorily. There are currently
no generally accepted measures for the maintainability
of systems. There has been little input from any
underlying theory of software maintenance in the
derivation of current metrics which would allow them
to be related to the actual maintainability of a software
system.

In our previous work we have simulated the long-
term maintenance of software systems using system
dynamics [7]. In this work, we found that the difficulty
of quantifying the maintainability of a system at any

particular time, and changes in that value over time,
became a major issue. The lack of metrics which can
plausibly reflect the ease or difficulty in maintaining
an existing software system made that part of our
simulation difficult to quantify. As a result, we found
it difficult to predict with confidence the impact of a
process change on the long-term maintenance of a
system.

In order to capture the effect of the existing
system on further changes to it, we have developed the
notion of ‘inertia’. We define inertia as an indirect
measure of maintainability which has two dimensions:
change (usually growth) in the size of the system as it
is evolved, and change to the structure and code of the
system as it is maintained. Growth in system size may
make the system correspondingly more difficult to
maintain. However, size alone does not capture the
full richness of inertia, since two systems of equal size
may not be equally maintainable.

Meyers and Binkley’s work [3] on program
slicing-based metrics provides a possible approach to
addressing this issue. Meyers and Binkley have
conducted longitudinal studies into the behaviour of a
number of the metrics described by Weiser [8] and by
Ott and Thuss [5]. The use of slicing-based metrics
has been proposed previously to focus maintenance
interventions and direct re-engineering effort. In this
paper we describe an alternative application of slicing
data, in which we use these metrics to help quantify
the maintainability of software systems, rather than
using them as an aid in re-engineering systems.

This paper addresses two research questions:
1. Are slice-based measures a viable approach to

generating data whose values and trends characterise
maintainability?

27

2. Can maintainability data contribute to
predicting the long-term maintenance of software
systems?

2. Slicing Metrics

Program slicing was first proposed by Weiser [8,
9] as a technique to assist in debugging programs. The
idea emerged in response to Weiser’s observations on
how experienced debuggers find faults in programs. In
its simplest form program slicing identifies all parts of
a program that are related to a given statement. This
means that all statements that do not affect a particular
variable at a specific point in the program are
removed. The resulting partial program is referred to
as a ‘program slice’.

A number of metrics have been proposed to
describe the program slices which can be identified for
a system. Slicing-based metrics were first described by
Weiser [8] and then extended in the early 1990s by Ott
and Thuss [5], in order to characterise the slices which
they obtained. Metrics originally proposed by Weiser
[8] are described in Table 1. Two further metrics
proposed by Ott and Thuss [5] are presented in Table
2.

More recently, tools have become available which
allow the collection of larger-scale slicing data.
Meyers and Binkley were the first to collect and
analyse such larger-scale data [3]. However the
potential for using slicing data in relation to
subsequent releases of systems has long been
recognised. Ott and Thuss [4] suggested the need for
such work.

Table 1. Slicing-based metrics proposed by Weiser [8]

Metric Description

Coverage Compares the length of slices to the length of the entire program. Coverage might be expressed as the ratio
of mean slice length to program length. A low coverage value, indicating a long program with many short
slices, may indicate a program which has several distinct conceptual purposes.

Overlap Is a measure of how many statements in a slice are found only in that slice. This could be computed as the
mean of the ratios of non-unique to unique statements in each slice. A high overlap might indicate very
interdependent code.

Clustering Reveals the degree to which slices are reflected in the original code layout. It could be expressed as the
mean of the ratio of statements formerly adjacent to total statements in each slice. A low cluster value
indicates slices intertwined like spaghetti, while a high cluster value indicates slices physically reflected in
the code by statement grouping.

Parallelism Is the number of slices which have few statements in common. Parallelism could be computed as the
number of slices which have a pair wise overlap less than a certain threshold. A high degree of parallelism
would suggest that assigning a processor to execute each slice in parallel could give a significant program
speed-up.

Tightness Measures the number of statements which are in every slice, expressed as a ratio over the total program
length. The presence of relatively high tightness might indicate that all the slices in a subroutine really
belonged together because they all shared certain activities.

Table 2. Slicing-based metrics proposed by Ott and Thuss [5]

Metric Description

MaxCoverage Is the length of the longest slice as a proportion of the program length

MinCoverage Is the length of the shortest slice as a proportion of the program length

3. Inertia and maintainability

We propose the concept of Inertia as a means to
characterise the maintainability of a system. It consists

of two components, the system size and a measure of
the ease or difficulty in changing the system due to its
structure and code. Previous work [1, 2] confirms that
over the long term systems tend to grow in size, and
that as they grow they become correspondingly more

28

difficult to maintain. This is not only because larger
systems are likely to be more difficult and costly to
maintain than smaller, but also because changes made
to software systems over time tend to degrade its
structure and makes it less maintainable unless work is
performed to counteract this. To model quantitatively
how easy a system will be to maintain over time, it is
important to account for both changes in its size and
changes in its structure. Therefore any single
quantitative measure of inertia must take account of
both of these dimensions.

In our existing simulation models we have used
Turski’s characterisation of software system growth
[6] as the basis for our measure of the effect of
changes in the system on the ease of making further
changes to it. Turski’s calculation, based purely on the
physical size of systems, does not directly address the
maintainability of the system. In particular, it does not
account for issues of system structure and code
quality.

In this work we are attempting to capture more of
the phenomenon of inertia than Turski’s simple
abstraction. Program slicing examines and quantifies
the internal linkages of the system which make
maintenance of one part of a system, without
consideration of the rest of it, problematical. Slicing
metrics are therefore a good candidate for our purpose.

4. Applying slice-based metrics to inertia

In this section we describe how some of Weiser’s
[8] and Ott and Thuss’ [5] slice-based metrics may be
related to the effort needed to maintain a software
system. Specifically, we consider the relationship of
each metric to the difficulty of making changes to an
existing system. In effect, we relate the metric to our
notion of the ‘inertia’ of that system.
• Coverage: the existence of many short slices may

indicate a system whose structure has been
compromised over time by repeated cycles of
changes. We conclude that lower coverage
implies greater inertia, as more of the code of the
system needs to be examined when changing it,
i.e. an inverse correlation may be expected
between coverage and inertia.

• Overlap: higher values of overlap mean that
individual elements of code are reused in different
traces through the program. Thus, when
maintaining the system, if a code fragment is
identified as needing change, each instance of use
of that fragment will need to be located, examined
and possibly replicated if the desired modification

does not relate to it. Overall, a direct correlation
may be expected between overlap and inertia.

• Clustering: lower clustering means higher inertia,
because understanding and modifying less well-
structured and more mutually interdependent code
is likely to be more difficult. This is because the
code will be more difficult to understand before
changes can be designed. This will lead to greater
expenditure of effort and a greater risk of errors
being made in the design and implementation of
changes. We therefore expect clustering to exhibit
an inverse correlation with inertia.

• Parallelism: this may indicate that areas of
functionality are well-separated in the design and
the code. If this is the case, maintenance changes
which respect the existing division of the problem
can be made more easily. Therefore, we expect
systems exhibiting high parallelism to be more
easily evolvable, i.e. the relationship between
parallelism and inertia is inverse.

• Tightness: this is related to the cohesiveness of
the code. As in the case of parallelism, the benefit
of more cohesive code can only be exploited if
changes which have to be made to a system
follow the assumptions implicit in the division of
the system functions. In this case, we suggest that
it is less likely that a code unit which is truly
cohesive will need to be broken up due to the
need for system maintenance in unexpected
directions than is the case for the higher-level
design decomposition measured by parallelism.
Thus, there may be fewer changes needed overall
if the common version can be evolved so as to
continue to suit all of its uses. We suggest that
code exhibiting high tightness is more likely to be
easily evolvable than code with lower tightness.

• MaxCoverage: the higher this value, the longer
the maximum path length a developer will need to
understand in order to be able to appreciate the
effect of any change on it and thus evolve the
program safely. A high value may also reflect the
existence of large blocks of structured code,
which is more likely to cause the developer to
need to break them up with consequent reworking
of code inside a block and the design of new
control structures. This metric will therefore be
expected to have a direct correlation with inertia.

• MinCoverage: a high value for MinCoverage,
reflecting a comparatively long ‘shortest slice’,
will be subject to the same problems as those for a
high value for MaxCoverage. Conversely, a low
value for MinCoverage will mean that at least

29

some maintenance changes to the software may
be localised to comparatively short traces through
the code. We therefore expect MinCoverage also
to be directly correlated to inertia.

In quantifying the maintainability of a system

over time, it may be necessary to select, average,
weight and/or total some or all of these measures on
the basis of an examination of their trends.

Our conclusions concerning the relationships
between these metrics should be seen in the context of
Meyers’ and Binkley’s [3] empirical findings. Meyers
and Binkley examined, inter alia, correlations between
slicing metrics obtained for a number of open-source
systems. They found strong correlations between
Tightness and MinCoverage and between Tightness
and Overlap, and statistically weak correlations
between Tightness and Coverage, and MinCoverage
and Coverage. They also concluded that Overlap was
not correlated to either Coverage or MaxCoverage.
They did not consider Clustering and Parallelism.
With the exception of our opinion that there is an
inverse relationship between Coverage and the other
metrics, their results provide some practical support
for our arguments.

Their results further suggest that as the size of
systems grow, and as they grow older, the
deterioration in structure becomes proportionally
greater, which lends support to our belief that there is
a relationship between trends in slicing metrics and the
maintainability of systems, and that slicing metrics can
therefore be used as one of the inputs to the
calculation of inertia.

5. Conclusions and future work

We have shown that slice-based metrics are a
promising way to measure the maintainability of
software systems. We have integrated slice-based data
with size data to propose inertia as a single, indirect
measure of the maintainability of software systems.
We expect this measure of inertia in our system
dynamics models to improve the predictions of the
long-term maintenance of software systems made by
these models.

To answer our initial research questions:
1. Are slice-based measures a viable approach to

generating data whose values and trends characterise
maintainability? Although the work we present here is
preliminary, our findings are promising. Slice-based
measures look to be a convincing approach to
characterising maintainability. Our re-interpretation of

Meyers and Binkley’s [3] findings suggests that these
metrics will assist in measuring maintainability.

The work we present here is theoretical and we
will be able to test our answer to this question more
fully once we have collected empirical slicing-based
metrics data and recalibrated our models. This will
extend further the work already done by Meyers and
Binkley [3].

2. Can maintainability data contribute to
predicting the long-term maintenance of software
systems? Again our preliminary results are promising.
The addition of maintainability data into our system
dynamics models should generate more realistic
simulations. This means that our work simulating the
long-term maintenance of software systems will be
capable of being applied with greater confidence to the
investigation of the impact of process change on long-
term software maintenance.

References

[1] Chatters BW, Lehman MM, Ramil JF, Wernick P,
“Modelling A Software Evolution Process”, Software
Process: Improvement and Practice, 5, 2000, pp.91–102.

[2] Lehman MM, Perry DE, Ramil JF, Turski WM and
Wernick PD, “Metrics and Laws of Software Evolution -
The Nineties View”, Proc. Metrics '97 Albuquerque, NM,
5–7 Nov, 1997.

[3] Meyers TM and Binkley D, “Slice-Based Cohesion
Metrics and Software Intervention”, Proc. IEEE 11th
Working Conference on Reverse Engineering, Delft,
Netherlands 9–12 Nov 2004.

[4] Ott L and Thuss J, “The relationship between slices and
module cohesion.”, Proc. ICSE 1989, Pittsburgh,
Pennsylvania, 1989, pp.198–204.

[5] Ott L and Thuss J, “Slice based metrics for estimating
cohesion”, Proc. First International Software Metrics
Symposium, Baltimore, MD, May 1993, pp.71–81.

[6] Turski WL, “The Reference Model for Smooth Growth
of Software Systems Revisited”, IEEE Trans. Software
Engineering, 28 (8), 2002, pp.814 – 815.

[7] Wernick P and Hall T, “The Impact of Using Pair
Programming on System Evolution: a Simulation-Based
Study”, Proc. ICSM 2004, Chicago, IL, Sept. 11–14, 2004.

[8] Weiser M, “Program slicing”, Proc. ICSE 1981, San
Diego, California, Mar. 9–12 1981, pp.439–449.

[9] Weiser M, “Programmers use slices when debugging”,
Comm. ACM, 25 (7), 1982, pp.446-452.

30

Model Synchronization through Pattern-Based Association Grammars∗

Igor Ivkovic and Kostas Kontogiannis
Dept. of Electrical and Computer Engineering

University of Waterloo
Waterloo, ON N2L3G1 Canada

{iivkovic, kostas}@swen.uwaterloo.ca

Abstract

Changes made to evolving software systems are usually
applied to models that pertain to different levels of ab-
straction. Transformations made at one model (e.g., source
code) must be correctly interpreted and applied to all other
affected models (e.g., design, architecture) in order to min-
imize the drift among system artifacts. This position paper
focuses on interpreting model synchronization as a problem
of automated language translation. In this approach appli-
cable MOF-compliant domain models are formally defined
and converted to graph grammars, called domain model
grammars. A pattern-based association grammar, derived
from NLP theory and grammar-based MT, is used to trans-
late models instantiated from different domains. Source
and target productions are associated by matching MOF
attributes, and conflicts in pattern selections are resolved
through constraint predicates.

1. Introduction

Stakeholders in an evolving software system directly or
indirectly initiate changes on various software artifacts at
different levels of abstraction and technical detail. For ev-
ery defined change that is applied, all affected models must
be updated in a systematic fashion. The most complex facet
of this process is the propagation of change across models
used in different stages of the software lifecycle since the
models differ greatly in expressiveness levels and model se-
mantics. This problem, discussed as a framework for model
synchronization through traceability - mSynTra [4, 5, 6],
is based on the Model-Driven Software Evolution (MDSE)
and Model-Driven Architecture (MDA) [7, 11] paradigms.
Within mSynTra, software changes are made on models at

1 This work is funded in part through the IBM Corp. Scholars Program
and the IBM Canada Ltd. Laboratory, Center for Advanced Studies (CAS)
in Toronto.

a particular level of abstraction within the context of an iter-
ative and incremental lifecycle such as the Rational Unified
Process (RUP) [3]. Synchronization of two models changed
due to evolution is done by tracing a sequence of transfor-
mations applied to one model, and translating them into a
sequence that is applied to other affected models.

This paper focuses on adding translation capability to the
mSynTra framework by interpreting the problem of model
translation in terms of language translation, and applying
established algorithms and theory from the area of NLP to
a more structured domain of software. The goal is to rep-
resent models as sentences that comply to corresponding
grammars, and then view model translation as grammar-
based language translation. The first step is to represent
domain models as unique sets of tuples for domain types,
relations, connectors, and attributes, which are then inter-
preted as graph grammars, called domain model grammars.
Models instantiated from the domain models can then be
viewed as sentences in the grammar-generated languages.
Pattern-based association grammars and rules are used to
establish relations between the source and target domain
model grammars. Conflicts in pattern selection are resolved
through predicates, which can be used to express additional
constraints.

2. mSynTra Framework Overview

The mSynTra framework [5] is based on our view of
software artifact related MOF-compliant models [12] as di-
rected, labelled, attributed graphs. All graph properties are
expressed in terms of labels and (attribute, value) pairs as-
sociated with respective nodes and edges. Models are rep-
resented using MOF-compliant metamodels and are instan-
tiated from their respective domain models, which represent
domain types and relations specified in a chosen metamodel
notation such as UML [13]. The model transformations ap-
plied to the concrete models are interpreted as basic graph
transformations (i.e., insertions, modifications, and dele-
tions of model elements and their attributes). Each trans-

31

formation is applied on properties and predicates that are
defined at the domain model level, and it can therefore be
mapped or traced to its domain model or to the correspond-
ing metamodel. Conclusively, applied model transforma-
tions can be viewed in terms of their atomic operations (i.e.,
graph transformations) and can be interpreted as combina-
tions of these basic elements. The synchronization activities
can be segmented into two categories: (1) transformations
and (2) translations. Transformations are performed by a
transformer entity and are related to applying changes per-
formed on one model within the same domain (e.g., apply-
ing individual transformations, tracing transformation se-
quences). Translations are performed by a translator entity
and are related to applying and propagating changes of one
model from one domain model into a new model in a dif-
ferent domain (e.g., establishing model dependencies, inter-
preting changes from one domain model to another).

3. Domain Models as Graph Grammars

In this section, we describe the first part of our approach
to model synchronization as a problem of language trans-
lation, namely, the process of representing domain models
and metamodels as corresponding grammars. The idea of
representing software models as graph grammars was pre-
viously described by Metayer [9] while Alanen and Porres
[2] have derived a method for interpreting MOF metamod-
els directly as Extended Backus-Naur Form (EBNF) gram-
mars.

Our conceptual view of MOF-compliant models is that
of graphs, so we interpret domain models specifically as
graph grammars. Using previously defined graph meta-
model for synchronization (GMS), we view domain mod-
els as collections of attributed nodes (domain types) and
attributed and directed edges (ordered domain relations),
which represent types for instantiated concrete models. The
domain model elements are then viewed as nonterminals,
and the concrete model elements are viewed as terminals in
the domain model grammar (DMG).

Definition 1 (Domain Model Grammar) A domain model
grammar (DMG) for a domain model DM := (DT, DR, DC,
DA, TNames, RNames, CNames, ANames, Values) is a tuple
(NT, T, P, AX), where a set of nonterminals NT := {nt | nt
∈ (TNames ∪ RNames ∪ CNames ∪ ANames)}, a set of ter-
minals T := {t | t ∈ Values}, a finite set of production rules
P := {(LHS, RHS) | where LHS ∈ NT, RHS ∈ (NT ∪ T)*}
inferred from DT, DR, DC, and DA, and AX is the axiom
that represents the origin for the derivation.

4. Representing Relation Types

Using DM2DMG algorithm on a particular section of the
UML metamodel as input [13], a grammar required to rep-
resent the UML relation types is as follows:

Step 1-2 :
NTT := {Classifier}, NTR := {Association, Generaliza-
tion}, NTC := {AssociationEnd, GeneralizationEnd}, NTA

:= {Name, Constraint, Aggregation, IsNavigable, Multiplic-
ity, Visibility}, NT := NTT ∪ NTR ∪ NTC ∪ NTA, T :=
{alphabet of valid UML element names}, AX := M.

Step 3. :

p1 : M → Classifier | Classifier M | Association | Association
M | Generalization | Generalization M

Step 4. :

p2 : Classifier → Name

Step 5. :

p3 : Association → Name Name AssociationEnd Associatio-
nEnd

p4 : Generalization → Name null GeneralizationEnd General-
izationEnd

Step 6. :

p5 : AssociationEnd → Name Aggregation IsNavigable Multi-
plicity Visibility Classifier

p6 : GeneralizationEnd → Constraint Classifier

Step 7. :

p7 : Name → alphabet of valid element names (values)

p8 : Constraint → alphabet of valid constraints

p9 : Aggregation → none | shared | composite

p10 : IsNavigable → true | false

p11 : Multiplicity → none | [nonnegative integer] [nonnegative
integer] | [nonnegative integer] *

p12 : Visibility → public | protected | private | package

Step 8 :
P := {p1, p2, . . . p12} and DMG := {NT, T, P, AX}.

Step 9-10 :
Manually confirmed that DMG is unambiguous (e.g., by con-
verting to the Chomsky normal form (CNF) [8]) so output
DMG and terminate.

Figure 1 illustrates a derivation tree based on the de-
scribed grammar for the “Association” UML relation.

5. Pattern-Based Association Grammars

The synchronization of two heterogeneous models de-
fined at different levels of abstraction is interpreted as the
translation between two domain model grammars (DMGs)
to which the two models conform. Based on the theory of
grammar association [14], the translation methodology then
operates on the following:

32

M

Association

AssociationEndName AssociationEnd

ClassifierName Aggregation IsNavigable Multiplicity Visibility

Association1

null none false publicnone Name

T
1

p
12

p
11

p
10

p
9

p
7

p
5

p
7

p
3

p
7

p
2

p
1

Name

p
7

null

ClassifierName Aggregation IsNavigable Multiplicity Visibility

role1 none true publicnone Name

T
2

p
12

p
11

p
10

p
9

p
7

p
5

p
7

p
2

Figure 1. A Derivation Tree for R1

• A source DMG, modelling the language of the source
models;

• A target DMG, modelling the language of the target
models; and

• An association model, describing the associations be-
tween the rules of the input and output grammars.

Previously, Akehurst [1] addressed the problem of model
translation by utilizing a combination of UML and OCL
[16] to specify transformation relations between two object-
oriented models. A technique was also proposed by Milicev
[10] to utilize extended UML object diagrams to specify
translation between source and target metamodels.

We make use of pattern-based context-free grammar
(PCFG) [15] to formalize the association model and en-
able model translation. Each PCFG consists of a set of
translation patterns that are expressed as a pairing of CFG
rules, the source rule on the LHS and the target rule on the
RHS, along with zero or more syntactic (head) and link
constraints. Each of the constraints is expressed in terms
of nonterminal symbols that represent different lexical ele-
ments from the domain of natural languages, examples of
which include noun phrase (NP), verb phrase (VP), etc. A
translation pattern can also be associated with a vector of bi-
nary features to represent additional syntactic and semantic
constraints.

Definition 2 (Pattern-Based Assocation Grammar) A
pattern-based association grammar (PAG) for source and
target domain model grammars, DMGS := (NTS , TS , PS ,
AXS) and DMGT := (NTT , TT , PT , AXT) respectively,

is a tuple (NT, T, AP, X, SHeads, Predicates), where a set
of nonterminals NT := {nt | nt ∈ (NTS ∪ NTT)}, a set of
terminals T := {t | t ∈ (TS ∪ TT)}, a finite set of predicated
association rules AP := {(sH , rS , rT {pi}) | a semantic
head sH ∈ SHeads, a source production rule rS ∈ PS , a
target production rule rT ∈ PT , and pi ∈ Predicates}, a
starting symbol for derivation AX := AXS , a set of semantic
heads (attribute-value constraints) SHeads := {{(ai, vj ,
optional)} | ai ∈ a finite set of valid attributes and vi ∈ a
finite set of valid values defined at the MOF or metamodel
level, and optional as a Boolean indicating wether the
satisfaction of an attribute constraint is optional}, and a
finite set of constraint Predicates expressed in a suitable
language (e.g., OCL expression).

5.1. Pattern-Based Translation Process

To translate an input model M ∈ L(DMGM) into a model
G ∈ L(DMGG) using an association grammar PAGM,G, the
following steps apply:

1. Parse M using production rules from DMGM and cre-
ate a leftmost derivation tree TM while labelling the
edges of TM with the identifiers for used source pro-
ductions rS .

2. Parse TM using a depth-first tree-parsing algorithm:

(a) At each node identify a source production r i used
for deriving that node and look for a match-
ing association production ap = (sH , rS, rT ,
{predicates}) from the PAG such that ri = rS.

(b) If more than one match is found, select the best
match by applying predicates to L(rT) for each
match or by using a particular translation goal
(e.g., minimizing the number of elements in G).

(c) If no match is found, recursively attempt to
match the rule used to derive the parent of the
current node and use predicates or higher-level
translation goals to resolve conflicts; if the root
node is reached with no match, declare the cur-
rent node as unmatchable and continue.

(d) Once the matching target rule is found, use it to
synchronously derive the target tree TG.

3. Use the resulting derivation tree TG to derive G.

5.2. Determinism and Algorithmic Complexity

The determinism of the resulting derivations is addressed
through (1) the adjustable level of semantic detail expressed
as a chosen number of attribute-value pairs as defined at the
MOF or at the metamodel level, (2) predicates associated

33

with each rule that add additional constraints in conflict res-
olution, and (3) global translation rules that impose global
constraints for individual rule associations.

Each PAG is defined as a PCFG so its asymptotic com-
plexity corresponds to asymptotic limits as defined for
PCFG in the area of NLP. Therefore, the translation com-
plexity is based on the complexity for choosing the top pat-
tern candidates, O(|T|Kn3), selecting the suitable patterns
and relating them to the target translation, O(|T|Kn4), and
constructing the target derivations based on the m candidate
patterns, O(Kn2m), where T is the PCFG, K are distinct
nonterminals in T, and n is the size of the input string [15].

6. Conclusions and Future Research

This paper presents a framework for interpreting the
problem of model synchronization as a language translation
problem. We first discussed the representation of a domain
model by a graph grammar. In this context, the correspond-
ing models are considered as “sentences” generated by a
domain graph grammar that need be translated from one
language to another (i.e., from one domain model to an-
other). Second, we presented the creation of a correspond-
ing pattern-based association grammar, based on attributed
associations of production rules from the source and target
domain model grammars, and discussed the application of
the association grammar in the process of translation. Fi-
nally, we have evaluated the approach by applying it to a
case study of synchronizing business process models with
enacting Java source code.

In future research, we aim to extend the capabilities of
this approach by applying it to additional case studies that
relate to different stages of the software development life-
cycle. Specifically, we intend to investigate the process of
iterative and incremental translation of extended BPM mod-
els to source code though intermediate, stereotyped and an-
notated UML models.

7. Acknowledgments

This work is performed in collaboration with the IBM
Canada Ltd. Laboratory, Center for Advanced Studies
(CAS) in Toronto.

References

[1] D. H. Akehurst. Model Translation: A UML-based specifi-
cation technique and active implementation approach. PhD
thesis, University of Kent at Canterbury, Dec 2000.

[2] M. Alanen and I. Porres. A relation between context-free
grammars and meta object facility metamodels. TUCS Tech-
nical Report No 606, Turku Center for Computer Science,
Åbo Akademi University, Turku, Finland, 2003.

[3] IBM. Rational unified process (rup). Online by IBM Corpo-
ration, 2004. http://www.ibm.com/software/awdtools/rup/.

[4] I. Ivkovic and K. Kontogiannis. Model synchronization
as a problem of maximizing model dependencies. In Pro-
ceedings of the 19th Annual ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA 2004), pages 222–223, Vancouver, BC, Oct
2004.

[5] I. Ivkovic and K. Kontogiannis. Tracing evolution changes
through model synchronization. In Proceedings of the 20th
IEEE International Conference on Software Maintenance
(ICSM 2004), pages 252–261, Chicago, IL, Sep 2004.

[6] I. Ivkovic and K. Kontogiannis. Using formal concept anal-
ysis to estalish model dependencies. In Proceedings of the
IEEE International Conference on Information Technology
Coding and Computing, pages 365–372, Las Vegas, NV, Apr
2005.

[7] A. Kleppe, J. Warmer, and W. Bast. The Model Driven Ar-
chitecture: Practice and Promise. Addison-Wesley, 2003.

[8] J. C. Martin. Introduction to Languages and the Theory of
Computation. WCB/McGraw-Hill, 1997.

[9] D. L. Métayer. Software architecture styles as graph gram-
mars. In Proceedings of the 4th ACM SIGSOFT symposium
on Foundations of Software Engineering, pages 15–23, San
Francisco, CA, Oct 1996.

[10] D. Milicev. Automatic model transformations using ex-
tended uml object diagrams in modeling environments.
IEEE Transaction on Software Engineering, 28(4), Apr
2002.

[11] OMG. Model driven architecture - a technical perspec-
tive. Object Management Group’s (OMG’s) Architecture
Board ORMSC Document ORMSC/01-07-01, Object Man-
agement Group, Jul 2001.

[12] OMG. Meta object facility (mof) specification version 1.4.
Technical report, Object Management Group (OMG), Apr
2002. http://www.omg.org/docs/formal/02-04-03.pdf.

[13] OMG. Unified modelling language (uml) specification.
Technical report, Object Management Group, Mar 2003.
http://www.omg.org/docs/formal/03-03-01.pdf.

[14] F. Prat. Machine translation with grammar association:
Some improvements and the loco c model. In Proceed-
ings of the Workshop on Data-driven Machine Translation at
39th Annual Meeting of the Association for Computational
Linguistics, Toulouse, France, Jul 2001.

[15] K. Takeda. Pattern-based context-free grammars for ma-
chine translation. In Proceedings of the 34th conference on
Association for Computational Linguistics, pages 144–151,
Santa Cruz, CA, Jun 1996.

[16] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML. Addison-Wesley, 1998.

34

Supporting Continuous Evolution of Software Systems with Transformation

Maintenance

László Lengyel, Tihamér Levendovszky and Hassan Charaf

Budapest University of Technology and Economics,

H-1111 Budapest, Goldmann György tér 3.

{lengyel, tihamer, hassan}@aut.bme.hu

Abstract

Software maintenance and evolution is a

considerably researched area while taking into

account its cost effects. Specifying systems in a higher

abstraction level, it helps understanding, developing

and maintaining the software. A higher abstraction

level can be achieved by software models and their

model transformation. Model compilers provide a

solution for automated source code generation from

software models and mechanisms for software

maintenance. This paper introduces a metamodel-

based model transformation approach for the

continuous software evolution support, discusses the

configurability of the model transformation with the

help of pre- and postconditions (OCL constraints)

propagated to transformation steps and introduces the

concept of aspect-oriented constraints.

1. Introduction

In software development processes new

requirements appear frequently, when the design phase

is already closed e.g. in the middle of the

implementation or later. Moreover, it is a common

procedure in development that an initial version of an

application is developed in the first step, and

afterwards the new features or modifications of the old

ones are added step by step to the already existing

implementation. These methods of the software

development processes require the efficient support of

software evolution and maintenance of the

implementations.

Software maintenance activities are mainly

accomplished manually at present, yet they are the

largest software engineering expense. Considerable

productivity and quality enhancements are possible

with a new generation of automated tools called model

compilers. This approach accelerates the development

and maintenance process and eliminates the need of the

manual work on the source code.

A model compiler is a tool that automatically

converts a set of modeling artifacts into an equivalent

artifact [1], which can be model or source code as well.

Model transformation means converting an input

model available at the beginning of the transformation

process to an output model. OMG’s Model Driven

Architecture [2] sets out a more restrictive definition:

the output model should describe the same system as

the input model. But our approach (VMTS [3] [4]) has

been designed to be able to specify more general

transformations than the property preserving ones.

Model compilers can support certain model element

properties to guarantee, preserve or validate them

during the code generation, and the presented approach

is a practical application of these mechanisms [5].

Model Integrated Computing (MIC) [6] [7] is a

model-based approach to software development,

facilitating the synthesis of application programs from

models created using customized, domain-specific

program synthesis environments.

This work presents the VMTS approach to artifact

and source code maintenance, shows that the

metamodel-based model transformation is an efficient

method for software evolution support. VMTS uses

graph rewriting as underlying method for model

transformation (source code generation); this paper

discusses the power of constraints contained by the

rewriting rules during the model compilation process,

and illustrates that with the help of the constraints it is

possible to specify fully the source code generation. It

also means that the same rewriting rules with other

constraints generate different implementation. We

introduce an aspect-oriented method which facilitates

(i) the reuse of the rewriting rules and constraints and

(ii) the modularization of crosscutting constraints. Our

approach provides the possibilities to define constraints

35

separately and to specify their propagation to rewriting

rules.

2. Backgrounds and Related Work

MIC focuses on models, supports the flexible

creation of modeling environments, and helps

following the changes of the models. At the same time

it facilitates code generation and provides tool support

for turning the created models into code artifacts.

Metamodeling environments and model interpreters

together form the tool support for MIC.

Our metamodel-based model transformation system

and constraint validation method presented later benefit

from the results of the mathematical background of

formal languages, graph rewriting and research related

to the metamodel-based software model transformation.

It also incorporates several ideas from other existing

environments (the PROGRES [8] and GReAT

framework [9]).

The Object Constraint Language [10] is a formal

language for analysis and design of software systems. It

is a subset of the industry standard Unified Modeling

Language [11] that allows software developers to write

constraints and queries over object models.

Graph rewriting [12] is a powerful tool for graph

transformations with strong mathematical background.

The atoms of graph transformation are rewriting rules,

each rewriting rule consists of a left hand side graph

(LHS) and right hand side graph (RHS). Applying a

graph rewriting rule means finding an isomorphic

occurrence (match) of the LHS in the graph the rule

being applied to (host graph), and replacing this

subgraph with RHS. Replacing means removing

elements which are in the LHS but not in the RHS, and

gluing elements which are in the RHS but not in the

LHS.

Models can be considered special graphs that simply

contain nodes and edges between them. This

mathematical background makes possible to treat

models as labeled graphs and to apply graph

transformation algorithms to models using graph

rewriting [4] [13]. Previous work [4] has introduced an

approach, where LHS and RHS of the rules are built

from metamodel elements. It means that an

instantiation of LHS must be found in the graph (host

graph) to which the rule being applied instead of the

LHS-isomorphic subgraph. Hence the LHS and RHS

graphs are the metamodels of the graphs which we

search and replace in the host graph.

In [14] an aspect oriented approach is introduced for

software model containing constraints where the

dominant decomposition is based upon the functional

hierarchy of a physical system. This approach provides

a separate module for specifying constraints and their

propagation. To provide the weaver with the necessary

information to perform the propagation, a new type of

aspect is used: the strategy aspect. Strategy aspect

provides a hook that the weaver may call in order to

process the node specific constraint propagations.

3. Visual Modeling and Transformation

System

The Visual Modeling and Transformation System

(VMTS) [3] [4] is an implemented n-layer

multipurpose modeling and metamodel-based model

transformation system. Using this environment, it

enables to edit metamodels and models according to

their metamodels and transform models using graph

rewriting [4]. Furthermore, the tool facilitates to check

constraints specified in the metamodel during the

metamodel instantiation, and the rewriting rule

constraints during the graph transformation process.

VMTS supports both the Traversing Model

Processors (TMP) and Visual Model Processors

(VMP).

The simplest method to transform models is to

traverse them using a specific programming language

and changing the appropriate parts of the input models

or producing an output model. TMPs offering this

approach usually use the following basic graph

operations: node creation, node deletion, edge creation,

edge deletion and label modification.

VMPs do not replace TMPs, instead, they provide a

visual alternative way of model transformation. In

VMTS VMPs use graph rewriting as the transformation

technique. The graph rewriting production rule firing

has already been introduced in Section 2.

4. Rewriting Rule-Based Software

Maintenance

The fact that VMTS is able to work as a model

compiler means that it facilitates to generate the whole

application based on the software models. Obviously, it

is crucial that the models contain all necessary

information which makes possible to generate all the

details of the software. VMTS uses UML models as

input; in most cases we need several classes,

statecharts, use cases and sequence diagrams to specify

an application in details.

It is required that in the process of software

development the software models correspond to the

implementation, and vice versa. In general if a software

model is modified programmers based on the

36

modifications update the source code. This process

requires not only the exact model modification but

accurate source code update as well. It means that the

software maintenance will be longer and more

expensive. Using model compilers, after modifying the

software models, we can generate the whole application

again, which means that with the help of this approach,

we do not need to manually work on the source code.

As it is mentioned in previous section, one of the

reasons why we have to maintain the source code of the

implementation is when (i) the software models are

modified. In this case using the VMTS approach we

simply have to generate again the implementation from

the new software models. There are two other cases

when we have to update the implementation: (ii) the

metamodel of the software models is modified, or (iii)

we would like to construct the software models from

another point of view and this is why we want to

develop a new application based on the same models.

Because of the new viewpoint we would like the

operation of the newly created application to be partly

different. In other words in this case we need a new

transformation process, which contains updated and/or

new transformation steps.

The VMTS approach uses rewriting rules to realize

a model compiler. If the metamodel of the software

models is modified, the developers have to update the

software models as well. Metamodel modification

means the following operations: the properties of a type

or a connection between the types are modified, new

type is added to or deleted from the metamodel, and a

connection is added to or deleted from the metamodel.

Based on these modifications, the developers maintain

the software models: modify the changed properties of

the nodes and edges, delete the instance nodes of the

removed types and if it is necessary add new nodes and

edges to the models. The modifications of the

metamodel also affect rewriting rules, because the rules

are built from metamodel elements. After updating the

rewriting rules – which also means type and connection

modification, deletion and creation – we have to simply

generate again the whole application with the new

transformation steps.

In the third case, when we would like to generate

different application based on the same models, we

also have to modify the rewriting rules based on our

new viewpoint and generate again the application.

Constraints (pre- and postconditions) makes

possible to specify the rewriting rules precisely enough

to recognize and to signal e.g. if the input models are

incomplete or contain some contradiction or defective

parts. With the help of these constraints we achieve

precise and consistent models and transformation steps.

In VMTS the principle of the constraint validation is

the relation between the pre- and postconditions and

the OCL constraints assigned to the rewriting rules.

The base of the rewriting-rule-based software

maintenance is the graph rewriting process introduced

in Section 2 (matching, removing and gluing). The

matching process selects those parts of the input

models from which the rewriting rule generates the

source code. In the case of diagrammatic languages,

such as the UML, the exclusive topological matching is

found to be not enough. To define precisely the

transformation steps beyond the topology of the visual

models additional constraints must be specified which

ensures the correctness of the attributes, or other

properties to be enforced. Dealing with OCL

constraints provides a solution for the unsolved issues,

because topological and attribute transformation

methods cannot perform and express the problems,

which can be addressed by constraint validation. The

use of OCL as a constraint and query language in

modeling and model transformation is essential.

We have found that often it is not necessary to

modify the topology of the rewriting rules, but the

constraints assigned to the rewriting rules; therefore it

would be beneficial to create and manage rewriting

rules separately from the constraints and make it

possible to propagate the required constraints to an

optional rewriting rule and to use the so-called

Weaving Configuration during the transformation

process. In this case it would be unnecessary to recreate

and store the same rewriting rule several times with

other assigned constraints. On the other hand, often, the

same constraint is repetitiously applied in many

different places in a transformation. It would be useful

to describe a common constraint in a modular manner

and designate the places where it is to be applied.

These are the reasons why we have worked out the

concept of the Aspect-Oriented Constraints.

5. Aspect-Oriented Constraints

We need a mechanism to separate the constraints

from the pattern rule nodes (PRNs) and a weaver

method, which facilitates the propagation (linking) of

constraints to PRNs. The VMTS Global Constraint

Weaver is passed a transformation with optional

number of transformation steps and a constraint list and

it links the constraints to transformation steps

containing PRNs [15].

This method means that VMTS manages constraints

using aspect-oriented techniques: constraints are

specified and stored independently of any

37

transformation step or PRN and they are linked to the

PRNs by the Global Constraint Weaver [15].

The weaving algorithm based on the context of the

constraint selects the PRNs the constraint has to be

linked to. Furthermore, the algorithm also has to take

into account the transformation steps which can modify

the properties for that the constraint has restrictions. In

other words examining the transformation steps, the

algorithm decides if it is necessary to assign the

constraint to each step or it is sufficient to assign only

to the first as precondition and to last step as

postcondition. If an intermediate state modifies one of

the properties contained by the constraint, then the

weaving algorithm assigns the constraint to this

intermediate state to prevent that the not satisfied

condition does not turn out until the end of the

transformation.

It is unnecessary that the transformation has any

knowledge about the constraints, nor the modeler who

creates the rewriting rules. Rewriting rules can be

executed without constraints as well, but in that case

the matching can be accomplished only by the

topological information.

To summarize the main idea of the AO Constraints

is that we can separately create the constraints and the

rewriting rules, and with the help of a weaver we can

propagate constraints to the rewriting rules containing

PRNs [15].

6. Conclusions

In this work the VMTS approach to rewriting rule-

based software maintenance is presented and the

concept of aspect-oriented constraint management in

metamodel-based model compilers is introduced. It is

discussed that using our approach, it is possible to

maintain the implementations when (i) the software

models are modified, (ii) the metamodel of the software

models is modified, or (iii) if it is required to consider

the software plans from an other point of view, and to

implement a different application from the same

software models.

The presented concepts have been applied to mobile

devices running Symbian operating system, where the

resource constraints made the visual model-based

evolution support more useful towards an iterative

incremental development cycle [16].

This approach generates the whole application

again, it would be beneficial if it generated source code

only from the new and the modified parts of the

models, this problem is the subject of future research.

Acknowledgement

The fund of “Mobile2004 Consortium” has

supported, in part, the activities described in this paper.

References

[1] Butts K, Bostic D, Chutinan A, Cook J, Milam B, Wang

Y, “Usage scenarios for an Automated Model Compiler”,

EMSOFT 2001, pp 66–79

[2] MDA Guide Version 1.0.1, OMG, doc. number:

omg/2003-06-01, 12th June 2003

www.omg.org/docs/omg/03-06-01.pdf

[3] Visual Modeling and Transformation System Web Site,

http://avalon.aut.bme.hu/~tihamer/research/vmts/

[4] Levendovszky T, Lengyel L, Mezei G, Charaf H, “A

Systematic Approach to Metamodeling Environments and

Model Transformation Systems in VMTS”, International

Workshop on Graph-Based Tools (GraBaTs) Electronic

Notes in Theoretical Computer Science, Rome, 2004

[5] Lengyel L, Levendovszky T, Charaf H, Implementing an

OCL Compiler for .NET, Journal of .NET Technologies,

Volume 3, Number 1-3, 2005, ISSN 1801-2108, pp. 121-130

[6] Sztipanovits J, Karsai G, “Model-Integrated Computing”

IEEE Computer, pp. 110-112, April, 1997.

[7] Sztipanovits J, Karsai G, “Generative Programming for

Embedded Systems”, LNCS 2487, pp. 32-49, 2002

[8] PROGRES system can be downloaded from

http://mozart.informatik.rwth-

zaachen.de/research/projects/progres/main.html

[9] Karsai G, Agrawal A, Shi F, Sprinkle J, “On the Use of

Graph Transformation in the Formal Specification of Model

Interpreters”, Journal of Universal Computer Science,

Special issue on Formal Specification of CBS, 2003

[10] Object Constraint Language (OCL), www.omg.org

[11] UML 2.0 Specifications, http://www.omg.org/uml/

[12] G. Rozenberg (ed.), Handbook on Graph Grammars

and Computing by Graph Transformation: Foundations,

Vol.1 World Scientific, Singapore, 1997.

[13] D. Varró and A. Pataricza, VPM: A visual, precise and

multilevel metamodeling framework for describing

mathematical domains and UML, Journal of Software and

Systems Modeling, 2003

[14] Jeff Gray, Ted Bapty, Sandeep Neema, “Aspectifying

Constraints in Model-Integrated Computing”, OOPSLA

Workshop on Advanced Separation of Concerns in Object-

Oriented Systems, Minneapolis, MN, October 2000

[15] Lengyel L, Levendovszky T, Charaf H, Weaving

Crosscutting Constraints in Metamodel-Based

Transformation Rules, 8th International Conference on

Information Systems Implementation and Modeling, ISIM

'05, April 19-20, 2005, Czech Republic, pp. 119-126

[16] Aczél K, Charaf H, “Automatic User Interface Code

Generation in Symbian”, MicroCAD, Miskolc, 2005

38

Analyzing the Reuse Potential of Migrating Legacy Components to a Service-Oriented
Architecture

Grace Lewis, Edwin Morris, Liam O’Brien, Dennis Smith
Software Engineering Institute

4500 Fifth Avenue,
Pittsburgh, PA 15213

{glewis, ejm, lob, dbs}@sei.cmu.edu

ABSTRACT

An effective way of leveraging the value of legacy
systems is to expose their functionality, or subsets of it,
as services. In the business world, this has become a
very popular approach because it allows systems to
remain largely unchanged, while exposing functionality
to a larger number of clients through well-defined
service interfaces. The U.S. Department of Defense
(DoD) is also adopting this approach by defining
service-oriented architectures (SOAs) that include a set
of infrastructure common services on which
organizations can build additional domain services or
applications. When legacy systems or components are
to be used as the foundation for these services, there
needs to be an analysis of how to convert the
functionality in these systems into services. This
analysis should consider the specific interactions that
will be required by the SOA and any changes that need
to be made to the legacy components. The SEI has
recently helped an organization evaluate the potential
for converting components of an existing system into
services that would run in a new and tightly constrained
DoD SOA environment. This paper describes the
process that was used and outlines several issues that
need to be addressed in making similar migrations.

1. Introduction

With the advent of universal Internet availability, many
organizations have leveraged the value of their legacy
systems by exposing all or parts of it as services. A
service is a coarse-grained, discoverable, and self-
contained software entity that interacts with
applications and other services through a loosely
coupled, often asynchronous, message-based
communication model [2]. A collection of services with
well-defined interfaces and shared communications
model is called a service-oriented architecture (SOA).
A system or application is designed and implemented as
a set of interactions among these services.

The characteristics of SOAs (e.g., loose coupling,
published interfaces, standard communication model)
offer the promise of enabling existing legacy systems to
expose their functionality, presumably without making
significant changes to the legacy systems[4]. However,
constructing services from existing systems in order to

obtain the benefits of an SOA is neither easy nor
automatic. In fact, such a migration can represent a
complex engineering task, particularly when the services
are expected to execute within a tightly constrained
environment.

SOA migration tasks can be considered from a number
of perspectives including that of the end client or user of
the services, the SOA architect, or the service provider.
This paper focuses on the service provider.

2. Creation of Services From Legacy Components

Enabling a legacy system to interact within a service-
oriented architecture, such as a Web services
architecture, is sometimes relatively straightforward—
this is a primary attraction to the approach for many
businesses. However, characteristics of legacy systems,
such as age, language, and architecture, as well as of the
target SOA can complicate the task. An analysis needs
to be performed to consider:

1. requirements from potential service users. It is
important to know what applications would use the
services and how they would be used. For example,
what is the information expected to be exchanged?
In what format?

2. Technical characteristics of the target environment,
such as bindings, messaging technologies,
communication protocols, service description
languages, and service discovery mechanisms.

3. The architecture of the legacy system., including
dependencies on commercial products or specific
operating systems, or poor separation of concerns.

4. The effort involved in writing the service interface
5. The effort involved in the translation of data types.
6. The effort required to describe the services including

information about qualities of service, such as
performance, reliability, and security; or service
level agreements (SLAs) .

7. The effort involved in writing service initialization
code and operational procedures.

8. Estimates of cost, difficulty, and risk.

To gather this information and identify the risks for the
migration effort in a systematic way, we have developed
the Service-Oriented Migration and Reuse Technique
(SMART). SMART is based on the OAR [1]method for
evaluating the reuse potential of legacy components, but

39

customized to reflect the migration of components to
services. Its activities are:
1. Establish stakeholder context
2. Describe existing capabilities
3. Describe the future service-based state
4. Analyze the gap between service-based state and

existing capabilities
5. Develop strategy for service migration

These five activities are briefly outlined below.

Establish Stakeholder Context
In order to establish the context in which the migration
to services will take place, SMART first identifies the
stakeholders, including the current end users of the
legacy systems, the potential end users of the migrated
service operating within the SOA, and the owners of the
legacy systems. The activity identifies who knows most
about the legacy system, what it currently does, and
what it should do as a service or set of services.

Describe Existing Capabilities
The goal of the second activity is to obtain descriptive
data about the legacy components. Basic data solicited
includes the name, function, size, language, operating
platform, and age of the legacy components. Technical
personnel are questioned about the architecture, design
paradigms, code complexity, level of documentation,
module coupling, interfaces for systems and users, and
dependencies on other components and commercial
products.

Historical cost data for development and maintenance
tasks is collected to support effort and cost estimates.

Describe the Future Service-Based State
The two goals of the third activity are to:

∞ Gather evidence about potential services that can be
created from the legacy components

∞ Gather sufficient detail about the target SOA to
support decisions about what services may be
appropriate and how they will interact with the
architecture

Initial information about potential services often
comes via conversations about the function(s) of
the legacy system during the second activity.
However, the information gathered often must be
tempered by data from users, corporate architects,
domain groups, communities of interest, and
reference models that address service definition. In
some cases, these groups and models will define
the entire set of services that support the
organization’s goals, and into which any potential
services built from the legacy components must
fit.

Analyze the Gap
The goal of the fourth activity is to identify the gap
between the existing state and the future state and
determine the level of effort needed to convert the legacy
components into services. This analysis may also suggest
potential tradeoffs between the target architecture and
the legacy components.

The tasks of this activity include:

∞ Develop an analysis strategy for legacy components
that are being considered for migration.

∞ Analyze the legacy components to determine the
types of changes that need to be made to enable
migration. SMART uses three sources of
information to support the analysis activity. The
issues, problems, and other concerns that were noted
as the team completed the previous, discovery-
oriented steps form one source of information. A
second source of information is provided by a
Service Migration Inventory (SMI) that distills the
many desired traits of services executing within
SOAs into a set of topics. The team uses the SMI to
assure broad coverage and consistent analysis of
difficulty, risk, and cost issues. A third, optional
source of information involves the use of code
analysis and architecture reconstruction tools to
analyze the existing source code for legacy
components.

Develop Strategy for Service Migration
A key feature of SMART involves building cost
projections for each migration option still under
consideration. This is accomplished by considering
organizational characteristics, difficulty and risk
associated with various migration options, and applying
historical productivity numbers where possible.

3. Pilot Application of the Process

An early version of SMART was applied in a recent
pilot analysis of the potential for migrating a set of
legacy components from a DoD command and control
(C2) system to an SOA.

Establish Stakeholder Context

We initially met with the government owners of the
system and the contractors who had developed the
system. At this meeting we were given an overview of
the set of systems, the history of the systems, the
migration plans, and the drivers for the migration. We
were given a brief orientation to the SOA and were also
provided with system documentation.

The owners of the systems recognized that if a selected
set of components from their C2 system are converted
to application domain services within a specific target

40

SOA, they may have applicability for a broad variety of
purposes. Our role was to perform a preliminary
evaluation of the feasibility of converting a set of their
components to application domain services within a
SOA.

Describe Existing Capabilities

The pilot C2 system has two parts: 1) a mission
planning system and 2) a mission execution system that
adds situational awareness to the planning capability.
These two systems were initially developed as part of a
product line. Both rely on a set of core components for
the data model, data analysis, and visualization.

Given the information about the target SOA, we met
with the contractor and representatives of the
government to focus on a limited number of legacy
components and to select criteria for further screening.
We focused on seven potential services that the
government team had previously identified as part of its
initial analysis of ADS requirements. These seven
potential services contained 29 classes.

The current system, written in C++ on a Windows
operating system, had a total of about 800,000 lines of
code and 2500 classes. In addition, the system had
dependencies on a commercial database and a second
product for visualizing, creating, and managing maps.
Both commercial products have only Windows
versions.

The 29 classes that we selected enabled us to focus on
potentials for high payoff. In conjunction with the team,
we developed criteria for screening the potential
reusable components. These criteria included:

∞ Size
∞ Complexity
∞ Level of documentation
∞ Coupling
∞ Cohesion
∞ Number of base classes
∞ Programming standards compliance
∞ Black box vs. white box suitability
∞ Scale of changes required
∞ Commercial mapping software dependency
∞ Microsoft dependency
∞ Support software required

These criteria formed the basis for the more detailed
analysis discussed below.

Describe the Future Service-Based State

The system owner had done a preliminary identification
of potential services that could be built from components
of the legacy system. This analysis was derived from
high level requirements for applications that were being
targeted as users of services to be provided by the SOA.
The system owner had matched legacy functionality to

these high level requirements and provided some initial
estimates of the contents of the potential services.

We investigated the target SOA through an analysis of
available documentation and through a meeting with the
developers. Because the SOA was still under
development, the specifications for how to deploy and
write services were still unclear.

Analyze the Gap
Given the known and projected constraints of the target
SOA, we performed three different types of analyses: 1)
an analysis of the changes to the legacy components that
would be necessary for migration to the SOA, 2) an
informal evaluation of code quality, 3) an architecture
reconstruction to obtain a better understanding of the set
of undocumented dependencies. The results of these
analyses allowed us to define a service migration
strategy based on the risks due to the unknown future
state of the target SOA..

Analysis of Required Changes
We initially met with the contractor to get an
understanding of the required changes, as well as
estimates of the level of difficulty and the risks of
making the changes. The contractor provided estimates
for converting the components into services, based on a
set of simplifying assumptions on the actual make-up of
the target SOA and the final set of user requirements.
These estimates initially suggested that the level of
difficulty of making these changes would be low to
medium, and the risk would be low because of their
familiarity with the systems.

However, we found that the tools in use on the project
only picked up first-level dependencies between classes.
This indicated that the coupling and the amount of code
that was used by each class was higher than could be
estimated from the existing documentation. There was
also no consistent programming standard, leading to
idiosyncrasies between different programmers. Because
of the inadequacies that we found in the architecture
documentation, and the underestimation of the amount of
code used by the potential services, there remained a
number of gaps in our understanding of the system.

Code Analysis

To address remaining issues, we first analyzed the code
through a code analyzer “Understand for C++”.

The code analysis enabled us to validate the input from
the contractor and to produce input for the architecture
reconstruction tool that would identify dependencies.

From the code analysis, we found that the code was
better organized and documented at the code level than
most code that we have seen. However, there were
inconsistencies in the quality and documentation
between different parts of the code that made the

41

analysis complicated.

Architecture Reconstruction

To address the issue of dependencies in more detail, we
conducted an architecture reconstruction with a tool
called ARMIN. Architecture reconstruction is the process
by which the architecture of an implemented system is
obtained from the existing system [3].

In our analysis, we were interested in

∞ Dependencies between services and user interface
classes

∞ Dependencies between services and the
commercial mapping software

∞ Dependencies between services
∞ Dependencies between the services and the rest of

the code that mainly represented the data model

The architecture reconstruction was able to identify a
substantial number of undocumented dependencies
between classes. These will enable a more realistic
understanding of the scope of the migration effort if it
succeeds.

The architecture reconstruction also enabled us to
document the central role of the data model, and to
identify it as a potentially valuable reusable component,
even though it had not been identified during the initial
analysis.

Develop Strategy for Service Migration
In looking at the potential for reuse of the existing legacy
components, we found that the current legacy code
represents a set of components with significant reuse
potential. However, because the current legacy system
does not have sufficient architecture or other high level
documentation, it was difficult to understand the “big
picture” as well as dependencies between different
classes. The largest risk in reusing the legacy
components concerns the fact that the SOA has not been
fully developed. We also recommended that the
government organization require the following changes
from its contractors to make reuse of its legacy
components more viable:

∞ Suitable set of architectural views
∞ Consistent use of programming standards
∞ Documentation of code to enable comments to be

extracted using an automated tool
∞ Documentation of dependencies, especially when

they violate architecture paradigms

4. Conclusions and Next Steps

We found that the initial task of determining how to
expose functionality as services, while seemingly
straightforward, can have substantial complexity. Our
conclusions to the client, while not definitive, did point
out a number of issues that they had not previously

considered. The type of disciplined analysis that we
performed appears to have applicability for other
organizations that are considering migrations to SOAs.

References

 [1] Bergey, J.; O'Brien, L.; and Smith, D. "Using the
Options Analysis for Reengineering (OAR)
Method for Mining Components for a Product
Line," 316-327. Software Product Lines:
Proceedings of the Second Software Product Line
Conference (SPLC2). San Diego, CA, August 19-
22, 2002. Berlin, Germany: Springer, 2002.

[2] Brown, A; Johnston, S.; and Kelly, K. Using
Service-Oriented Architecture and Component-
Based Development to Build Web Service
Applications. Rational Software Corporation. 2002.

[3] Kazman, R; O'Brien, L.; and Verhoef, C.
Architecture Reconstruction Guidelines, 2nd
Edition (CMU/SEI-2002-TR-034). Software
Engineering Institute. November 2003.

[4] Lewis, Grace and Wrage, Lutz. Approaches to
Constructive Interoperability (CMU/SEI-2004-TR-
020). Software Engineering Institute. January 2005.

42

Evaluate Java Program by an Extensible Metrics Reporter

Nuo Li, Jin-liang Ou, Mao-zhong Jin, Chao Liu
Software Engineering Institute, School of Computer Science and Engineering,

Beijing University of Aeronautics and Astronautics, China
Seraphicln, ouj_alonesmoke @hotmail.com jmz, liuchao@buaa.edu.cn

Abstract
An extensible metrics reporter with visualization

environment has been built for Java programs. It is
integrated in our “Quality Easy-Software Analysis and
Testing” tool (QESAT). Taking into consideration the
evolving nature of software development, QESAT is
designed with an extensible and maintainable framework
in mind. Also extensible is the metrics reporter which is
integrated as a plug-in. The metrics gathered can be
presented in comprehensive visual graphs, lists or
transferred to other understandable formats. In this
paper, two case studies are provided to demonstrate how
to improve the quality of Java programs using QESAT.

1. Introduction

Software measurement has advanced since the
software crisis during the 1960s’. Since then, the need for
good software has become apparent. With the popularity
of object oriented techniques, software measurement
techniques have evolved, such as the CK metrics suite
[1][2], MOOD metrics [3], etc. These metrics, though
very useful, require more effort to understand. Software
engineers would rather review graphics that display
important concepts and relationships than comb through
lists of metric values [4]. QESAT provides a
comprehensive visual environment to evaluate Java
software quality with a flexible and extensible
architecture. This paper is organized as such: section 2
introduces the metrics suites adopted in QESAT, section
3 details and examines the tool's architecture, and section
4 uses two case studies as examples on how to improve
the structure of the program with the metrics offered by
QESAT.

2. The metrics suite adopted

Because the basic unit of object oriented programming
is a class, we focus mainly on the measurement of the
hierarchy and collaboration between classes, as well as
the complexity of each class. The Lines of Code (LOC)

[5] is used to estimate the program size. In QESAT, LOC
is defined as the total number of executable statements
defined by Java Grammar. This includes all statements of
every method in a class with the exception of declarations
and comments. Depth of the Inheritance Tree (DIT) and
Number of Children (NOC), which belong to CK metrics
suite, examine the inheritance hierarchy complexity.
Because the tool focuses on measuring the complexity of
programs written by developers, the QESAT root nodes
of inheritance trees are the classes offered by J2SE.
Response For a Class (RFC) of CK metrics suite
measures the communication complexity between classes.
Weighted Methods per Class (WMC) of CK metrics suite
is employed to measure the logical complexity of a class.
And in QESAT, WMC is defined as the sum of McCabe
values of all methods defined in a class. For methods,
McCabe [6] and Halstead [7] are adopted and adjusted
with some definitions specific to Java.

3. Tool design

3.1 Framework of QESAT

The framework of QESAT is a partially complete
software system which is intended to be instantiated by
concrete functions. It consists of both frozen spots and
hot spots [8]. Frozen spots define the overall architecture
of the software system which remains unchanged in any
instantiation of the framework. Hot spots represent those
parts of the framework that are specific to individual
software systems. Different from typical frameworks, the
QESAT framework supports hierarchical reuse and
dynamic extensions.

43

Figure 1. Hierarchical architecture of QESAT
The dark shaded boxes in figure 1 represent the

framework of QESAT which is comprised of six parts:
Runtime platform, Common classes, and Services (Four
parts containing UI, Project management, Process
management, and help services). The runtime platform is
the kernel of QESAT. Its responsibilities are to boot the
system and manage plug-ins and other global system
properties. Common classes include utility classes and
services are used to group relative hot spots in the
framework which are instantiated by plug-ins. At the
same time, a plug-in can also be extended by way of
other plug-ins by declaring hot spots itself. A plug-in
interconnects with the framework or other plug-ins
through metadata files. This cuts down the coupling
between plug-ins and framework (interpreted in detail by
J.L. Ou [9]). In order to avoid dependencies in realization,
all plug-ins are physically controlled by the framework
while giving programmers a hierarchical view.

 The Java sub-system plug-in provides static and
dynamic analysis for Java program. This sub-system has
been extended by the metrics reporter plug-in. The result
presentation plug-in presents the results of the analysis by
way of diagrams, charts or tables. It is based on the UI
services and provides a monitor for Java sub-system
plug-ins by using a well defined XML schema. In order
to show the result of the metrics analysis, the result
presentation plug-in will transfer the data to the charts or
lists. Figure 2 depicts an example of a metrics chart:

Figure 2. Graphical visualization of metrics

values

3.2 Collection of metrics information

Depicted in figure 3, the Java parser processes Java
source code to generate a symbol table and Abstract
Syntax Tree (AST). The Metrics reporter collects metrics
information by moving along the AST and checking the
symbol table. Finally, the metrics values are calculated by

the metrics reporter. And the information is saved as
XML files which will be used for visual presentation.

Figure 3. Static analyzer architecture

The Java parser is automatically derived from a parser
generated by the Java Compiler Compiler (JavaCC) [10],
which is an open source application, provided by Sun
MicroSystems. The symbol table is generated by adding
actions which record definitions of identifiers to grammar
specifications - the input for JavaCC. The Java parser
generates the nodes in the AST whose filiations represent
the grammar structure of the source code. Based on the
information offered by the AST and symbol table, the
metrics reporter can extract all types of metrics
information. The grammar node is designed following the
visitor design pattern [11]. All of the nodes contain a
special method to accept visitors.

4. Case studies

4.1 Case study 1

The package measured was named “jstaticdata”, which

was developed by an inexperienced programmer. The
metrics results are presented in a graphical visualization
depicted in figure 2. In order to focus on the metrics data
instead of the user interface (mainly in the Chinese
language), we exported the measurement result files to an
Excel document and used them for illustrative purposes
in the following discussion.

Figure 4. DIT, NOC, RFC and WMC of each class

Figure 4 describes the DIT of all the classes measured.
The results show that they are either of values 1 or 2 and
that most NOC’s are 0. We can assume that the
inheritance hierarchy of these classes is not very complex.
Notice that the RFC of class No. 5 reaches 207 and its

44

WMC is 317. Both of them are excessively high in
comparison to the other classes. It was discovered that
there were 95 methods in this class but some of them
implement certain reusable functions that may be invoked
by members of other classes. Thus these methods need to
be separated from class No. 5 to form a new class. After
refactoring, the total number of methods in class No. 5
dropped to 67, the RFC became 124 and the WMC was
reduced to 152.

Attention was then focused on the methods themselves
in class No. 5. It was discovered that more than half of
the methods had McCabe values higher than 4. As most
of these methods implemented simple logic, the McCabe
values should be less than 4. After analyzing the code,
some blocks which implement similar functions were
found in many of the methods. Some of the methods were
wrapped by other loop or decision statements and worse
still, was that if the logic were to change in one block,
modifications to all similar blocks would need to be done.
Failure to modify all similar blocks would result in
hidden logical errors. After refactoring by extracting the
blocks to form a new method, the program had become
more understandable and maintainable. The metrics
results reflected the change and figure 5 shows the
McCabe metrics before and after refactoring.

Figure 5. McCabe contrast

Examining McCabe and Halstead values of the
methods in class No. 5, it was noticed that methods No.
11, 45, 53 and 58 had relative higher Halstead and
McCabe values than the other methods in the class. This
alerted programmers and testers to the probability of
hidden errors in these methods. Programmers were able
to take a pro-active approach and examine the logic used
in these methods. However, there are situations where it
is impossible to implement simple code. In these
situations, the testing of these areas should be stressed.

After refactoring, the RFC of class No. 5 dropped to
121, WMC fell to 187, approximately 40% of the
methods fell two McCabe value points lower, and
approximately 75% of the methods had shown some
decrease in the Halstead value. The large decrease in
metrics can be attributed to the fact that the programmer
who had written the methods was inexperienced with

software development. To support this, it is recorded in
our Software Problem Report that nearly 90% of the
errors in “jstaticdata” were derived from class No. 5. This
proved the intrinsic relationship between the value of
class metrics and the number of defects within the class.

4.2 Case study 2

Unlike case study 1, programs measured in this case

were developed by 3 programmers (herein referred to as
programmers A, B and C). The programmers
implemented operations to certain resources respectively,
such as add, modify and delete graphs in a database.
Programmer A was responsible for various resources
including graphs; programmer B dealt with resources
involving videos; and programmer C operated the
message resources. Although the types of resources were
different, basic operations were more or less the same and
their metrics were forecasted to be similar. Figures 6, 7
and 8 display the metrics values of classes implementing
graphing, video and message operations. The number
following every class name is the total number of
methods in that class.

Figure 6. Class metrics in “Graphic” package

Figure 7. Class metrics in “Video” package

45

Figure 8. Class metrics in “Message” package

The code in each of the operations is similar in size,
though different in structure. Programmer A used the
“SelectGraphic” class to enclose all operations of the
search criteria while programmer B separated these
operations into different classes. Programmer C not only
separated the operations, but also split the operations of
the database. We can presume programmer C used the
DAO pattern [12]. “MesDAO” could provide access to a
particular data resource without coupling the resource's
API to the business logic. This would have allowed data
access mechanisms to change independently of the code
which used the data. Although the code of programmer C
had more classes than the other programmers, the code
was more flexible, extensible and maintainable.

4.3 Summary

Our experiment seeks to attract more attention on the

usage of metrics. A workflow may be summarized for
improving the quality of a program. First, compute the
metrics of relative classes and their methods. Compare
the metrics values and any improper structures should be
revealed. Developers can then be made aware of which
areas are likely candidates for refactoring.

The DIT and NOC values of classes should be
checked first. A class with a higher DIT value can reuse
more methods; however, there is an increase in likelihood
that it is to be affected by other legacy classes. Therefore,
such behavior is hard to foresee and classes in this
structure are difficult to maintain. The NOC indicates the
amount of reuse that is available. A class with a high
NOC value may indicate that it is affecting other classes,
and thus, must be maintained carefully. In addition to
caution, testing in this area should be stressed. Secondly,
check the RFC. Classes with a high RFC value will prove
difficult to debug as such classes contain, or call, many
methods and communicate frequently with other classes.
Lastly, compare the WMC values. Classes with an

unusually high WMC value relative to the other classes
should be focused on and be considered for refactoring.
Typically, these modules tend to be more complex,
fallible and difficult to maintain. Despite the results in the
case studies, real world situations need to be handled
realistically. Situations where complex code cannot be
avoided should not be blindly subjected to the standard of
low metrics values. For programmers to pursue low
values at the cost of proper coding would be detrimental
to the overall program. To work in situations where high
metrics are accepted, an increased focus on testing is
required.

References

[1] Chidamber, S.R., and Kemerer, C.F., "Towards a Metrics
Suite for Object-Oriented Design", Conference proceedings on
Object-oriented programming systems, languages, and
applications, Phoenix, Arizona, USA, 1991, pp. 197-211.
[2] Chidamber, S.R., and Kemerer, C.F., “A metrics suite for
object oriented design”, IEEE Transactions on Software
Engineering, IEEE Press, USA, Volume: 20, Issue: 6, 1994, pp.
476-493.
[3] Harrison, R., Counsell, S.J. and Nithi, R.V., “An evaluation
of the MOOD set of object-oriented software metrics”, IEEE
Transactions on Software Engineering, IEEE Press, USA,
Volume: 24, Issue: 6, 1998, pp.491- 496.
[4] Zage, D. and Zage, W, “Module metric signature (MMS)
visualization”, Proceedings of 20th IEEE International
Conference on Software Maintenance, IEEE Computer Society,
USA, 2004, pp. 512.
[5] Lipow M., "Number of Faults per Line of Code", IEEE
Transactions on Software Engineering, IEEE Press, USA,
Volume 8, Issue 4, 1982, pp. 437-439.
[6] McCabe, T., “A complexity measure”, IEEE Transactions
on Software Engineering, IEEE Press, USA, Volume: 2, Issue: 4,
1976, pp. 308-320.
[7] Halstead M. H., Elements of Software Science, Operating,
and Programming Systems Series Volume 7, Elsevier, USA,
1977.
[8] W. Pree, "Meta Patterns -- A Means for Capturing the
Essentials of Reusable Object-Oriented Design", Proceedings of
the 8th European Conference on Object-Oriented Programming,
Springer-Verlag, Berlin, 1994, pp: 150-162.
[9] OU Jin-Liang , JIN Mao-Zhong. “A Method of Metadata
Modeling to Construct Extensible and Flexible Systems”，
Computer Science, Computer Science Press, China, July 2005
(In press).
[10] Java Compiler Compiler[tm]. https://javacc.dev.java.net/,
CollabNet Inc., 2004.
[11] Erich G., Richard H., Ralph E. J., John V., Design Patterns:
elements of reusable object-oriented software, China Machine
Press, China, 2000.
[12] Data Access Object[tm], Sun Microsystems, Inc., 2002,
http://java.sun.com/blueprints/patterns/DAO.html.

46

An Empirical Approach to Software Archaeology∗

Gregorio Robles, Jesus M. Gonzalez-Barahona, Israel Herraiz
GSyC, Universidad Rey Juan Carlos (Madrid, Spain)

{grex,jgb,herraiz}@gsyc.escet.urjc.es

Abstract

The term “software archaeology” provides a useful
metaphor of the tasks that a software developer has to
face when performing maintenance on large software
projects. The source code of a program at any point in
time is the result of many different changes performed in
the past, usually by several people, which can be tracked
when a version control system is used. We have designed
a methodology for analyzing with detail the age of the
source code in such cases, and have applied it to several
large software projects. As a part of the methodology,
we define a set of indexes which can help to character-
ize the history of a software system, and discuss how
those could be used to estimate its past and future main-
tenance. We also show how our approach to software
archaeology is simple both conceptually and computa-
tionally, but still very powerful at uncovering useful in-
formation.

Keywords: software archaeology, software main-
tenance, software evolution, empirical analysis

1. Introduction

The idea of applying the concept of archaeology1 [1]
to software maintenance can be tracked at least to
the OOPSLA 2001 Workshop on Software Archeology.
Software archaeology has been generally used for large
old (legacy) systems, but it is valid for any type of soft-
ware with independence of its age and size. While main-
taining a given piece of software, developers have to
understand source code that has usually changed many
times in the past, producing a result which is the addition

∗This work has been funded in part by the European Commission,
under the CALIBRE CA, IST program, contract number 004337, by
the Universidad Rey Juan Carlos under project PPR-2004-42 and by
the Spanish CICyT under project TIN2004-07296.

1In American English ‘archeology’. The term comes from the
Greek meaning ‘ ��������� �
	 ’ (ancient) and ‘ � ´���
�
	 ’ (word/speech).

of all those changes. If the code is stored in a version
control system, its complete history is available, and can
be analyzed with appropriate tools. In this short paper,
we will focus on the analysis of such a history from a
macro point of view, gaining knowledge of the histori-
cal structure of a system as a whole, the same way that
archaeologists gain knowledge of the history of an an-
cient city by studying what remains from the different
constructions built in it.

For studying projects from this macro-archaeology
point of view, we have designed a methodology, which
is presented in this paper, and a set of tools to automate
it. The methodology starts by determining, using infor-
mation from the version control system, when and who
modified for the last time each line of code. Then, the
information for all lines is considered to calculate sev-
eral indexes which provide useful information about the
age of the code, the activity of developers in the past, the
level of changes (maintenance), etc. Using this informa-
tion we may also be able to estimate how much effort
new changes would imply.

As case examples of the use of the proposed method-
ology we have selected nine libre (free, open source)
software projects, most of which are among the hundred
largest libre software applications included in the latest
stable Debian GNU/Linux release2.

The structure of this paper is as follows. The next sec-
tion shows the methodology we propose for data extrac-
tion and analysis. After that, in section three, we apply
our methodology and discuss the results obtained. The
forth section introduces a set of indexes that we propose
and briefly discuss. Finally, conclusions and further re-
search goals are presented.

2Debian GNU/Linux is one of the most representative distri-
butions, and probably the largest one. See details in http://
libresoft.urjc.es/debian-counting/sarge

47

2. Methodology

To define the methodology, we have considered soft-
ware projects which store source code in a version con-
trol system (in particular, CVS, although it could be eas-
ily extended to some other). CVS keeps record of every
change in the code. It features a specific option (‘anno-
tate’) which shows, for any line, the date and author of
the last modification.

The process starts by obtaining, for every source file
in the current snapshot of the software, the correspond-
ing annotated files. They are stored and parsed. Source
files are identified by applying certain heuristics on the
file names (for instance, those ending in .c are supposed
to be C source files). For considering just code, blank
lines and comments are removed also using some other
heuristics. In addition, we run some error-correction
routines which check for common errors found when
mining data from CVS; in order to verify our heuris-
tics, we have compared the number of SLOCs obtained
with SLOCCount3 with the number of lines obtained af-
ter applying our heuristics.

Once the annotated files have been parsed, and the
mentioned heuristics applied, the resulting data is nor-
malized and inserted into a database, which will be later
queried for getting statistical information. This process
is performed by a set of scripts which are also responsi-
ble for the generation of the kind of graphs shown in this
short paper.

3. Case studies

We have applied the described methodology to the
code produced by nine libre software projects. They
show a great variety from many points of view (age, size,
complexity, number of developers, etc.), but all of them
are included in major GNU/Linux distributions, which is
an evidence of their popularity. In total, our case studies
sum up to 9.5 millions lines of code, written mainly in C
and C++, and 52,975 source code files. Table 1 presents
the most important facts about the code considered.

3.1. Remaining lines

Figure 1 shows how many lines remain untouched
since any past date for all the projects relative to the size
of each project. The horizontal axis is time, while the

3We use the ‘–duplicates’ option which counts duplicated files
twice as our tools, contrary to SLOCCount, do not filter them
out. SLOCCount is available at http://www.dwheeler.com/
sloccount

Figure 1. Remaining lines (relative values)

vertical axis is measured in percentages (being 100% the
current size of the project). In the figure we can see what
which fraction of code is newer than a date. For exam-
ple, for the case of Apache, approximately 60is posterior
to December 1998.

Interestingly enough, the code in all projects is
young. Besides Apache 1.3, at least half of the code
in all of them is younger than 5 years. Even the code
base for Emacs, which we had selected as a legacy sys-
tem, has a large fraction (up to 70%) which is less than
7 years old.

Apache 1.3 has to be considered separately, since de-
velopers are now focused on Apache 2.0, where the main
development effort is taking place. However, we ex-
pected that at least some corrective maintenance effort
would be happening in 1.3, but at least since 2003 that
does not seem to be the case.

In the other end of the spectrum, with most of the
code being really new, we find GCC, Evolution, GIMP
and Wine. in all these cases, this is due, probably, to
recent refactorings of the code, including structural and
organizational changes.

4. Indexes

To get useful information from software archaeology,
it is convenient to use some parameters that help to char-
acterize the history of the project from this point of view.
This is the reason why we have defined some indexes
that may help to infer some properties of the correspond-
ing development and maintenance process.

48

Project Start Vers. 1.0 Oldest line SLOCs SLOCCount Percent. Files Authors
Emacs (1976) 1985 May 85 974,407 991,552 98.3% 1,522 136
GCC 1985 1987 Sep 97 2,191,764 2,262,632 96.9% 22,349 218
Wine 1993 - Oct 98 1,033,318 984,710 104.9% 2,201 2
GTK+ 1994 Apr 98 (Dec 97) 387,413 389,723 99.4% 839 114

The GIMP 1994 Jun 98 (Dec 97) 548,410 552,473 99.3% 2,244 71
Apache 1.3 1995 Jun 98 Feb 96 82,909 85,758 96.7% 269 51

kdelibs 1997 Jul 98 May 97 605,528 613,742 98.6% 3,131 363
Evolution 1998 Dec 01 May 98 205,278 207,069 99.1% 816 79
Mozilla (1998) Jun 02 (Apr 98) 3,414,387 3,510,691 97.3% 19,604 567

Table 1. Summary of the case studies. Columns contain the project name, the year the project
started its development, the date of its release 1.0, the number of SLOCs according to our
methodology, the number of SLOCs according to SLOCCount, the coincidence for both figures,
the number of files, and the authors identified in the current version.

4.1. Definition of the indexes

• Aging (measured in SLOC-month). It is a direct
measure of how much the software is aging.

Aging =

N−1∑

n=1

linesn (1)

where n is the month number, being n=1 the first
month of the project and N the current one. Notice
that the last month is not taken into account.

This index is defined after Parnas’ well-known soft-
ware aging [2] concept, although we only have in mind
one of the factors. If we would stick to Parnas’ origi-
nal definition of aging, then we should take into account
changes performed on the system, and not only that the
software gets old as humans do.

• Relative aging. This index makes it possible to
compare the aging for several projects. It is mea-
sured in months and can be obtained from follow-
ing equation:

RelativeAging =
Aging

linesN

(2)

where N is the last month considered.

Relative aging represents the amount of time neces-
sary to have the same aging, had the project started with
the current number of lines. Of course, it can also be un-
derstood as the number of months needed to double the
current aging of the project if the system is not touched
anymore.

• Relative 5-year Aging: relative size to itself as if
the project were 5 years old.

Rel5yA =
Aging

60 · linesN

(3)

where N is the last considered month

Relative 5-year aging allows for easier comparison,
defining 5 years as the moment for a system to become
‘old’. It is also a needed step for defining the absolute
5-year aging index (which will be presented later).

• Progeria4. As relative aging measures the amount
of time needed to double the aging value, we can
compare it to the amount of time needed to double
the code base.

Progeria =
RelativeAging

50%ofCurrentCode
(4)

Values of progeria lower than 1 are indicative of ac-
tive maintenance. Projects featuring those indexes have
not to fear the consequences of high values of aging.
However, values above 1 imply that aging is growing
faster than software maintenance activity and therefore
are prone to showing more and more problems.

A new index that provides a value relative to a fixed-
size and a fixed-time software system will enable com-
parison among projects.

• Absolute 5-year aging: relative size as if the
project had 100 KSLOC and had been started 5

4Progeria is a genetic condition which causes physical changes that
resemble greatly accelerated aging in sufferers. Source: WikiPedia

49

Project Size Age Aging Rel. Aging Rel5yA Progeria Abs5yA
Emacs 974,043 239 62,419,261 64.1 1.07 0.93 10.40
GCC 2,188,033 91 65,558,122 30.0 0.50 0.65 10.93
Wine 1,028,820 78 26,926,319 26.2 0.44 0.80 4.49
GTK+ 387,333 88 16,938,898 43.7 0.73 1.04 2.82

The GIMP 540,540 98 16,002,332 29.6 0.49 0.59 2.67
Apache 1.3 82,909 110 6,161,847 74.3 1.24 1.10 1.03

kdelibs 604,888 95 20,089,807 33.2 0.55 1.04 3.35
Evolution 204,951 99 4,796,800 23.4 0.39 0.66 0.79
Mozilla 3,786,735 84 161,394,929 42.6 0.71 1.00 26.90

Table 2. Archaeology indexes for our case studies. Size is given in SLOC, Age in months, Aging
in SLOC-month, Relative Aging in months, Progeria, Rel5yA and Abs5yA are indexes.

years (60 months) ago. Serves for comparison pur-
poses among projects.

Abs5yA =
Aging

60 · 100K
(5)

where N is the last considered Month.

4.2. Application to the case studies

Table 2 shows how the aging index is not too useful
for comparison purposes (although it provides a good
idea of the absolute aging). However, relative aging al-
lows for those comparisons. We can see in the corre-
sponding column of the table a summary of the infor-
mation in figure 1. Apache and Emacs are the systems
with the highest relative aging. Evolution, Wine and The
GIMP have values in the 20s, which mean that they are
still in actively maintained.

With respect to progeria, it can be said that it shows
how Mozilla balances aging and evolution, while there
are four projects which are becoming old systems:
Apache and Emacs (which at this stage of the analysis is
not surprising at all), but also GTK+ and kdelibs.

The absolute 5-year aging depends on the size, and
has been presented as a proxy of maintainability. It
shows that Apache, even having high progeria and ag-
ing is still more friendly to be maintained than the rest
of systems (except for Evolution) because of its small
size. Emacs and GCC, even having the latter two times
the size of the former, have similar values, while GTK+
and GIMP also show this behaviour.

5. Conclusions and further research

In this paper we have presented an empirical appli-
cation of the archaeology concept to the macro study of

projects maintained in version control systems, with spe-
cial focus on libre software projects. We have devised a
methodology for that study, from which we have defined
several indexes which can be used to summarize the de-
velopment process from the point of view of aging and
maintenance.

One of the key findings of this work has been to
show that the application of the methodology to the case
examples has provided some insight about the mainte-
nance efforts, and the maintainability of the correspond-
ing projects. From a more general point of view, the
characterization of a project by several indexes that con-
tribute with useful information about its age and main-
tainability is probably the key contribution of our work
and may help in the decision-taking process by the de-
velopment teams in libre software projects or by the
management team in industrial software companies.

There are many possible future lines of research to
explore this approach. First of all, we are looking for
better ways of visualization of the archaeological results
from a macroscopic point of view. We are also inter-
ested in finding relationships with the parameters used
in software evolution studies, and in correlating them
with effort estimation.

As a summary, we believe that software archaeology
provides an interesting framework for digging in the past
of a project, so that we can learn patterns and informa-
tion relevant to infer its future.

References

[1] A. Hunt and D. Thomas. Software Archaeology. IEEE
Software, 19(2):20–22, 2002.

[2] D. L. Parnas. Software aging. In Proceedings of the In-
ternational Conference on Software Engineering, pages
279–287, Sorrento, Italy, May 1994.

50

Constructing a Knowledge Map for a Software Maintenance Organization

Oscar M. Rodríguez-Elias1, Ana I. Martínez-García1, Aurora Vizcaíno2,
Jesús Favela1, Mario Piattini2

1CICESE, Computer Science Department, Ensenada, B.C., Mexico

{orodrigu | martinea | favela}@cicese.mx
2University of Castilla-La Mancha, Escuela Superior de Informática, Ciudad Real, Spain

{Aurora.Vizcaíno | Mario.Piattini}@uclm.es

1. Introduction

Software maintenance requires lots of knowledge.
Maintainers must know what changes should do to the
software, where to do those changes and how those can
affect other modules of the system. Frequently they do
not have enough knowledge to make the best decision
and must consult other information sources, but these
are often unknown or difficult to locate. A knowledge
map can help to easily find sources that can be used to
obtain the information or knowledge required to per-
form a specific task; since these maps can be used to
point to the sources of specific information or know-
ledge [1]. This paper presents a work where, qualitative
and theoretical research has been applied to develop a
knowledge map for a software maintenance organiza-
tion. This map has been used in the development of a
knowledge management prototype that could help
software maintainers searching for knowledge and in-
formation sources to do their jobs.

2. Identifying the knowledge required by
maintainers, and its sources

To build the knowledge map, we investigated and
identified the main topics of knowledge that software
maintainers require to do their jobs. First we carried
out a case study in a software maintenance group to
understand the processes and activities performed by
the group, the knowledge they require to do their ac-
tivities, and the sources they use to obtain that know-
ledge. Then, we performed a bibliographic research to
compare our findings to define a more general classifi-
cation schema for types of knowledge and its sources.
The literature review was based on research papers,
such as case studies, software maintenance ontologies,
standards for software engineering and maintenance,
and the SEWBOK [2]. However, we used the case

study to focus and establish the basis of a practical
classification for the group studied. Next, we describe
how the knowledge map was developed.

3. Constructing the knowledge map

To construct the knowledge map we first defined a
classification schema and structure the types of know-
ledge and knowledge sources. The classification
schema was used to define a metamodel which des-
cribes the relationships of the knowledge subjects and
its sources. Then we defined a template to describe
specific knowledge subjects and sources. These des-
criptions were used to construct the knowledge map by
representing knowledge subjects and sources into a
XML format. Next, we present this development.

3.1 Classification of the types of knowledge
and their sources

Knowledge subject classification
The classification of knowledge subjects was done

following a schema that consists of three levels of ab-
straction: categories, knowledge areas and knowledge
subjects. At the first level are categories, which are
structural elements of high level abstraction used to
classify related areas of knowledge. A category can
also contain more specialized categories. In the second
level are the knowledge areas, which are subdivisions
of the categories that are logically related with them,
for example by aggregation or composition. An area
can contain more specialized sub-areas or knowledge
subjects. The subjects represent basic concepts with an
explicit and well defined description. They are used to
describe knowledge about a set of elements that can be
considered as a unit. However, a subject can also be
composed by more detailed subjects. Following the
schema just described, we defined some general areas

51

of knowledge grouped into three main categories: (I)
the knowledge related to the software maintenance
process; (II) the knowledge required for the organiza-
tion’s life; (III) and the general knowledge that is not
part of the other two categories.

The knowledge category of the maintenance ac-
tivities is the most important, and most of the areas of
knowledge are grouped here. This category is com-
posed by three subcategories: 1) Computing fundamen-
tals contains areas of general knowledge about com-
puting, such as operative systems, programming lan-
guages, etc.; 2) Software engineering considers the
knowledge related with the phases of the software de-
velopment life cycle, such as project management,
analysis and design, etc.; and 3) Application knowledge
category, groups the knowledge related with the appli-
cations maintained by the team, such as specific
knowledge about the products, for instance the archi-
tecture, structure, functionality, history, etc.; and the
knowledge of the domain that the applications support.

The organization’s life knowledge category con-
siders the knowledge that is not directly related to the
activities of software maintenance, but that all employ-
ees must know, such as the structure, norms and poli-
cies, goals, etc. of the organization; and knowledge
about other processes followed by the organization.

Finally, in the general knowledge category, the
knowledge and skills that are not part of the daily
work, but can be useful for special purposes, are con-
sidered. For example, foreign languages speaking and
writing, group work coordination, leadership, etc.

Maintenance activities
knowledge

<<KCategory>>

Computing
fundamentals

<<KCategory>>

Programming
languages

<<KArea>>

C++ Sintax
<<KSubject>>

C++
<<KSubject>>

C++Semantics
<<KSubject>>

C++ Builder
<<KSubject>>

Visual C++
<<KSubject>>

Ansi C++
<<KSubject>>

Maintenance activities
knowledge

<<KCategory>>

Computing
fundamentals

<<KCategory>>

Programming
languages

<<KArea>>

C++ Sintax
<<KSubject>>

C++
<<KSubject>>

C++Semantics
<<KSubject>>

C++ Builder
<<KSubject>>

Visual C++
<<KSubject>>

Ansi C++
<<KSubject>>

Figure 1. Knowledge subjects classification example.

Figure 1 illustrates an example of the knowledge
subject’s classification schema. This example shows
how a specific programming language, such as C++,
has been classified into a programming languages area,
which is grouped into the computing fundamentals
subcategory that corresponds to a part of the know-
ledge required for the activities performed by the mem-
bers of the organization, in our case, the software
maintenance activities.

Knowledge sources classification
A schema composed of categories and types of

sources was used for classifying the sources of infor-
mation and knowledge.

Sources of knowledge were divided into four cate-
gories: (I) documentation, (II) people, (III) the main-
tained systems’ elements, and (IV) support tools. Next
we describe each of these categories.

Documentation category groups all the kinds of
documents that can be used by the maintenance group.
These documents were classified into six main types:
1) System documentation, 2) Technical documentation,
3) User documentation, 4) Organizational documenta-
tion, 5) Maintenance process documentation, and 6)
Other documents.

The people category refers to all the persons that
are consulted by the members of the maintenance
group. This category has been divided into three: 1)
Users/Clients (Even though users and clients play dif-
ferent roles, we have decided to take them as a single
category since in the group studied there is not a clear
separation between the roles played by users and cli-
ents [5]). 2) Staff members are all the persons working
in the maintenance group; and 3) Other experts refers
to all the persons that are not staff members or users,
but that are consulted by maintainers to obtain special-
ized knowledge, such as knowledge about the applica-
tion domain, a specific programming language, etc.
These experts can be either internal or external to the
organization. For example, some maintainers consulted
friends that are not in the organization, or consulted
experts through internet newsgroup, email lists, etc.

The system category refers to all the elements that
constitute the products that are being maintained and
that can be sources of information and knowledge.
These elements have been divided into three types: 1)
Executable system, 2) Source code, and 3) Data bases
of the systems maintained.

Finally, the support tools category is concerned
with all the tools used by maintainers to obtain infor-
mation or knowledge. These tools have been divided in
two types: 1) Maintenance activities support tools are
those used for supporting activities of the maintenance
process; and 2) General support tools are those that are
not directly related to the maintenance activities. For
example, organizational memories or portals, content
management systems, document repositories, etc.

Figure 2 presents and example of the knowledge
sources classification schema; where two types of
documents with information directed to the users of the
applications maintained (the user and installation
manuals) are classified as user documentation; which is
a subdivision of the documentation category.

52

Documentation
<<KSourceCategory>>

User manual
<<KSourceKind>>

User documentation
<<KSourceKind>>

Installation manual
<<KSourceKind>>

Documentation
<<KSourceCategory>>

User manual
<<KSourceKind>>

User documentation
<<KSourceKind>>

Installation manual
<<KSourceKind>>

Figure 2. Knowledge sources classification example.

Knowledge topics and sources metamodel
A metamodel was defined based on the classifica-

tion schemas to help define the relationships between
the topics of knowledge, their sources, and the activi-
ties where knowledge and sources are required, gener-
ated or modified. Figure 3 shows the general view of
this metamodel. The topics and sources of knowledge
are considered as knowledge concepts. These know-
ledge concepts are used and can be generated or modi-
fied in the processes, activities or tasks performed by
maintainers; defined as work definitions (concept took
from the SPEM specification, and that refers to a kind
of operation that describes the work performed in a
process [3]). Each work definition has a purpose, de-
scribed as a goal. Each source of knowledge can also
have information or knowledge about topics or other
sources. The levels of experiences or details about the
knowledge and information can be defined with KLevel
elements. Finally, sources of information can have a
location where they are consulted, such as physical
address, email, electronic address, etc.; and a format,
for example pdf, word, or excel for electronic files.

KTopic

KSubject

Klevel

Task

Decision

KConceptGoal

WorkDefinition

required

generates/modifies

has

Activity

Process

KSourceCategory

KSourceKind

KArea

KCategory

LocationKind

Location

KSource

+knownConcept

knowsAbout

hasKind

1..*
locatedIn

Format
0..*0..*

11

1..*

KTopic

KSubject

Klevel

Task

Decision

KConceptGoal

WorkDefinition

required

generates/modifies

has

Activity

Process

KSourceCategory

KSourceKind

KArea

KCategory

LocationKind

Location

KSource

+knownConcept

knowsAbout

hasKind

1..*
locatedIn

Format
0..*0..*

11

1..*

Figure 3. Metamodel of knowledge and sources.

Following the metamodel, we defined two tem-
plates to describe specific topics and sources of know-
ledge. The templates and their use are described next.

3.2 Describing knowledge subjects and their
sources

To describe knowledge subjects we followed the
template exemplified in Table 1. In this template, each
subject is identified by a name and a short description.
Then, the main cognitive and technical knowledge re-
lated to the subject are defined. Cognitive knowledge
refers to know what, for example, which activities we
must do, what information is required to do these,
where we can find that information, etc. Declarative or
cognitive knowledge can be divided in two types [4]:
1) topic knowledge, that refers to knowledge about
concepts, their definitions, properties, and relation-
ships; and 2) episodic knowledge, that represents the
experiences on the use of knowledge. Finally, proce-
dural or technical knowledge helps to know how an
activity should be done.

The example of Table 1 refers to the knowledge re-
lated to an activity. The topic knowledge items can be
used to identify sources that can help to obtain infor-
mation about the topics defined. The episodic know-
ledge items establish the situations that can cause gen-
eration of knowledge related to the subject. These defi-
nitions can be used to identify people that have been
involved in one or more of these situations. Procedural
knowledge definitions can be used to identify sources
of knowledge that can be useful to obtain information
about how to do something related to the subject.

Table 1. Example of a knowledge subject description.

Knowledge
subject

Description

Episodic
Knowledge

Procedural
Knowledge

How to access the module
How to make changes in the module

How to identify problems in the module

Experience using the check bills elaboration
module

Experience modifying the check bills elaboration
module

How to correct problems in the module

Experience developing the check bills elaboration
module

Performing modifications to the check bills
elaboration module in the finances system

Knowledge about the check bills elaboration
process in the finances system, and about how to
modify the module

Topic
Knowledge

Which is the module of check bills elaboration

Which are the surce files of the module

Where are those files
Related modules
Which is the programming language used

The sources of information and knowledge are des-

cribed by templates as the showed in Table 2. Each
source has a unique identification (id), a short descrip-
tion, and it is classified in a category and a kind. Each
source can be consulted, at least, in one location. Loca-

53

tions are defined by its type and a description that is
used to provide specific access data. Depending on the
location, the source can have a physical support (such
as paper, video tape, CD, etc.) and a format; for exam-
ple, the source described in Table 2 is an electronic
file, a word 2000 document. Finally, the main informa-
tion and knowledge subjects that can be obtained from
the source can be specified into the “knows about” list.
This information is later used to identify in which ac-
tivities the source can be helpful.

Table 2. Example of a knowledge source description.

Source id:
Category

Kind

Kind Description Physical
support Format

Electronic file

Directory:
"c:\projects\p1230\doc
umentation\" on
project files server

word
2000

p1230_requerimientos.doc

Documentation

System documentation / Requirements

Concept Level

Requirements of SIREFI system Advance

Description Document containing the requirements
specification of the finances system SIREFI

Located at

Knows about

The templates were used in the initial phase of our

work. The resulted knowledge map has been used in a
prototype of a KM system. An example of how the
system uses it is presented in the next section.

4. Using the knowledge map

The prototype of the KM system is based on a
multi-agent architecture where there is a staff agent
that plays the role of assistant of a member of the
maintenance team [5]. When the staff agent detects that
the maintainer is performing an activity, it tries to iden-
tify the knowledge required by that activity. For exam-
ple, if the maintainer wants to solve a problem re-
ported, the agent obtains information from the problem
report, such as the system and the module where the
problem appeared, the type of problem, etc.; then, it
tries to infer what knowledge can be required to solve
that problem; for example, which are the source code
files of the module, where they are, etc.

Once the agent finishes defining the list of subjects
of knowledge, it starts searching for knowledge
sources that could have information about the subjects
defined. When the search is finished, the agent informs
the user that there are sources of information that can
be relevant to the activity being done. If the user de-
cides to consult those sources, the system shows a
window with the sources found, grouped by types.

When the user chooses one of the sources, the system
shows information such as how or where that source
can be consulted, and the main subjects of knowledge
related to the activity, that can be obtained from it.

The prototype and the preliminary knowledge map
where tested following scenarios obtained from the
case study carried out [5]. The knowledge map was
developed with information obtained from the group
studied, and represents real situations.

5. Conclusions and future work

Finding methods and tools that help software main-
tainers reduce the time needed to do their jobs can pro-
vide major benefits to software organizations; for ex-
ample, by helping maintainers reducing the time they
spend searching for sources of information to obtain
the knowledge they need to perform their jobs. In this
paper we presented how we developed a knowledge
map for a software maintenance team, by classifying
the main knowledge required by the members of the
team and the sources of information available. This
map also helps to identify where that knowledge and
sources can be required by defining the relationships
between the types of knowledge, the sources, and the
main activities performed by the team.

We have used the knowledge map in a prototype of
a KM system. However, more research must be done to
measure how useful the map could be in a real envi-
ronment. In order to make that research, a more com-
plete knowledge map should be developed and adapted
to the maintainers’ work environment.

Acknowledgements

This work is partially supported by CONACYT under
grant C01-40799 and the scholarship 164739 provided to the
first author, and the MAS project (grant number TIC2003-
02737-C02-02), Ministerio de Ciencia y Tecnología, SPAIN.

References

[1] T. H. Davenport and L. Prusak, Working Knowledge:
How Organizations Manage What they Know. Harvard
Business School Press, Boston, Massachusetts, 2000.

[2] A. Abran, J. W. Moore, P. Bourque, R. Dupuis, and L. L.
Tripp, "SWEBOK: Guide to the Software Engineering
Body of Knowledge," IEEE Computer Society, Los
Alamitos, CA., 2004.

[3] OMG, "Software Process Engineering Metamodel Speci-
fication (SPEM)," Object Management Group, 2002.

[4] P. N. Robillard, "The Role of Knowledge in Software
Development," CACM, vol. 42, 1999, pp. 87-92.

[5] O. M. Rodríguez, A. I. Martínez, J. Favela, A. Vizcaíno,
and M. Piattini, "Understanding and Supporting Knowl-
edge Flows in a Community of Software Developers",
LNCS 3198, 2004, pp. 52-66.

54

Incremental Product Line Modelling

Serguei Roubtsov and Ella Roubtsova
Eindhoven University of Technology,Den Dolech 2, P.O.Box 513 5600 MB The Netherlands

S.Roubtsov@tue.nl E.Roubtsova@tue.nl

Abstract

A traditional software product line approach struggles
with complexity and weak evolution support. We propose
an incremental product line approach based on controllable
inheritance of product model specifications. We use hier-
archies of inherited product specifications accompanied by
correctness control of product model transformations. An
industrial case study from the embedded systems domain is
provided to demonstrate the approach.

1. Introduction

Software product lines (SPL) employ an architecture-
based methodology of software system development. It
starts by choosing a set of products comprising a prod-
uct line and proceeds by identifying what requirements are
common to all products (commonalities) and what prod-
uct features make them different (variabilities). Common-
alities between SPL members are captured by a generic ar-
chitecture. Variabilities are usually introduced into this ar-
chitecture by means of variation points, which imply unre-
solved diversity in the generic and component architectures
that should be explicitly introduced and bound into a con-
crete product during product line member development.

A common SPL architecture with variability manage-
ment fulfils a double role. Firstly, it provides the reference
of integrity for SPL component reuse. Secondly, the diver-
sity of all product line members, existent or future, should
correspond to the variability already implicit in the generic
architecture. So, the SPL architecture should provide cor-
rectness of product modifications.

However, there are some disadvantages of such an
architecture-centric approach. The first problem is com-
plexity. Among other tasks design of the reusable SPL ar-
chitecture is an especially complicated problem. The more
variability is introduced into the architecture, the more ben-
efits of reuse should be expected. However, design of such
a flexible architecture meets a truly challenge.

The second problem is evolution support. Requirements
are changed, technology is improved. It is very hard to pre-
dict the features and, therefore, the architectures of future
product line members.

The possible alternative is component-based software
development. It implements component modification and
composition instead of architecture-based variability man-
agement. Similar implemented products are reused with ex-
tensions which are required for a new product. However, in
the absence of a fixed common architecture the problems of
SPL integrity and product design correctness rise sharply.
Component modification and composition rules are static,
they do not guarantee that the entire system behaviour com-
prises the behaviour of composition parts in a correct man-
ner. The evolutionary approach needs a design methodology
that can help designers collect useful features of already im-
plemented SPL members and avoid incorrect design deci-
sions while they introduce new product functionality.

We propose an evolutionary software product line mod-
elling method based on the inheritance of product design
specifications and correctness control of model transfor-
mations. In our approach design specifications are imple-
mented using a UML profile with defined inheritance rela-
tions on specifications. The profile includes a special type
of UML class diagrams, interface-role diagrams. Compo-
nent system behaviour is specified in the profile using UML
sequence diagrams. Process semantics is used as a basis for
inheritance relations on component behavioural specifica-
tions [2].

Correctness control is provided by product model trans-
formation checks using bisimulation inheritance of pro-
cesses [1]. Applying of backward derivation rules to pro-
duce a parent process specification from an inheritor’s one
allows a designer to prove correctness of inheritance or to
find the points of wrong design decisions.

The next section describes a case study from the em-
bedded systems domain. Section 3 explains our method and
provides illustrations using the case study. That section also
contains a conclusion and some observations about future
work.

55

2. Case Study: Scientific Silicon
Array X-Ray Spectrometer

Our case study is a product line representation of Sci-
entific Silicon Array X-Ray Spectrometer (SIXA) Control
Software 1. This is an onboard satellite system that provides
scientific data in two measurement modes: Energy Spectra
(EGY) and Single Event Characterization (SEC). There are
several variants of SIXA spectrometer with different fea-
tures. We intend to model two members of the SIXA soft-
ware product line: stand alone EGY Controller and com-
bined EGY and SEC Controller.

The SIXA Controller fulfils the following functional re-
quirements. It 1) receives measurement programmes from
the ground via a satellite computer, 2) provides data mea-
surement, 3) collects and sends data back.

The system comprises four interconnected subsystems:

• Measurement Control subsystem. This subsystem pro-
vides Controller Commands interface with an onboard
satellite computer. External control commands and
measurement programmes come via this interface.

• Data Acquisition subsystem. It executes measurement
programmes received via its interface Control Data
Acquisition from Measurement Control subsystem.

• Data Management subsystem. It fills its internal buffer
with data received from Data Acquisition subsystem
via interface Save Data and sends scientific data back
to the ground via Satellite Computer interface Con-
troller Data Response following commands from Mea-
surement Control subsystem via interface Control File
Management.

• Satellite Computer that is regarded as an external sys-
tem. It uses Spectrometer interface Controller Com-
mands and receives scientific data via its own inter-
face Controller Data Response.

The described above functionality is common for the entire
SPL. The variability is defined by the different measure-
ment modes that have to be implemented. EGY and SEC
modes are realized by different Data Acquisition subsys-
tems and corresponding interfaces Control Data Acquisi-
tion and Save Data. There is another difference: EGY Con-
troller Data Management subsystem sends data to the satel-
lite computer after a measurement programme has been ful-
filled completely, whereas SEC Controller Data Manage-
ment subsystem is able to initialize data exchange when its
internal buffer is full. So, that subsystem should be able to
send such a request to Satellite Computer.

1 We thank Prof. Eila Niemela and Tuomas Ihme from VTT Electron-
ics, Finland for sharing the insights into this case study

EGY and SEC Controller has to provide functionality of
each stand alone mode whatever has been chosen by the
ground measurement programme.

Start EGY programme

Analog electronics_ON

Clear Data Buffer

Start EGY
Observation Time

Start EGY
Measurement

Send EGY Data

EGY Observ. Time
has been Finished?

Analog electronics_OFF

yes

no

All targets

have been observed?

yes

no

Ground Contact

Give Number of Blocks

Send Number of Blocks

Start Contact

Send Next Block

All blocks

have been sent?

yes

no

ContactOK

Start SEC programme

Analog electronics_ON

Clear Data Buffer

Start SEC
Observation Time

Start SEC
Measurement

Send SEC Data

Buffer Full?

Analog electronics_OFF

yes

no

yes

Ground Contact

Give Number of Blocks

Send Number of Blocks

Start Contact

Send Next Block

All blocks

have been sent?

yes

no

ContactOK

SEC Observ. Time
has been Finished?

no

Figure 1. Observation algorithms for SIXA
Spectrometer. On the left hand side: EGY
mode; on the right hand side: SEC mode;
measurement sub-process is above − − −−
line; data exchange sub-process is below.

The behavioural requirements to the SIXA Spectrometer
software are defined by two data observation processes, one
process for each observation mode. Both processes com-
prise two sequential sub-processes: data measurement and
data exchange. Using usual algorithmic notation the pro-
cesses can be described as it is shown in Fig. 1. Each block
in Fig. 1 corresponds to an operation call that is performed
by interacting SIXA Controller software subsystems and
supported by hardware signals.

The data exchange sub-process is common for EGY and
SEC modes. The data measurement sub-processes are par-
tially different. The dark blocks in Fig. 1 depict the steps
of the measurement sub-processes which are different for
EGY and SEC modes.

56

3. Incremental Product Line Modelling
Method

The method comprises two parts: product model specifi-
cation and the definition of inheritance of product specifica-
tions with the derivation rules allowing to prove correctness
of model transformations.

The product line member specification is a pair PrSp =
(IR,BS) where IR is an interface-role specification and
BS is a behavioural specification.

The interface-role specification describes static as-
pects of product functionality. Roles can provide interfaces,
which other roles can require. Each such a pair of roles in-
teracting via an interface can model a piece of product
functionality, i.e. a product feature. So, product functional
requirements can be mapped directly to interface-role spec-
ifications.

SatelliteCo
mputer

<<Role>>

EGYMeasurementControl
<<Role>>

IController
Commands

EGYDataAcquisition
<<Role>>

IControl
EGYDataAcquisition

EGYDataManagement
<<Role>>

IControlFile
Management

ISaved
EGYData

IControllerData
Responce

Figure 2. Interface-role diagram for EGY Con-
troller

The interface-role specification is realized in the UML
profile [2] and presented by a UML class diagram, where
roles are UML classes with stereotype ¿RoleÀ and inter-
faces are classes with stereotype ¿InterfaceÀ. Interfaces
are depicted by cycles. Provided relations are presented by
UML realize-relations between roles and provided inter-
faces and depicted by solid lines. Required relations are
the same as UML dependency relations between roles and
required interfaces. A required relation is depicted by a
dashed arrow directed from a role to a required interface.
The interface-role diagram of EGY Controller is shown in
Fig. 2.

The behavioural specification describes dynamic aspects
of product functionality. A grain of product behaviour is
presented by a pair of actions [2]. The first action of the
pair is an operation call, the second one is an operation re-
turn.

As a result of product IR specification, action set APrSp

is introduced for the entire product specification: APrSp =
{a1, a2, ...}.

Using action set APrSp we construct behavioural spec-
ification BS as a finite set of sequences representing prod-

uct behavioural patterns [2]: BS = {S1, S2, ..., Sn}, where
Si, ∀i = 1, 2, ..., n is a sequence of actions aj , ak ∈
APrSp,∀j, k = 1, ..., |APrSp|: Si = {aj , ak, ...}. The defi-
nition means that we can construct behavioural pattern Si

using any action from action set APrSp any number of
times.

The behavioural specification is realized in the UML
profile [2] and presented by a set of UML sequence dia-
grams, one diagram for each sequence Si.

We regard inheritance of product line members as inher-
itance of product behaviour. If, for example, product EGY
and SEC Controller inherits product EGY Controller, then
it inherits the possibility to observe energy spectra and ex-
tends it by the SEC spectra observation facility.

Behaviour specification BSq = {S1q , S2q , ..., Snq} in-
herits BSp = {S1p , S2p , ..., Smp} if n ≥ m and each se-
quence Siq inherits corresponding sequence Sip . Each se-
quence Si is defined by set of actions APrSp and this set is
defined by the set of required relations on product interface-
role specification IR.

Inheritance of roles is defined in the UML profile [2]
and corresponds to the specialize-relation between UML
classes. The relation is shown on the interface-role diagram
by a solid line with the triangle end −B directed from role-
child to role-parent. The interface-role diagram of EGY and
SEC Controller is shown in Fig. 3.

As a result of inheritance, the child interface-role spec-
ification comprises two parts: IRq = (IRInh

q , IRNew
q),

where IRInh
q contains inherited roles, their provided inter-

faces and provided relations, and, possibly, required rela-
tions; IRNew

q is a new part, which contains new roles, in-
teracting via new interfaces; it realizes new product func-
tionality and inherits the functionality of a parent product.

The inheritor EGY and SEC Controller has to utilize
functionality of EGY Controller and extend it by new SEC
Controller functionality. New functionality is realized by
three new interfaces of the child roles (Fig. 3).

To define inheritance of product behaviour we apply pro-
cess semantics on behavioural specifications BS. Follow-
ing [1] we use a process semantics of type P = (A,P, T),
where: A is a finite set of actions; P = {p, p1, p2, ..., pF } is
a finite set of abstract states from initial state p to final state
pF ; T is a set of transitions. Transition t ∈ T defines a pair
of states (p′, p′′), such that p′′ is reachable from p′ as a re-
sult of action a ∈ A: p′ a=⇒ p′′.

Considering set of actions A as set APrSp we construct a
single process graph for the entire product behaviour spec-
ification. Each finite sequential path on this graph corre-
sponds to sequence Si from product behaviour specifica-
tion BS.

The process graph for EGY Controller is shown in Fig. 4
a). It contains the only sequential path. The behaviour spec-
ification for EGY and SEC Controller contains three se-

57

SatelliteComputer
<<Role>>

EGYMeasurementControl
<<Role>>

IController
Commands

EGYDataAcquisition
<<Role>>

IControl
EGYDataAcquisi...

EGYDataManagement
<<Role>>

IControlFile
Management

ISaved
EGYData

IControllerData
Responce

EGY&SECMeasureControl
<<Role>>

EGY&SECDataManag
<<Role>>

EGY&SECDataAcquisition
<<Role>>

IControl
SECDataAquisition

ISaved
SECData

EGY&SECSatelComputer
<<Role>>

IBuffer Full

IR Inh

IRNew

Figure 3. Interface-role diagram of EGY and
SEC Controller

quences realizing the requirements to the behaviour of the
second product. The corresponding process graph for EGY
and SEC Controller is shown in Fig. 4 b).

b1

b2

b4

b3

b5

b6

b7

b8

b17

b18

b20

b19

b22

b23

b24

b25

b9

b10

b12

b11

b13

b14

b15

b16

b26

b27

b28

b29

b30

b17

b18

b20

b19

b22

b23

b24

b25

b31

b32

b34

b33

b13

b14

b15

b16

b26

b17

b18

b20

b19

b22

b23

b24

b25

b35

b36

b38

b37

b13

b14

b15

b16

b26

c1

c2

c4

c3

c5

c6

c7

c8

c17

c18

c20

c19

c22

c23

c24

c25

c9

c10

c12

c11

c13

c14

c15

c16

c26

c17

c18

c20

c19

c22

c23

c24

c25

c27

c28

c30

c29

c13

c14

c15

c16

c26

a1

a2

a4

a3

a5

a6

a7

a8

a17

a18

a20

a19

a22

a23

a24

a25

a9

a10

a12

a11

a13

a14

a15

a16

a26

a) b) c)

start

final

Figure 4. Process graphs for a) EGY Con-
troller; b) EGY and SEC Controller

As a result of inheritance of interface-role specifications
action set APrSpq

of the inheritor contains two subsets: one
is a subset of actions, which are realized by inherited re-
quired relations from IRInh

q and the other is a subset of ac-
tions, which are realized by newly designed required rela-
tions from IRNew

q .

The short format of the paper does not allow us to go in
detail about applying the derivation rules [3] which prove
correct inheritance of behaviour specifications. Those rules
allows us to apply the life-cycle bisimulation inheritance [1]
on processes of type P to process graph representation and
define the conditions of correct inheritance of product spec-
ifications. Briefly, if the parent action set contains only in-
herited actions we, using the blocking action δ, eliminate
from the child process graph all alternative branches that
are started by new actions. Next, we apply the hiding ac-
tion τ and eliminate the rest of new child actions. If the re-
sulting transformed graph is equal to the parent graph with
the renamed corresponding actions, then the child specifi-
cation is a correct inheritor of the parent specification.

In our case study EGY and SEC Controller is a correct
inheritor of EGY Controller. Indeed, if we rename parent
actions {a1, a2, ..., a26} to {b1, b2, ..., b26} and hide and
block the new actions from the child set, the child pro-
cess graph is transformed to the parent one (actually, for
such transformation blocking of action b27 in Fig. 4 b) is
enough).

In case of incorrect inheritance of a parent specification
a transformed child process graph contains not eliminated τ
and δ actions. The rest of a sequence starting by such an ac-
tion becomes unreachable [1]. The positions of τ or/and δ
actions show the points of design errors. These errors cor-
respond to the actions, which cannot be executed within a
given specification. Thus, the method allows a designer not
only to prove correctness of inherited specifications but also
to find design flaws.

In this paper only one type of behaviour inheritance -
life-cycle bisimulation inheritance - is described. In pa-
per [3] we argue that there is no single notion of behaviour
inheritance, there is an infinite set of them and it is up to the
designer to decide which one to choose. The choice has to
be imposed by requirements as a constraint on the system
in hand. It can be shown [3] that different types of compo-
nent system inheritance can be proved using similar meth-
ods as the one described in this paper. In future work we in-
tend to find the application of the notion of a behaviour in-
heritance constraint to SPL design.

References

[1] Basten T., W.M.P. van der Aalst. Inheritance of behaviour.
The Journal of Logic and Algebraic Programming, 46:47–
145, 2001.

[2] Roubtsova E. and R. Kuiper. Process Semantics for UML
Component Specifications to Assess Inheritance. ENTCS,
72,3 Elsevier Science Publishers, http://www.elsevier.nl/gej-
ng/31/29/23/127/48/show/Products/notes/index.htt, 2003.

[3] Roubtsova E.E., S.A.Roubtsov. Constrants of Behaviour In-
heritance. Proceedings of the First European Workshop on
Software Architecture. Springer LNCS 3047, pages 115 – 134,
2004.

58

A Study of Evolving Complexity in a Re-Structured Business Application

M.P. Ware & F. G. Wilkie
Centre for Software Process Technologies,

University of Ulster, Newtownabbey, Co Antrim. BT37 0QB. Northern Ireland
(mp.ware@ulster.ac.uk, fg.wilkie@ulster.ac.uk)

Abstract

This paper is concerned with an examination of the
appropriate alternative courses of action when
identifying overly complex components within a business
application. A study is described which uses complexity
metrics drawn from a number of sources including the
Chidamber and Kemerer (C&K) metric suite and general
application specific descriptive statistics. The metrics
were applied to a commercial product implemented in
C++. They were used in tracking complex components
across two major releases of the application when
determining the effectiveness of responses to these
components. A discussion is presented which assesses
the benefits of alternative courses of action available to a
project manager on detection of complex classes. The
conclusion to this paper includes observations on our
potential ability when seeking to control application
complexity.

1. Introduction

Measures relating to an application may be used in
attempts to predict and manage change. Such measures
tend to include maintenance related statistics for example
number of incidents, closure rates, time to close and
effort. These measures are apt to be contrasted to metrics
relating to the applications architectural and
implementation features; measures of inheritance, size,
coupling and cohesion. Many studies exist which
validate the use of software metrics for predictive
purposes [1], [6], [4], [8]. The majority of these studies
assess the predictive power of the metrics against
maintenance data usually suggesting that high
complexity is correlated with fault or change proneness,
and a lack of potential for application extensibility or
reuse.

The underlying implication of these studies is that
concentrations of complexity in an application are bad
and to be avoided. Consequently the antithesis is that
simplicity is good and to be promoted.

This view is expressed in one of the main tenets of
object oriented technology – abstraction. Booch [3]
writes that ‘abstraction is one of the fundamental ways
that we humans cope with complexity’. The principle of
abstraction pervades the various divide-and-conquer
techniques used in object oriented design and
development; such as model based development,
assessment of viewpoints, dynamic and static modelling
even the primitive constructs of class, function and
attribute.

If a project manager is using complexity metrics to
monitor an application then surely the manager will
respond to the detection of high or growing measures.
Many metric analysis tools and metric studies focus upon
the detection of complexity, however less work has
focused upon the correct response to this. We can ask

1. What should a project manager do when receiving
measures which indicate relatively high levels of
complexity within an application?

2. Is the objective to re-engineer for a reduction of
measures and the promotion of less complex
components within the application?

3. Is it possible to achieve simplicity within inherently
complex systems?

An assessment of the answers to the above questions
should help the manager when deciding upon the
appropriate course of action on identifying application
complexity.

Section 2 presents a study which uses metrics to
indicate complex features pertaining to the first release of
an application. We track these features across
subsequent re-design and maintenance activity. In
Section 3 we assess relative levels of complexity related
to and re-design alternatives and in section 4 we present
conclusions derived from the issues raised.

2. Empirical Study

The Centre for Software Process Technologies
(CSPT) is dedicated to promoting best practice within the

59

local software industry. It has an on ongoing
programme of research into the application of software
metrics. An automated code analysis tool [7], [9] is used
to harvest various measures from two successive versions
of a large commercial application written in C++. The
application was subject to a major re-design effort
dedicated to the promotion of operating efficiency,
systems maintainability, extensibility and general
robustness. This study also employs associated product
maintenance data and feed back from team members.

The metrics used in this study primarily spring from
the C&K metric suite [5] and include additional metrics
developed by the Centre [10], [11]. Maintenance related
measures pertain to class revision counts, code lines
added and deleted. A description of measures is listed in
Table 1.

A survey was conducted of two releases of the
application. The initial version consisted of 107 concrete
classes implementing 1795 methods with between 0 and
82 methods per class. The maximum depth of
inheritance was 4 and only 9 classes did not participate in
an inheritance hierarchy.

Table 1. Brief Definition of Measures
Coupling
Between
Objects –
CBO

Number of distinct classes to which the
subject class is coupled via method
invocation, class attribute declaration,
method parameter declaration or local
method data item declaration.

Response
for a Class -
RFC

Distinct count of number of interface
methods for a class added to the number of
methods that the interface methods may
call.

Coupling
Complexity
Forwards -
CCF

Measure of the fan-out of class. A distinct
count of the number of interface methods
invoked by the subject on external classes.

Coupling
Complexity
Indirect -
CCI

Measure of the internal coupling of a class.
A distinct count of methods participating in
the internal class call chain.

Weighted
Measures
per Class
Methods -
WMCM

Size measure, a count of all the methods in
a class.

Weighted
Measures
per Class –
Lines of
Code –
WMCLOC

Size measure, count of all lines of code
representing method implementation for
the class.

The second version consisted of 112 concrete classes
possessing 1807 methods with between 0 and 81 methods
per class. The maximum depth of inheritance was still
four although the inheritance hierarchy had been revised,

16 classes did not participate in any hierarchy. The only
measure showing a decline was WMCLOC which relates
to lines of code. Correlations associated this measure
with increased service provision and service utilisation
suggesting that the semantics of each class was being
refined.

2.1 Strategy

Pareto analysis is based upon the observation that
many defects will have a small number of causes ‘80% of
the defects come from 20% of the modules’ Boehm [2].
Pareto analysis is therefore used to detect complex
classes in version 1 of the application; these classes are
ranked according to measure and tracked in version 2 of
the application. In addition classes from version 2 of the
application with emerging high measures are included in
an impact analysis focusing upon the relative ranking of
classes Table 3.

2.2. Managing Complexity within an Application

The modifications applied to version 1 of the
application impacted upon the complex classes, however
an overall decrease in application complexity was not
observed. The figures presented in Table 3 indicate that
change within the application did affect the ranking of
measures; it is however the degree of the impact that
varies. According to ranking the majority of classes
remained complex (52 – 71%). A high proportion of
classes decreased in complexity ranking (37 – 58%) but
not sufficiently, so as to remove them from the list of
most complex classes in the application. In addition to
classes decreasing in ranking a small but significant
number of classes were removed from the application (11
– 22%). Their functionality was consolidated and
implemented in new classes. A significant proportion of
classes increased in ranking (22 – 42%) and a few classes
maintained a stable rank (0 – 11%).

Of the classes that were new to the list of complex
classes a significant number were classes new to the
application. Factoring out, replacement and addition of
classes did not necessarily reduce complexity.

3. Considerations when Managing
Complexity

Given a high measure there are essentially three
choices that a project manager can make when directing
maintenance activity.

60

Table 3. The impact of inter-release change activity upon relative complexity ranking

% of Classes
Removed

% Decrease
in Rank

% Stable
Rank

% Increase
in Rank

% Remain
Complex

% New to Rank % New to
App.

CBO 17 50 0 33 71 29 14
RFC 11 42 11 37 67 33 14
CCF 22 56 0 22 50 45 9
CCI 18 47 6 29 60 45 15
WMCM 11 37 11 42 67 33 14
WMCLOC 11 58 0 32 52 48 24

A. To stand back from actively managing the situation
thereby allowing an organic growth or decline in the
measure.

B. To consciously limit measures by techniques such as
the sub-division of complex components.

C. To promote fewer components but accept greater
complexity within them.

Each alternative suggests a potential growth in
complexity. Option – (A) may produce either a possible
natural increment in component size or a natural
increment in the number of components. Option - (B)
actively promotes a component size increment whilst
option – (C) actively promotes a component count
increment. This model suggests that where complexity is
limited in one aspect of an application a corresponding
growth in complexity is experienced elsewhere.
Managing complexity in an application can therefore be
viewed as a process of mediation between competing
requirements.

Initial reaction to adverse complexity metrics should
be to validate the systems architecture against stated
objectives. If the architecture and objectives are
themselves undergoing review the metrics should be
judged in such a manner as to acknowledge future and
past objectives.

Within the context of this application we can see that
no one complexity management strategy was adopted.
They utilised all techniques. They sought to control
various aspects of the application through the
consolidation of code. This was done via the promotion
of the frequency of instances of indirect coupling and
increasing the services which a class had to offer. To
have sought to reduce the measures reflecting internal
coupling - CCI, service provision - RFC and class
functionality WMCM would therefore have been to act
contrary to the re-design effort. In this restricted set of
circumstance option – (C) was the appropriate choice.

An application can be dominated by the effect of a
few unlimited and overly complex classes. The class
count within this application increased as did the instance
of child classes. It has been demonstrated that for some

classes the actual class size was reduced as illustrated by
the % decrease in the measure WMCLOC. Furthermore
we know that classes were removed and replaced. The
project team had therefore adopted a dual strategy and
implemented refactoring of specific targeted classes
option – (B).

Having implemented a re-structuring of the
application, the project manager, thereafter accepted that
certain classes would exhibit complexity as they were
responsible for the intricate areas of functionality within
the application. For this product and this Company, that
decision was acceptable; the organisation structure
facilitated a depth of product knowledge within the team
that could cope with complex components. The active
management of change within the application exhibited
in the redesign effort allowed the product to stabilise and
the team to take advantage of a controlled maintenance
overhead. For a period of time the project team could
reap the rewards of re-structuring and option – (A)
became a viable alternative.

4. Conclusions

We began this paper by asking three questions
concerning the appropriate course of action to take on
observing complexity within an application. We have
presented observations based upon research knowledge,
commercial experience and an empirical investigation of
a commercial application. The Company responsible for
the application had actively attempted to redesign the
system in order to promote robustness, flexibility and
maintainability. Understandably this activity impacted
upon the identifiably complex classes and sought to
improve upon system architecture. The Company was
satisfied that the outcomes of the second release of the
application had met the re-design objectives.

We found that the majority of classes had
experienced a reduction in complexity ranking. This
however was not often a sufficiently significant reduction
and therefore failed to remove the classes from being
categorised as the most complex within the system. We
also found that where complex classes had been
removed, they were frequently replaced by classes of

61

equal or greater complexity. Overall version 2 of the
application exhibited an increase in the majority of
measures. The only measure to decrease was WMCLOC
which related to lines of code.

We have presented an analysis of the options
available to a project manager when attempting to control
complexity. Essentially these options include a
deliberate acceptance of the current status of the
application, the active management of complex classes
by seeking to reduce the complexity of each component
via sub-division and the active management of
complexity by the promotion of a number of very
complex classes. It was found that for this product re-
structuring effort utilised each alternative. Our study
suggests that when attempting to limit complexity results
can be effective within a targeted component however
the reduction of complexity in one aspect of an
application often implies an increase elsewhere.

In answer to the above questions we would have to
suggest that

1. A manager must give careful consideration to the
maintenance cycles of an application and the reported
complexity levels. No one answer is correct; the
decision making process on whether to reduce
complexity levels is in reality a mediation process
between many competing factors within the
development context.

2. The aim is not always the reduction of complex
measures and certainly this response to the receipt of
complexity indicators should not be applied blindly.
Over time however the suggestion is that complexity
within an application should be actively managed.

3. A detailed examination of a complex commercial
application suggests that it is not possible to reduce
complexity without removing functionality. Certain
aspects of complexity may be actively managed and
even reduced however this is often at the cost of
increased complexity elsewhere.

In summary software systems are inherently complex.
Where efforts are made to actively manage complexity a
migration affect may be observed as a reduction of
measures in one aspect of an application implies an
increase elsewhere. Further studies of the evolution of
complexity patterns within business applications are
required in order to better understand beneficial
maintenance patterns.

5. Acknowledgments

This work was funded by the Centre for Software
Process Technologies at the University of Ulster which is
supported by the EU Programme for Peace and

Reconciliation in Northern Ireland and The Border
Region of Ireland (PEACE II).

The authors would like to thank Meridio for their
assistance in supplying the data set for this study.

6. References

[1] V. R., Basili, L. C. Briand, W. L. Melo, ‚A Validation of
Object Oriented Design Metrics as Quality Indicators’, IEEE
Transactions on Software Engineering, Vol. 22, No. 10, 1996,
pp. 751-761.

[2] B. Boehm, V.R..Basili, ‘Top 10 List (Software
Development)’, Computer ,Volume: 34 , Issue: 1 , Jan. 2001
Pp:135 – 137.

[3] G. Booch, ‘Object-Oriented Analysis and Design With
Applications – Second Edition’ , The Benjamin/Cummings
Publishing Company Inc., California, 1994.

[4] M. Cartwright, M. Shepperd, An Empirical Investigation of
an Object Oriented Software System’, IEEE Transactions on
Software Engineering, Vol 20, No 8, August 2000, pp786-796.

[5] S. R. Chidamber, C. F. Kemerer, ‘A Metrics Suite for
Object Oriented Design.’ IEEE Transactions on Software
Engineering, Vol. 20 1994, pp 476-493.

[6] S. R. Chidamber, D. P. Darcy, C. F. Kermerer, ‘Managerial
Use of Metrics for Object-Oriented Software: An Exploratory
Analysis’, IEEE Transactions on Software Engineering, Vol.
24, August 1998 pp. 629-639.

[7] Harmer, T.J., Wilkie, F.G., ‘An extensible metrics
extraction environment for object-oriented programming
languages,’ Proceedings. Second IEEE International Workshop
on Source Code Analysis and Manipulation, 2002., pp:26 – 35.

[8] R. Subramanyam, M. S. Krishnan, Empirical Analysis of
CK Metrics for Object Oriented Design Complexity:
Implications for Software Defects’, IEEE Transactions on
Software Engineering, Vol 29, No 4, April 2003, pp297-310.

[9] F. G. Wilkie & T. J. Harmer, ‘Tool Support for Measuring
Complexity in Heterogeneous Object Oriented Software’, IEEE
Proceedings of the International Conference on Software
Maintenance’, 2002 p152 -161.

[10] F. G. Wilkie, B. Hylands, ‘Measuring Complexity in C++
Application Software,’ Software Practice and Experience, Vol.
28, No 5, April 1998, pp513-546.

[11] F. G. Wilkie, M. P. Ware, B. Kitchenham, T. J. Harmer,
‘Evaluating the Sensitivity of Coupling Metrics to Evolving
Software Systems’, ‘Proceedings of the International Workshop
on Software Metrics and DASMA Software Metrik Kongress’,
November 2004, pp 77-88.

62

Clone Evolution in Open Source Software Systems:
When, How and Why do Software Maintainers Remove Clones

Filip Van Rysselberghe and Serge Demeyer
Lab On Re-Engineering, University Of Antwerp

filip.vanrysselberghe@ua.ac.be

Abstract

Cloning code is widely recognized as a threat to the long
term maintainability of a software system, hence the “state-
of-the-art” dictates to regularly remove the clones inside
the code. Unfortunately, little is known about the “state-
of-the-practice” with respect to the removal of clones, and
consequently we do not know how clone removal fits into
the overall software maintenance process. In this paper, we
report on a study of the evolution of clones within four open
source systems to see whether clones really get removed,
and if they do – when, how and why it is done. Essentially,
we have observed that clone removal differs considerably
across the systems under study and suppose that this variety
is due to the fact that clone removal is rarely an explicit part
of the software maintenance process, but rather a side-effect
of other (re)design activities.

1 Introduction

Code cloning or the act of copying a code fragment
and making minor modifications, is generally considered
an harmful practice since it hinders the maintainability of
a system [16, 5]. As a result, a large number of researchers
invested time and effort in the development of clone detec-
tion techniques and tools [2, 4, 6, 8, 9, 11, 12, 13, 15].

Despite the availability of these clone detection tools, lit-
tle is known about the actual clone removal process. Do
maintainers remove clones on a regular basis, or do they
just eliminate the ones that hinder the maintenance activi-
ties? Should all clones be considered harmful, or is some
degree of cloning inevitable, even beneficial? And if clones
are removed, do maintainers remove the oldest ones first or
the youngest ones? Answering such questions is necessary
to gain deeper insight into viable clone removal strategies,
yet only few authors have made an attempt in this direction.
For instance, Antoniol et. al. discovered that the clone ratio
of a system remains stable over time, suggesting that not all
clones should be removed [1]. Also, Laguë et al. observe

that many clones are removed over time, while another large
set of clones never changes after their introduction, suggest-
ing that the oldest clones have a tendency to remain [14]. In
this paper, we try to verify and refine these initial observa-
tions to see whether we can deduce realistic clone removal
strategies.

Therefore, we analyze the release history of four open
source projects with varying characteristics (see table 1 for
an overview) to see how software maintainers deal with
clones in realistic circumstances. More precisely, we ad-
dressed following research questions:
• Clone size: Do developers focus on one specific clone

size, either large or small, or do they distribute their
attention over all sizes of clones ?
Selecting the most urgent entities for removal is a re-
curring problem for software maintainers. Therefore
this question evaluates whether size is a suitable indi-
cator for priority. Based on the answer, future main-
tainers know whether it is good practice to target large
clones first, or should rather remove all clones which
hinder their current maintenance task, independent of
that clone’s size.

• Clone location:- Do developers remove nearby clones
(e.g. in the same file) as well as far away clones (e.g.
in separate modules), or do they focus on only one of
these categories?
Scalability is a major concern for clone detection tools.
However the answer to this question may result in a
reduction of the search space, e.g. when it shows that
developers primarily target clones which are part of the
same file. Furthermore, current evidence indicates that
the distance between cloned fragments influences its
removal [10].

• Evolution: How does the number of clones evolve over
time ?
Clone evolution studies have shown that the clone ratio
remains stable over time, indicating that the number
of clones increases in the same way as the number of
procedures [1, 14]. This suggest that some degree of
cloning is inevitable. Goal of this question is to verify

63

whether these observations generalize to other systems
as well.

• When: Do maintainers remove clones on a regular ba-
sis or is it part of a one-time reengineering effort ?
Clone removal requires a good understanding of the
system’s design and is effort intensive. Good under-
standing of when clone removal activities should get
planned is thus required to be cost effective. Therefore
this question studies how removal effort is distributed
over time.

• How: Which kind of restructuring (refactoring) tech-
niques are used ?
Little is known about how to apply or combine refac-
torings (see [7]) to actually remove clones in a sys-
tem [4, 3]. Based on the changes applied in the past
we can leverage our knowledge on how to use restruc-
turing techniques as refactoring.

• Why: What is the motivation for removing clones ?
Not all clones are a severe threat for the maintainabil-
ity of the system. Therefore this question helps us to
discriminate negative from neutral (or even positive)
clones. This knowledge can be applied to more accu-
rately identify the situations in which the maintainabil-
ity of the system is threatened.

2 Evolution Framework

Studying the evolution of clones through time requires
a research framework which acquires all the necessary data
and turns it into interpretation ready data. Therefore we
developed a framework by the name DEVOL (Duplication
EVOLution). DEVOL consists of three components namely
a data acquisition component, a clone detection component
and a report generation component.

The data acquisition component of DEVOL queries a
versioning system, extracting all public releases. A set of
public releases, available for further processing, is the re-
sult of the data acquisition component.

Clone detection is carried out by the tool CCFinder[9].
The result of the detection component consist of one clone
report for each release extracted during data acquisition.

Afterwards these clone reports are summarized in
one representation which abstracts from the unnecessary
cloning details. To create such an abstraction, the number of
clone relations per file of a release is counted. Afterwards
the various counts for a file are placed in their chronological
order. Figure 2 shows an example.

Based on the evolution reports produced by our frame-
work, it is possible to draw some general conclusions about
the evolution of clones. Furthermore the reports allow the
identification of clone removals since those are reflected in
the decrease of the number of cloning relations for a file.
The details of the underlying clones can be found in the

R1 R2 R3 R4 R5
CookieTools.java 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0
Ajp12ConnectionHandler.java 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0
LocaleToCharsetMap.java 2 0 0 2 0 0 2 0 0 2 45 0 2 45 0
…
ErrorHandler.java 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TOTAL 4 1 0 4 1 0 4 1 0 4 45 0 4 45 0

Figure 1. Example of a clone evolution sum-
mary for releases R1 to R6 of a project. Each
column for a release like R4, corresponds to
the number of cloning relationships for one
category (in same file = 1, in same directory =
2 and other = 3). Coloring is used to highlight
clone removals (gray) and additions (black).

original clone reports.

3 Results

3.1. Clone size

To answer this question the number of clones which are
removed from one release to another are counted for three
size categories: small (between 50 and 100 tokens: ±10 to
20 LOC), medium (100 to 200 tokens: ± 20 to 40 LOC)
and large (> 200 tokens). Afterwards the relative number
of removals is calculated by dividing each absolute count
by the number of clones before the removal.

The relative numbers for the different size categories are
very similar in the projects Gaim and Tomcat. For Tomcat
and ArgoUML on the other hand, we observe large differ-
ences. In these two last projects, the removal effort seems to
focus on clones of 100 to 200 tokens (figure 2). Occasion-
ally, the effort shifts to one of the two other size categories.

Relative Number of Removals ArgoUML

-0,1

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

release

re
la

ti
v
e
 n

u
m

b
e
r

o
f

re
m

o
v
a
ls

+200 tokens 100-200 tokens 50-100 tokens

Figure 2. Graph displaying the evolution of
the relative number of removals in ArgoUML
for each category of clone sizes. It shows
that primarily clones with a length between
100 and 200 tokens are targeted.

64

Project Description Language Changes Releases

ArgoUML UML modeling tool with reengineer-
ing functionality

Java User demands changes 26

Gaim Multi-protocol instant messaging
client

C (GTK) protocol changes 39

JBoss J2EE compliant application server Java performance and security changes 30
Jakarta-Tomcat Servlet and Java Server Pages engine Java re-engineering changes 15

Table 1. Overview of the cases

3.2. Clone location

A similar approach as for the first research question can
be adopted to answer this one. Here however, we have to
compare the relative number of removals for three different
categories namely intra-clones (clones within the same file),
intra-package-clones (clones between files within the same
directory) and inter-clones (clones between two unrelated
system parts).

Comparison of the relative number of removals for each
project shows an observable difference in the removal of
clones based on their location. Clones which are in unre-
lated system parts for example are less frequently removed.

3.3. Evolution

We compared the number of clones over time with the
actual code size evolution (in lines of code — LOC). Based
on this comparison we argue that it is impossible to define
a common clone evolution tendency.

Despite the fact that the code size increases over time for
most projects, there is no common trend in the evolution of
the number of clones. On one hand there are projects like
Gaim and Tomcat for which the number of clones increases
over time. While on the other hand, there is a project like
ArgoUML for which the number of clones decreases. JBoss
lies in between both tendencies since the number of clones
stays more or less at the same level in this project.

3.4. When

For this fourth research question we compared the num-
ber of removals and additions over time. This way we ob-
served that all projects undergo decrease as well as increase
phases which indicates that clone control is not a continu-
ous task. Additionally, we noticed that the developers of
ArgoUML more frequently spend time to remove clones:
maximum 2 increases exist in between two decreasing re-
leases, while the maximum for Gaim is 5.

3.5. How

Manual classification of all code changes which influ-
enced the existence of a clone shows that the majority

of clone removals are not caused by refactoring changes.
Instead, cloned fragments are regularly altered by simple
changes as adding a statement or introducing a new condi-
tion. Besides these accidental changes, we observe a large
number of changes to remove a code fragment which is no
longer necessary. Figure 3 illustrates this dominance by
showing the distribution of ArgoUML’s changes.

68%

54%37%

37%

10%

27%

23%

22% 19%

5%

Inter Clones

Intra Clones Intra Package Clones

Accidental

Move

Remove

Restructure

Figure 3. Distribution of change types for Ar-
goUML

A small number of changes of ArgoUML are classified
as move changes. Although their number is quite small for
ArgoUML, they are much more common in JBoss and Tom-
cat. Moving functionality around is very suitable for a good
distribution of responsibilities in the system. For the reduc-
tion of the total number of clones it is unsuitable since it
moves a clone from one file to another.

About 70% of ArgoUML’s restructure changes can be
classified as refactorings. Clones within the same file are
usually removed by applying the ”extract method”- refac-
toring. Many ”instance of”-conditions are for example ex-
tracted into a separate method. The ”Extract superclass”-,
”pull up method”-, ”form template method”- and ”encap-
sulate field”-refactorings are applied to remove the two re-
maining clone types.

The remaining 30% of restructure changes is dedicated
to more in-depth changes like the introduction of external
resource files which removes data (initialization) clones.
For Tomcat and JBoss, this percentage is much higher.

65

3.6. Why

Manual analysis of the log messages associated with the
clone removing changes indicates that clone removal was
almost never the goal. Instead the prime causes given, are
the removal of deprecated code and design improvement.
Although the latter could very well include clone removal,
other reasons are mentioned in the messages. Sentences like
”moved to separate class”, ”centralize code” and ”only di-
agram specific in”, indicate that developers prefer coupling
and cohesion as indicators of problematic design.

4 Conclusion

Our study of the evolution of clones in four open source
systems did not produce an observation that readily general-
izes over all four cases. Instead we noticed that the amount
of clones in most cases grows over time. Especially Gaim
and Tomcat support previous observations that the cloning
ratio in a system remains stable [1, 14].

Furthermore, we observed that exactly those two cases
remove clones infrequently and apply few structural
changes. The other two cases, which applied clone re-
moving changes more frequently, were able to maintain
the amount of clones at a more or less stable level (JBoss)
or even reduce it (ArgoUML). This indicates that frequent
restructure changes are better suited for controlling the
amount of clones in a system.

The JBoss and ArgoUML developers primarily focus
their attention on the removal of medium sized clones, while
the developers of Tomcat and Gaim distribute their attention
over all possible clones, independent of their size. However
all cases agree on the fact that the vicinity of cloned frag-
ments has an impact on the removal.

Concerning the removal of clones, we noticed that most
clones were removed because of accidental changes and
code removals. It indicates that clone removal is not an ex-
plicit part of the software maintenance process. This claim
is supported by our observation that most clone-removing-
changes mention other reasons to apply the change than
pure clone removal. However this also means that clones
are good indicators for such problematic situations.

References

[1] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta. Ana-
lyzing cloning evolution in the Linux kernel. Information &
Software Technology, 44(13):755–765, 2002.

[2] B. S. Baker. On finding duplication and near-duplication in
large software systems. In Proceedings of the Second IEEE
Working Conference on Reverse Engineering, pages 86–95,
July 1995. Received IEEE Outstanding Paper Award.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis. Advanced clone analysis to support object-
oriented system refactoring. In Proceedings of the 7th Work-
ing Conference on Reverse Engineering. IEEE Computer
Society Press, 2000.

[4] I. Baxter, A. Yahin, L. Moura, and M. S. Anna. Clone de-
tection using abstract syntax trees. In Proceedings of the
International Conference on Software Maintenance, pages
368–378, 1998.

[5] E. Burd and M. Munro. Investigating the maintenance impli-
cations of the replication of code. In Proceedings of the In-
ternational Conference on Software Maintenance, page 322.
IEEE Computer Society, 1997.

[6] S. Ducasse, M. Rieger, and S. Demeyer. A language in-
dependent approach for detecting duplicated code. In Pro-
ceedings of the International Conference on Software Main-
tenance. Computer Society Press, 1999.

[7] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[8] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Confer-
ence on Software Maintenance, pages 120–126, September
1994.

[9] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multi-
linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engi-
neering, 28(7):654 – 670, 2002.

[10] C. Kapser and M. W. Godfrey. Aiding comprehension of
cloning through categorization. In Proceedings of the 7th
International Workshop on Principles of Software Evolution,
pages 85–94, September 2004.

[11] R. Komondoor and S. Horwitz. Using slicing to identify du-
plication in source code. In Proceedings of the 8th Interna-
tional Symposium on Static Analysis, pages 40–56. Springer-
Verlag, 2001.

[12] K. Kontogiannis, R. Demori, M. Bernstein, M. Galler, and
E. Merlo. Pattern matching for clone and concept detection.
Automated Software Engineering, 3(1):77–108, 1996.

[13] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proceedings of the Eighth Working Confer-
ence on Reverse Engineering (WCRE’01), page 301. IEEE
Computer Society, 2001.

[14] B. Laguë, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hude-
pohl. Assessing the benefits of incorporating function clone
detection in a development process. In Proceedings of the
International Conference on Software Maintenance, pages
314–321. IEEE Computer Society, 1997.

[15] J. Mayrand, C. Leblanc, and E. Merlo. Experiment on the
automatic detection of function clones in a software system
using metrics. In Proceedings of the International Confer-
ence on Software Maintenance, pages 244–254. Computer
Society Press, 1996.

[16] A. Monden, D. Nakae, T. Kamiya, S. Sato, and K. Mat-
sumoto. Software quality analysis by code clones in indus-
trial legacy software. In Proceedings of the 8th International
Symposium on Software Metrics, pages 87–. IEEE Computer
Society, 2002.

66

Quantitative Risk Assessment for Software Maintenance with Bayesian
Principles

Mehmet Sahinoglu
Department of Computer Science, Troy University, Montgomery, AL

mesa@troy.edu

Abstract

Quantitative risk figures are needed not only to
objectively compare alternatives and quantify
monetary measures to budget for reducing or
minimizing the existing risk [5]. They are also needed
what particular vulnerability aspect or weakness of the
software needs more care for maintenance after the
fact. Among those existing analyses that favored a
quantitative study, either i) there was no probabilistic
frame about whether to add or multiply risks in a
correct probabilistic frame of mind, or ii) the risk
calculations were handled on one-to-one basis loosely
in a non-systemic approach [1-3].
 Therefore the maintenance priorities can be
assessed by taking advantage of the security meter
technique combined with the Bayesian procedures.
Finally, some examples are cited from a simple
hypothetical application since the simpler the example
is, and the easier it is to comprehend the philosophy
behind the maintenance-priority problem.

Key Words: Bayesian, Security, Vulnerability, Threat,
Maintenance, Priority, Countermeasure

1. Motivation: Link between Software Risk
and Maintenance

Software maintenance is the general process of
changing a system after it has been delivered [7]. This
strategy does not generally involve major architectural
modifications. Software maintenance can imply, a) to
repair software faults, where coding errors are the
cheapest, and the design errors are more expensive and
finally the requirement errors are the most expensive;
b) to adapt the software to a new operating
environment and c) to add or modify the system’s
functionality due to internal and external factors such
as changing laws and markets or business structures.
The proposed method will address the first two items,

a) and b) for corrective and adaptive action by
providing a quantitatively comparative risk assessment
technique. It is a known fact of life now that software
maintenance consumes 60-80% of most companies’
software budgets, the largest single item contributed to
high software costs [6]. Moreover growth in system
size averages 10% per year [9] and maintenance
expenditures generally increase as systems age.
Therefore research efforts to integrate design and
maintenance management policies to reduce
unanticipated side effects have begun. Contrary to
perfective maintenance, corrective maintenance
identifies and corrects software performance and
application failures, whereas adaptive maintenance
conforms the software to new data requirements or
processing environments in order to minimize
functionality risk that arises when the environment
changes. Traditionally maintenance cost does not
measure future expected loss due to failures, only the
historical cost of fixing the software. That is, the
subjective judgments should not be alone but
supported by quantitatively objective risk assessments
to determine not only the proper type of maintenance,
but where efforts should be focused [8]. However,
until present, there has been little theoretical support
for these assessments. The security meter approach can
provide a quantitative comparison, and inform the
analyst of a budgetary portfolio paving the way to
repairing, maintaining or replacing that module to
determine the most cost-effective maintenance
strategy.

2. Introduction of the Quantitative
Security Risk Model

 Corrective risk management is defined as the total
process of identifying, measuring, and minimizing
uncertain events affecting resources. This definition
also implies the process of bringing management such
as a remedial action, and control into the risk analysis.

67

Basic ingredients of risk assessment are the
vulnerability (weakness), and the threat to activate the
vulnerability and the countermeasure, which is an
action, or device, or procedure, technique, or other
measure that reduces the risk to an information system.
 The proposed physical model identifies the
deterministic constants and probabilistic inputs for the
target output of the residual risk and cost to mitigate
the risk [4].

Probabilistic Inputs:
Vulnerability Threat Lack of countermeasure

Constants: Output:
Utility Cost Residual Risk and

Expected Cost of
Loss

Criticality

Figure 1. Security Meter Probability Model

Probabilistic Inputs: Vulnerability risk values range
from 0.0 to 1.0, but the vulnerability values should add
up to one. Each vulnerability has from one to several
threats. Threat is defined as the probability of the
exploitation of some vulnerability or weakness within
a time frame under the conditions encountered. Threats
with a range from 0.0 to 1.0, which are assigned to
each vulnerability, also should add up to one. These
undesirable threats taking advantage of the hardware
and software vulnerabilities can impact in breach of
the overall security umbrella. Each “threat” has a
“countermeasure,” whose complement gives the “lack
of countermeasure.” Both countermeasure and lack of
countermeasure risk values (between 0 and 1) for each
threat should add up to one.

Deterministic Inputs: System criticality from 0.0 to 1.0
indicates the degree of how critical or disruptive the
system is in the event of entire loss. Criticality is zero
if the residual risk is of no significance, like the
malfunctioning of a printer, which has a backup.
However, it is unity when like a nuclear power plant,
its security is one of life and death with vital security
concerns to humans. Utility cost is the total loss in
currency units such as USD to the user for the
particular system if the system is lost entirely.

Decision-Tree Diagram: Given that in a simple sample
scenario, there are two or three or more of each choice,
the following probabilistic frame holds. Sum of Vi=1
and sum of Tij=1 for each i, and sum of LCMk+CMk=1
for each j, within a tree diagram as follows:

PROBABILITY:
 LCM→ (V1*T1*LCM)
 T1
 CM
 V1
 LCM→ (V1*T2*LCM)
 T2
 CM

 LCM→ (V2*T1*LCM)
 T1
 CM

 V2 LCM→ (V2*T2*LCM)
 T2
 CM

Security Meter
Probability

Model
+______________________
Output: Total Residual Risk

Figure 2. A Simplest Tree Diagram for Two
Threats per each of the Two Vulnerabilities

Output: From the inputs the output Residual Risk is
calculated, here,
Residual Risk = Vulnerability * Threat * Lack of
Countermeasure (1)
To this calculated Residual Risk, the criticality and
utility cost is applied to determine the Cost to mitigate
the entirety of the vulnerabilities, where,
Expected Cost of Loss = Residual Risk * Criticality *
Utility Cost (2)

An example, and its Monte Carlo simulated results are
shown in a JAVA Applet tabloids in the Appendix.

3. A Security Meter Model Application

 Risk analysis has various inputs like types of
vulnerability, and threat and countermeasure for each
threat. Criticality and the utility cost are constants as
well the number of simulation runs. From these input
values, we determine the output cost to mitigate the
residual risk is determined. The data and output are
given below:

Vulnerabilit
y

Threat Countermeasure

Software Failure
(Chance)

1. Design & Coding Error
2. System Down

1. Pre-release Testing
2. In-house generator

Software Failure
(Intentional)

1. Virus
2. Hacking

1.Install antivirus
software
2. Install firewall

Table 1: Vulnerability-Threat-Countermeasure

Spreadsheet for an Office Computer

68

0.5 0.5 0.5
 0.5 0.125
 0.5 0.5
 0.5 0.125

0.5 0.5 0.5
 0.5 0.125
 0.5 0.5
 0.5 0.125

 Summed Residual Risk: 0.500

Table 2: Input Data (Expected Values) and
Calculated Risk for Table 1 and Figure 2

Final Risk = Residual Risk * Criticality= 0.5 * 0.5 = 0.25,
where Criticality = 0.5
Expected Cost = Utility Cost * Final Risk = $1000 * 0.25=
$250, Utility Cost = $1000
Final Result: (Maximum) Expected Cost of Repair or Loss=
$250

4. Bayesian Applications for Software
Maintenance

 By using a single shot for one simulation trial,
shown in Appendix 1, assuming that it is a
hypothetical example, let’s apply Bayesian to
determine the vulnerability to need the most care for
maintenance.
 Let’s now ask the Bayesian question in relevance to
our maintenance problem. Given that the office
computer software is R for risk (or failed due to chance
or malicious causes), what is the probability that it is
due to chance (design/system down), or malicious
(virus/hacking) causes. Statistically, we need to find
the Bayesian probabilities listed below:

P (Design Error |R) =0.097097/0.506371=0.1917 (3)

P (System Down |R)=0.118578/0.506371=0.2341 (4)

The proposed security meter approach is a quick
and a bird’s-eye-view symptomatic way of calculating
a component or system’s software security risk. Some
other techniques used hitherto such as “attack trees”
don’t provide an accurate overall picture [1-3]. The
vulnerabilities that need more surveillance can be
ranked from the worst to the best through a-posteriori
Bayesian analysis. This is very useful for prioritization
in the vast arena of software maintenance [6-9]. The
proposed model is supported by a Monte Carlo
Simulation that provides a purely quantitative
alternative to those conventional qualitative models [4,
5] as in Appendix. One assumes that the vulnerability-
threat-countermeasure input data will be available and
reliable. The main concern in this paper is the security
meter model proposed to assist a sound decision-
making in the choice of maintenance priorities rather
than the potential data concerns.

P (Virus Attack |R) =0.151268/0.506371=0.2987 (5)

P (Hacking Attack |R) =0.139429/0.506371=0.2755
(6)

 From these Bayesian aposteriori probabilities, it is
obvious to judge that the posterior risk (R) due to
chance failures of the first vulnerability is
.1917+.2341=.4258, or 42.58%. On the other hand, the
prior contribution of the chance failures at the very
beginning stage was more; .4645 or 46.45% in Table
3.

 On the other hand, the prior contribution of
vulnerability of the malicious failures was .5354 or
53.54%. The aposteriori contribution resulted to be
0.2987+0.2755=0.5742 or 57.42%. What this means is
that although malicious causes of the second
vulnerability constitute 53.54% of the totality of
failures, these causes generate 57.42% of the risks. The
implication is that more severe care for software
maintenance is required on the second vulnerability
than the first one, proportionately. For corrective
maintenance at this stage, two remedial measures are
feasible in the order of applicability:
1) Work to improve on the countermeasures for the
vulnerability B, especially to note virus attacks
constitute more than half (29.87% > 27.55%) in this
hypothetical example.
2) Then after preventive or corrective measures on the
vulnerability with the priority, rerun the sec-meter
analysis to compute the updated Bayesian probabilities
aposteriori if any improvement is recorded by
comparing the expected costs of loss between the pre-
and post maintenance.

5. Conclusions

References

[1] E. Forni (CISSP), “Certification and Accreditation”,
DSD Laboratories, Virginia, 2002
[2] B. Schneier, “Attack Trees”, Dr. Dobbs’ Journal,
December 1999
[3] Integrated Research in Risk Analysis and Decision
Making in a Democratic Society, National Science
Foundation, Workshop Report (92 pages), Arlington, VA,
July 2002

69

[4] M. Sahinoglu, “Security Meter- A Probabilistic
Framework to Quantify Security Risk”, Certificate of
Registration, US Copyright Office, Short Form TXu 1-134-
116, December 05, 2003
[5] M. Sahinoglu, “Security Meter- A Practical Decision
Tree Model to Quantify Risk,” IEEE Security and Privacy
Magazine, April/May 2005, pp.18-24
[6] S. A. Scherer, Software Failure Risk, Plenum Press, New
York, 1992

[7] J. Keyes, Software Engineering Handbook, Auerbach
Publications, CRC Press, 2003
[8] E. B. Swanson and C. M. Beath, “Departmentalization in
Software Development and Maintenance,” Comm. ACM
33(6), June 1990, pp.658-667
[9] G. Parikh, Handbook of Software Maintenance, New
York: Wiley, 1986
[10] J. F. Freund, Mathematical Statistics, Prentice Hall, NJ,
Fifth Edition, 1992

Appendix

Vulnerability b a ran.value Threat b a ran.value bLCMa LCM Risk
Chance
Failure (A) 0.2 0.8 0.464538

Design
Error 0.4 0.6 0.496143 0.4 0.6 0.421288 0.097097

 System
Down subtr subtr 0.503857 0.4 0.6 0.506611 0.118578

Malicious
Failure (B) subtr subtr 0.535462 Virus 0.4 0.6 0.490508 0.4 0.6 0.575932 0.151268

 Hacking subtr subtr 0.509492 0.4 0.6 0.511076 0.139429

 Residual
Risk .506371

Table 3: One simulation result in Table 2, assuming bold values are the real observations.

Table 4: Monte Carlo Simulation results after 5 million runs for the example in Table 1 & 2.

70

DDL: Extending Dynamic Linking for Program Customization,
Analysis, and Evolution

Sumant Tambe Navin Vedagiri Naoman Abbas Jonathan E. Cook

Department of Computer Science
New Mexico State University
Las Cruces, NM 88003 USA

jcook@cs.nmsu.edu

Abstract

While new software languages and environments have
moved towards richer introspective and manipulatable run-
time environments, there is still much traditional software
that is compiled into platform-specific executables and runs
in a context that does not easily offer such luxuries. Yet even
in these environments, mechanisms such as dynamic link li-
braries do offer the potential for more control over the de-
ployed and running system, and can offer opportunities for
supporting dynamic evolution of such systems. In this pa-
per, we present our initial explorations into building such
support. Our approach is to extend the Gnu open-source dy-
namic linker to give the deployer control over the configura-
tion of the system, and to be able to dynamically evolve that
system. Applications of this capability include runtime com-
ponent configuration, program evolution and version man-
agement, and runtime monitoring.

1. Introduction

Dynamic link libraries, also called shared libraries or
shared objects, have the potential to offer a rich, dynamic,
component-based deployment platform. Many, if not most,
of the latest ideas in component-based software frameworks
and development could be supported by the shared ob-
ject platform. Private namespaces, naming service lookup
for binding requests, interface checking, introspection and
monitoring support, and dynamic reconfiguration are just
some of the capabilities that could be supported—if the un-
derlying framework enabled them to be.

In this paper we describe DDL, a tool based on modi-
fications and extensions to the dynamic linker that enable

This work was supported in part by the National Science Foundation un-
der grants CCR-0306457 and EIA-0220590. The content of the informa-
tion does not necessarily reflect the position or the policy of the Govern-
ment and no official endorsement should be inferred.

dynamic control over the linking process, and allow fea-
tures such as those listed above to be implemented. DDL
allows the user to control the runtime configuration of the
application, enables the easy construction of runtime mon-
itoring tools and supports the runtime evolution of dynam-
ically linked programs. DDL is a modification of the Gnu
dynamic linker, which is part of the Gnu C library. Our cur-
rent tests have only been on the Gnu/Linux/ELF/x86 plat-
form, although the Gnu libraries (and the dynamic linker)
are ported to many other platforms.

Section 2 discusses dynamic linking from an architec-
tural perspective. Section 3 details our modifications to dy-
namic linking that allow link interception and runtime evo-
lution. Section 4 presents related work, and finally Section 5
concludes with some ideas for the future directions that we
are pursuing.

2. An Architectural Perspective

Stepping back from the low-level idea of dynamic link-
ing being symbol resolution, a broader picture of the mean-
ing of what is happening appears. In using dynamic link-
ing, an executable program is incomplete—it does not have
the complete code to run. Instead, it needs external services
to be able to run to completion. The dynamic linker’s job
is to find these services and connect the program to them
so that it can use them. This view captures the idea that
dynamic linking supports an architectural, component- and
connector-based view of the application [11].

Each shared object, including the application program, is
a component that contains references to required services.
These references are in the form of names (symbols). Addi-
tionally, each component also advertises its provided ser-
vices, also referring to these by using names (symbols).
There is no reason at all why the required service name
must match the provided service name—indeed, it is con-
straints like these that cause global namespace pollution.

71

dynamic linker

h
o

o
ks

application
library

app

ddl services

ddl app−svc

Figure 1. DDL system architecture.

Rather, we can view the names as local specifiers of re-
quired and provided services. It is the architectural level that
needs to provide a binding specification between compo-
nent namespaces. This might be as simple as equating them
(thus reducing the problem to normal linking), but it might
involve translation of one name to another, binding a com-
plex connector in between, binding to a remote service, or
even more complex configuration processes.

Understanding dynamic linking as just one mechanism
for connecting independent components into a complete
application, one in which the default behavior of sym-
bol matching is a throwback to a programming-language-
centric and monolithic-system viewpoint, enables us to
place it alongside modern component system frameworks
and to work to bring its implementation—the dynamic
linker—up to date in its capabilities.

3. DDL: A Dynamic Dynamic Linker

DDL is an extension to the Gnu dynamic linker, and is
extensible itself. Figure 1 shows the high-level system ar-
chitecture that DDL implements. The shaded portions indi-
cate parts of the system that DDL does not modify. The ap-
plication and application libraries are not modified, at the
source or binary level, and the bulk of the system dynamic
linker is unmodified.

We have been careful to make DDL thread-safe. The reg-
ular dynamic linker is by default thread safe because it al-
ways updates its global data structures equivalently, so it
does not matter if threads interleave their updates. With
DDL this may not always be the case, and DDL needs
some of its own static data in any case. DDL does sup-
port both threaded applications, and client tools that cre-
ate their own threads. We did not, however, make DDL de-
pend on a thread library. We did not want to add any library
dependencies that the application does not already use. In-
stead, since our initial tests indicate that overlapping link
requests from multiple threads are vanishingly rare, we use
simple busy waiting in very small sections of code rather

Link Definition

defName
soName
funcAddressGOTAddress

callName
soName * 1

<from> <to>

binds−to

Figure 2. Link and definition UML.

than pthread-based library routines.
One goal in this project was to have very minimal mod-

ification to the Gnu dynamic linker itself. We decided that
any significant code we developed would sit outside of the
linker. Thus, our essential modifications boil down to call-
back hooks in the linker code itself. In this, the hooks built
into the dynamic linker do not provide an API to external
services but rather they use an API provided by the DDL
control library. The DDL control library and the tools that
use it are thus event-driven and passive, unless they spawn
their own threads.

3.1. Link Interception and Redirection

The fundamental capability that DDL supports is link in-
terception and redirection. This allows DDL and the tools
that use it to monitor and control the dynamic linking pro-
cess. Each time a link is being resolved by symbol lookup,
the callback hooks invoke user code for several purposes: to
allow symbol modification to redirect the binding to a dif-
ferent symbol; to inform the tool of the actual symbol that
was looked up, its resolved address, and the address of the
link entry; and to allow for an offset to be added to the re-
solved address.

Thus, with this interface, tools using DDL can inspect
every link request, choose whether to redirect it to another
symbol name, and record the information about the resolved
symbol and about the link itself. By removing the implicit
equality between requested and provided symbols in the
linking operation, we reify these two notions into separate
concepts, as shown in Figure 2, which shows how the links
and definitions relate to each other and the information that
uniquely describes each of them.

A link is defined by the original symbol name it is sup-
posed to be linked to, the name of the shared object it is
for (the main application or a shared library), and the ad-
dress of the GOT entry where its binding address is stored.1

A definition is defined by its symbol name, the name of the
shared object it exists in, and the address at which it ex-
ists. Further information that is useful to save is a reference

1 In ELF dynamic linking, each shared object has a global offset table,
or GOT, where addresses of externally defined symbols are entered by
the dynamic linker. Code that references these symbols use the GOT
entries.

72

from the link to its current definition, and in the reverse di-
rection a set of links that currently reference a given defini-
tion. We implement this at the DDL services layer, so that
tool builders do not need to re-implement it.

Without using our redirection capabilities, all links will
point to definitions of the same name. There are potentially
multiple links to the same definition because each shared
object that calls that function will have its own link (i.e.,
its own GOT and its own unique GOT entry for calls to
that function). If our redirection capabilities are being used,
then the called name associated with the link can be differ-
ent from the defined name of the definition; thus it is impor-
tant to keep track of these names separately.

Since called functions cannot in general differentiate be-
tween their invocations, it does not make sense to redirect
multiple different function invocations to the same function
(although DDL will allow this). However, there are cases
in runtime monitoring and program maintenance where it
would be useful to have a concentrator function that did re-
ceive calls for multiple symbols and was able to differenti-
ate them. For example, if one wanted to trace all calls in a
program, it would be nice to have a single wrapper do the
job rather than a unique wrapper for every function.

To support this functionality, we utilize an offset-based
mechanism, where an offset to a symbol value provides a di-
rect path to a unique jump table entry, which will set an ID
for the call and then jump to the actual concentrator func-
tion. To use this capability, we first must create a jump ta-
ble. A simple (non-thread-safe) example of this is below.

unsigned int func_id;

void wrapper_jmp()
{

asm(" movl $0, func_id
jmp wrapper
movl $1, func_id
jmp wrapper
...
movl $99, func_id
jmp wrapper");

}

This example represents a 100-entry jump table, where
each entry is a move/jump instruction pair that sets a global
variable to its index value and then jumps to the wrapper
function. Note that the program never calls the wrapper jmp
function—rather, it calls directly to one of the entries, which
in turn jumps to the wrapper. Our use of DDL would redi-
rect each symbol to (wrapper jmp + 3 + i ∗ 15), where
i is the entry assigned to that symbol. To do this it would
do symbol redirection to “wrapper jmp”, allow the dynamic
linker to find that symbol, and then add the offset using the
DDL offset callback. At the same time, in our DDL exten-
sion we would save the symbol string in a string table, at the
same index being used in the jump table.

The wrapper function, using the global func id, would
have access to the index of the function currently being
called, and from there could get the name of the function
(since we saved it). After doing its tracing behavior (or
whatever it is supposed to do), it could use dlsym() to re-
solve the original function and to call it. Functions with dif-
ferent argument vector lengths can still be handled by the
same wrapper, since the reverse-calling convention ensures
that extra argument data is ignored. The wrapper only needs
to know the maximum argument bytes it needs to push on
the stack.

While the jump table must be created in a platform-
dependent manner, the basic idea remains essentially the
same on most platforms, and through the symbol-plus-
offset mechanism that DDL exposes to the user, effective
use of a single site for multiple redirected symbols can be
accomplished.

As one example, we used this capability to fully trace the
SimpleScalar CPU simulator [1].

3.2. Runtime Link Modification

DDL provides all the information needed to maintain
an internal data structure of definitions and links: resolved
symbols and their addresses, and addresses of GOT entries
and the current definition of the function a link is referring
to. Maintaining this information during the runtime of the
program allows us to support dynamic program evolution
through runtime link modification.

In order to modify a link, we simply need to change the
address that is in its GOT entry to be the address of some
other function. All the subsequent calls through that link
will be directed to the new function. Note that these calls
are from all the call sites in the shared object whose link we
just modified. Thus, the granularity of program evolution is
at the shared object level. This can be used along with run-
time loading of new shared objects (e.g., using dlopen()) to
update a running system with new functionality.

Other work in dynamic program evolution has noted a
desire to perform transactional updating—making sure that
a module is not being actively used before updating ref-
erences to or away from it [12]. This often boils down to
checking the call stack to see if any functions in the mod-
ule are active. We have not yet concerned ourselves with
providing such capability, but plan to investigate these as-
pects in the future. In our current mechanism, existing calls
through links being modified have already invoked the old
definition, and those will eventually complete.

4. Related Work

The DITools project [13] is the closest related work to
our DDL project. They used a similar approach to link inter-

73

ception and modification, and supported redirecting a link to
a wrapper and also an event notification mechanism where
each monitored call was not wrapped but did generate an
event to a fixed-interface callback. It does not appear that
they addressed the issues surrounding C++, nor did they do
non-function symbol resolution nor runtime link modifica-
tion.

Ho and Olsson [8] describe dld, a tool for “genuine” dy-
namic linking. Their tool provides the capability to load and
unload shared libraries, breaking links when a library is un-
loaded and relinking them to new code when new libraries
are loaded. However, it does not appear that they ever sup-
ported redirection of links to different symbol names.

Thain and Livny [14] developed Bypass, which inter-
cepts both system calls and regular procedures, but it pro-
duces unique managers for each system description, while
our work is generic. Both the UFO [2] and SLIC [6] systems
focus on system call interception and not generic applica-
tion management. It appears that all of these only support
static recomposition of an application, not dynamic modifi-
cation at runtime.

Hicks et. al [7] work on binary software updating from
a formal perspective. Their methods use typed, proof-
carrying assembly code from which they can verify that
an update will be safe. Their infrastructure includes spe-
cial languages and compilers to generate the annotated as-
sembly code, and a runtime framework that uses it.

Additional systems that provide instrumentation capabil-
ities on executable binaries exist. Dyninst [3] can patch cus-
tom code into pre-existing executable code, and has pro-
vided a platform for several research tools. Detours [9] also
does binary rewriting similar to Dyninst.

There is much work in dynamic introspection and mod-
ification of Java programs, but since this work is in a very
different environment than ours, we do not explain it in de-
tail here. Some representative references are [4, 5, 10, 12].

5. Conclusion

We have presented DDL, an extension to the standard
dynamic linker that allows introspection and modification
of the dynamic linking process. This capability supports a
wide range of uses for software engineering practitioners
and researchers, including a foundation for runtime mon-
itoring and dynamic analyses, dynamic runtime program
evolution, and other ideas that can use control over the link-
ing process.

In our future work we are pursuing the use of this
platform to support multi-version software fault tolerance
and evolution, and to support our ongoing research in-
terests in dynamic analysis. We are building an event-
based extensible tool framework on top of DDL, and we
have an initial prototype of reliable on-line C++ class

evolution through the execution of multiple versions of
classes. We hope that other researchers and practitioners
will find DDL useful, and we will be working towards get-
ting some form of our changes regularized back into the
Gnu dynamic linker project. Our project can be found at
http://www.cs.nmsu.edu/please/ddl/index.php.

References

[1] N. Abbas, S. Tambe, R. Srinivasan, and J. Cook. Using DDL
to understand and modify SimpleScalar. In Proc. 2004 Work-
ing Conference on Reverse Engineering, page to appear, Oct.
2004.

[2] A. Alexandrov, M. Ibel, K. Schauser, and C. Scheiman.
UFO: A Personal Global File System Based on User-Level
Extensions to the Operating System. In ACM Transactions
on Computer Systems, pages 207–233, Aug. 1998.

[3] B. Buck and J. Hollingsworth. An API for Runtime Code
Patching. Journal of High Performance Computing Applica-
tions, 14(4):317–329, 2000. www.dyninst.org.

[4] M. Dahm. Byte Code Engineering Library. 2002.
http://jakarta.apache.org/bcel/.

[5] S. Eisenbach and C. Sadler. Changing Java Programs. In
Proceedings of the 2001 International Conference on Soft-
ware Maintenance, pages 479–487, Nov. 2001.

[6] D. Ghormley, D. Petrou, S. Rodrigues, and T. Anderson.
SLIC: An Extensibility System for Commodity Operating
Systems. In USENIX Annual Technical Conference, June
1998.

[7] M. Hicks, J. Moore, and S. Nettles. Dynamic Software Up-
dating. In Proc. 2001 ACM Conference on Programming
Language Design and Implementation, pages 13–23, 2001.

[8] W. Ho and R. Olsson. An Approach to Genuine Dynamic
Linking. Software Practice and Experience, 21(4):375–390,
1991.

[9] G. Hunt and D. Brubacher. Detours: Binary Interception of
Win32 Functions. Technical Report MSR- TR-98-33, Feb.
1999.

[10] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. Barnes.
Runtime Support for Type-Safe Dynamic Java Classes. In
Proc. European Conference on Object-Oriented Program-
ming, pages 337–361, 2000.

[11] N. Medvidovic and R. Taylor. A Classification and Compar-
ison Framework for Software Architecture Description Lan-
guages. IEEE Trans. Softw. Eng., 26(1):70–93, 2000.

[12] A. Orso, A. Rao, and M. Harrold. A Technique for Dy-
namic Updating of Java Software. In Proc. 2002 Interna-
tional Conference on Software Maintenance, pages 649–658,
Oct. 2002.

[13] A. Serra, N. Navarro, and T. Cortes. DITools: Application-
level Support for Dynamic Extension and Flexible Compo-
sition. In Proc. 2000 Usenix Technical Conference, pages
225–238, June 2000.

[14] D. Thain and M. Livny. Bypass: A Tool for Building Split
Execution Systems. In Ninth IEEE International Symposium
on High Performance Distributed Computing, pages 79–85,
Aug. 2000.

74

Archeology of Code Duplication :
Recovering Duplication Chains From Small Duplication Fragments

Richard Wettel Radu Marinescu

LOOSE Research Group
Institute e-Austria Timişoara, Romania

{wettel,radum}@cs.utt.ro

Abstract

Code duplication is a common problem, and a well-
known sign of bad design. As a result of that, in the
last decade, the issue of detecting code duplication led
to various solutions and tools that can automatically
find duplicated blocks of code. However, duplicated
fragments rarely remain identical after they are copied;
they are oftentimes modified here and there. This
adaptation usually ”scatters” the duplicated code block
into a large amount of small ”islands” of duplication,
which detected and analyzed separately hide the real
magnitude and impact of the duplicated block. In
this paper we propose a novel, automated approach
for recovering duplication blocks, by composing small
isolated fragments of duplication into larger and more
relevant duplication chains. We validate both the
efficiency and the scalability of the approach by apply-
ing it on several well known open-source case-studies
and discussing some relevant findings. By recovering
such duplication chains, the maintenance engineer is
provided with additional cases of duplication that can
lead to relevant refactorings, and which are usually
missed by other detection methods.

Keywords: code duplication, design flaws, qual-
ity assurance

1 Introduction

Duplicating code, while easy and cheap during the
development phase, moves the burden towards the al-
ready overloaded and much more expensive mainte-
nance phase. Fowler and Beck ranks it first in their
list of ”bad smells in code” [6] and we strongly believe
they were right. Therefore, we will not emphasize the
consequences of introducing duplicated code.

In a line-based approach, large blocks of code af-
fected by modifications (renaming of variables or even
statement insertions or removals) would be identified
as small, less important fragments of duplicated code,
apparently not related to each other.

To address this issue, we propose an approach that
can merge such small fragments that belong together
and provides the maintainer with some additional du-
plication blocks otherwise granted with less impor-
tance.

2 The Archeology Metaphor

Like an archeologist who puts together all the ru-
ins of an ancient village in order to build a complete
picture, rather than analyzing each artifact separately,
we try to recover a close representation of a scattered
duplicated block, in order to make the right refactoring
decisions.

2.1 It Started with a Scatter-Plot

The scatter-plot approach, successfully applied in
the code duplication detection field starting with the
early ’90 ([1], [4], [5]), uses a visual representation
that can point out ”dark” areas, which possibly host
problems. Our approach provides the reengineer with
results in form of a list of duplication chains. However,
since the visual idea of a scatter-plot is behind our
detection algorithm, we chose it as a means to illustrate
the various concepts throughout this paper.

2.2 Need for Duplication Chains

Imagine we have the two pieces of Java code from
Figure 1. Despite the fact that it seems obvious that
they have common origins, due to the deleted and mod-
ified lines of code, they could be detected as 3 smaller

75

clones, which is rather false. In a more pessimistic
scenario, they would be filtered out by the minimum
length threshold. One could rightly argue that there
are approaches which can detect variables renaming.
What if the lines of code are modified further than just
variables or if there are lines appearing in only one of
the two code fragments?

initSensors(tSensors);
readSensors(tSensors);
lcd.init();
int i = 0;
while(i < tSensors.length){
 temp[i] =tSensors[i].getTemp();
lcd.println("T"+i+"="+temp[i]);

 i++;
}
regulateTemp(temp);

initSensors(tSensors);
readSensors(tSensors);
int i = 0;
while(i < tSensor.length){
 temp[i] =tSensor[i].getTemp();
System.out.println("T"+i+"="+temp[i]);

 i++;
}
regulateTemp(temp);

Figure 1. Scattered duplication

Moreover, detected clones might not be relevant if
they are too small or analyzed in isolation. Our main
goal is to capture, along with the usual clones, blocks of
scattered clones that may have common origin, which
we will further refer to as duplication chains.

2.3 Anatomy of a Duplication Chain

A duplication chain can be a complex element (the
representation of the recovered duplicated code block),
composed of a number of smaller, exact clones (further
referred as exact chunks), separated pairwise by non-
matching gaps. Figure 2 illustrates the previous ex-
ample’s scatter-plot representation, where the marked
cells correspond to the matching pair of lines of code
intersecting in that precise point.

exact chunk (2)
exact
chunk (3)

exact
chunk (3)

non-matching
gap (1, deleted)

non-matching
gap (1, modified)

Figure 2. Duplication chain

An exact chunk, put in the context of the archeology
metaphor, is a non-altered part of a duplicated block,
that preserved its identity. An exact chunk appears in
a scatter-plot as a continuous diagonal, as it can be
seen on Figure 2.

A non-matching gap reflects the changes that have
been made to the originating duplicated block, in

terms of lines of code (insertion, deletion, modifica-
tion). Thus, while apparently less important in clone
detection, these non-matching parts provide us with
extra information about the adaptation process. In a
scatter-plot representation, non-matching gaps appear
as shortest non-marked paths linking two consecutive
diagonals (Figure 2).

A characteristic of a duplication chain, directly
related to the adaptation process is the signature,
which captures the structural configuration in terms
of exact chunks, non-matching gaps and the metrics
around them. In terms of the archeology metaphor,
the signature could be associated with a ”map” stor-
ing the places where all the related items where dis-
covered. The signature of the previous example is
”E2.D1.E3.M1.E3”, which describes two code frag-
ments having 3 exact (E) chunks of sizes 2, 3 and 3,
separated by 2 non-matching gaps: one with 1 deleted
(D) line and the other with 1 modified (M) line of code.

2.4 Proportional Harmony

In the context of size, we want to capture only those
code fragments pairs that contain a significant amount
of duplication. While an exact clone is significant if
the clone’s size is larger than a threshold, a significant
duplication chain must also be proportionally harmo-
nious. First, we will define some metrics related to
these proportions (measured in LOC).

Size of Exact Chunk (SEC) reflects the degree of the
granulation left behind by the adaptation phase of the
copy-paste-adaptation process. Line Bias (LB) is the
size of non-matching gaps and its value may allow us
to decide if two exact chunks belong to the same du-
plicated block, since it provides a measure of distance
between them. Size of Duplication Chain (SDC) is the
size of the more meaningful block of duplication, which
actually suggests its magnitude.

In order to constrain the duplication chain’s pro-
portions, we will set a minimum SDC to filter the less
relevant clones. Furthermore, we will impose a mini-
mum SEC and a maximum LB. In the harmony con-
text, there is a relation between SEC and LB: the SEC
should always be larger than LB, because it is not de-
sirable to detect duplication chains with gaps larger
than its exact chunks.

2.5 Stepwise Recovery Methodology

We propose an approach of lightweight line-
matching, enhanced with the concept of chain dupli-
cation, which can also cover duplications that cannot
be detected by a simple line-matching approach.

76

Phase 1: Code Preprocessing. After reading the
source-files, we eliminate the white spaces, so that the
various indentation styles would not make the differ-
ence. An optional feature is the possibility to ignore
the comments in the analysis process. This phase pro-
vides a set of relevant (clean) lines of code.

Phase 2: Populate the scatter-plot. As in the
original scatter-plot approach, we compare every line
of code with every line of code in the project. As a
result of this comparison, the matrix will be divided in
two symmetric areas, around the main diagonal, which
is always completely marked (self comparison). We
then populate only one half of the matrix, in order to
avoid storing redundant information. The matching
intersections are marked.

Phase 3: Build the duplication chains. Starting
with the left-upper matrix cell, we look for the first
marked one, as a starting point for a possible dupli-
cation chain. From here, we accumulate the marked
cells following the diagonal direction towards the lower-
right cell. The algorithm will accept as an extension of
the chain either a marked cell that continues an exact
chunk or a marked cell situated in its vicinity, whose
range is controlled by the maximum LB. Significant
duplication chains will be stored in a results list.

3 Validating the Approach

In order to present the advantages over traditional
code duplication detectors, we have to prove that this
approach provides additional relevant duplications,
usually missed by other line-based detection methods.
To demonstrate this, we applied the proposed approach
over a set of case studies. DuDe, our supporting tool
owes its flexibility to the tunable thresholds which can
filter the results based on size and proportional har-
mony. The tool provides a list of suspects which can
be further analyzed, by means of the duplicated code
visualization feature and statistical information.

3.1 Quantitative Gain

We took 8 Java and C projects, covering the size
range from 0.5 MB to 10 MB, containing between
11,000 and 235,000 LOC in a number of 65 to 741 files.
We compared traditional approach results (NODC1,
COV1) with the one based on duplication chains
(NODC2, COV2). Correlating the results in terms of
coverage1 and number of duplication chains presented

1Coverage is the ratio of the number of copied lines of code
to the total number of lines in the system

in Figure 3, we can state that our enhanced ”arche-
ological” approach provides an important amount of
otherwise lost code duplication information.

Project Name Lang. NOF Size (MB) KLOC NODC 1 NODC 2 COV1 (%) COV2(%)
weltab C 65 0.43 11 759 711 72 76
cook C 590 2.68 80 1285 1744 9 16
snns C 420 4.82 115 47930 53274 16 21
postgresql C 612 9.52 235 704 1070 8 11
netbeans-javadoc Java 101 0.68 14 39 48 12 15
eclipse-ant Java 178 1.43 35 14 24 2 4
eclipse-jdtcore Java 741 6.9 148 716 1127 12 16
j2sdj1.4.0-javax-swing Java 538 8.39 204 1171 1388 7 10

Figure 3. Experimental results

3.2 Quality-Focused Analysis

In order to validate the quality of our results, we
extracted the clones found in another project (JHot-
Draw) only by the duplication chain approach and an-
alyzed them manually. Out of 72 clones, there were 30
duplication chains. Summarized, we found over 76%
relevant clones, potential subjects to refactorings.

In order to calculate the recall2 of our tool, we con-
sidered only the type 1 (exact) clones from the refer-
ence set built in [3] belonging to the biggest project
(eclipse-jdtcore) and intersected it with the duplica-
tion chains set found by DuDe. Concluding, our tool’s
recall was 89% under the strict conditions of the [3] ex-
periment, but in a more loose context the recall could
rise up to 95%.

3.3 Validation of Scalability

The largest project over which we successfully ap-
plied our approach, was a C project with 32 MB of
source code and over 600,000 LOC. The analysis took
2h45m, which is an acceptable amount of time for such
an industrial-size project.

4 Related Work

The idea of analyzing the non-matching parts of the
duplication appeared in [10], where the authors used
it to observe evolution between several versions of a
system. An interesting contribution, similar to our
approach was [11], whose authors address the gapped
clones issue by combining the exact clones provided
by their token-based clone detector [7]. Various other
techniques for detecting clones have been proposed over
the years: based on scatter-plots [1], [4] and [5], on
metrics [9] or abstract syntax trees [2] and program
dependency graphs [8].

2Recall is the percentage of discovered clones over existing
clones

77

5 Conclusions

5.1 Pros and Cons

One of the major advantages of our approach is
that it provides additional duplications to the ones de-
tectable by other traditional methods. It is able to
bring to light smaller duplication fragments, otherwise
hardly noticeable, which belong to a bigger, thus more
important duplication block. By doing these, it ensures
that the refactoring decisions are made with improved
comprehension of the big picture, i.e., it provides sup-
port for proper refactoring. Furthermore, the flexibil-
ity provided by means of the thresholds can lead to
customized detection methodologies, that fit particu-
lar maintenance focuses.

As for the drawbacks, the tool is not capable of de-
tecting renamed variables, due to its rather high gran-
ularity of comparison, although some of those could be
found under modified duplication chains (with lower
precison).

5.2 Future Work

To address the problem of course granularity, we
think that a fuzzy comparison would make an im-
provement, giving the tool the advantages of a clas-
sical token-based duplication detector along with its
novel duplication chain recovery approach. We would
also be interested in researching on the information we
could extract from the signatures of code duplication
chains. Finally, while we think that it would be pos-
sible to associate some patterns in the signatures of
duplication chains, it would be a real challenge to pro-
vide some assistance in the refactoring process, based
on some identified patterns.

6 Acknowledgments

This work is supported by the Austrian Min-
istry BMBWK under Project No. GZ 45.527/1-
VI/B/7a/02. We would also like to thank the LOOSE
Research Group (LRG) for being such a great and chal-
lenging team.

References

[1] Brenda S. Baker. A Program for Identifying Du-
plicated Code. Computing Science and Statistics,
24:49–57, 1992.

[2] Ira Baxter, Andrew Yahin, Leonardo Moura,
Marcelo Sant’ Anna, and Lorraine Bier. Clone

Detection Using Abstract Syntax Trees. In Pro-
ceedings ICSM 1998, 1998.

[3] Stefan Bellon. Vergleich von Techniken zur Erken-
nung duplizierten Quellcodes. Master’s thesis,
Universität Stuttgart, September 2002.

[4] Kenneth Ward Church and Jonathan Isaac Helf-
man. Dotplot: A program for exploring self-
similarity in millions of lines for text and code. J.
Computational and Graphical Statistics, 2(2):153–
174, June 1993.

[5] Stéphane Ducasse, Matthias Rieger, and Serge
Demeyer. A language independent approach for
detecting duplicated code. In Hongji Yang and
Lee White, editors, Proceedings ICSM ’99 (In-
ternational Conference on Software Maintenance),
pages 109–118. IEEE, September 1999.

[6] Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improv-
ing the Design of Existing Code. Addison Wesley,
1999.

[7] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro
Inoue. CCFinder: A multi-linguistic token-based
code clone detection system for large scale source
code. IEEE Transactions on Software Engineer-
ing, 28(6):654–670, 2002.

[8] Jens Krinke. Identifying similar code with
program dependence graphs. In Proceedings
Eigth Working Conference on Reverse Engineer-
ing (WCRE’01), pages 301–309. IEEE Computer
Society, October 2001.

[9] Jean Mayrand, Claude Leblanc, and Ettore M.
Merlo. Experiment on the automatic detection of
function clones in a software system using metrics.
In International Conference on Software System
Using Metrics, pages 244–253, 1996.

[10] F.Van Rysselberghe and S. Demeyer. Reconstruc-
tion of successful software evolution using clone
detection. In International Workshop on Princi-
ples of Software Evolution (IWPSE), pages 126–
130, 2003.

[11] Yasushi Ueda, Toshihiro Kamiya, Shinji
Kusumoto, and Katsuro Inoue. On detec-
tion of gapped code clones using gap locations.
In Proceedings Ninth Asia-Pacific Software Engi-
neering Conference (APSEC’02), pages 327–336,
Gold Coast, Australia, December 2002. IEEE.

78

An Empirical Study on Software Defect Fix Effort Estimation with
Incomplete Historical Data

Hui Zeng

Member, IEEE
School of Information Technology and
Engineering, George Mason University

Fairfax, VA 22030, USA
hzeng@gmu.edu

David Rine
Senior Member, IEEE

Department of Computer Science,
George Mason University
Fairfax, VA 22030, USA

drine@cs.gmu.edu

Abstract

Software defects fix effort is an important software
development process metric in software development and
corrective maintenance. Generally, parametric effort
estimation techniques such as historical Lines of Code
(LOC) and Function Points (FP) data are used to estimate
effort of defects fix. However, these techniques require
adequate complete historical data and fail in effectiveness
when specifically estimating defects fix effort prior to
starting new projects. This paper present an empirical
study on specifically estimating software defect fix effort by
a new non-parametric technique applying dissimilarity
matrices and self-organizing neural network using
software defects clustering and effort prediction with
incomplete historical data.

KEY WORDS
Defects fix effort, software process metric, neural
networks, Self Organizing Map (SOM), domain
incomplete

1. Introduction

Software defects detection and removal are very
important activities in software development and
corrective maintenance. Earlier defect removal is more
cost efficient than later [1]. Techniques for identifying
when defects need to be removed at minimal software
development effort while still providing customers with
high quality are needed.
 Recently research has shown special interest in
estimation of defects fix effort [2],[3]. Most general
techniques applied to estimate software development effort
use parametric project size techniques incorporating Lines
of Code (LOC) and Function Points (FP) that are based on
specific kinds of historical data. However, these estimation
techniques do not perform well when they are used to
estimate defects fix time [4]. The main reason is that there
are no predictable relationships between project size and
defects fix effort/time. Numbers of defects in different
domains require different defects fix effort/time.

Moreover, parametric techniques require adequate
historical data, and they fail to offer much help when
estimating defects fix effort prior to beginning a different
new software project without enough historical data.
 Neural networks as one category of non-parametric
techniques are usually suggested when estimating with
incomplete historical data [5]. In this paper, we present a
non-parametric estimation solution using self-organizing
neural networks that can handle some binary, numerical,
and nominal input data categorized in loosely-structured
free text for defect fix effort estimation.
 The background of software defect fix effort is
introduced in Section 2. We present the detailed design of
our experiment in Section 3, and the corresponding results
are described in Section 4. Conclusions are provided in
Section 5.

2. Background

Software defects fix effort is an important software
development process metric that plays a critical role in
software development and corrective maintenance.
Estimation techniques with better accuracy of software
defect fix effort estimation can help an organization to
improve forecasting prior to software application
development and maintenance, avoiding corrective
maintenance-related project cost (effort) over-budget,
under-budget and inaccurate financing.

Existing effort estimation techniques can be categorized
as parametric and non-parametric. Parametric techniques
hypothesize the structure of a model for a system of
interest, with several parameters left to be tuned by
empirical data [12]. The advantage for a parametric model
is that it is sometimes easier to use; some statistical
techniques can be applied along with the model, and
techniques do not required any initial training for the
system before estimation. The drawback is that it needs
strong understanding of historical data. Moreover, some
tuned parameters are based on certain software
development environments and cannot be easily
transplanted to another new project. Nonparametric
(distribution free) techniques are not solely based on
statistics, but on discrete objects in a feature domain.

79

These are techniques to build models that rely heavily on
the use of data without using many prior suppositions [5].
Neural Networks (NNs) belong to nonparametric
techniques. The advantages of a non-parametric model are
initial training before actual estimating begins, less
understanding required for input data, a self-adaptive
system, and improvements when using incomplete data.
The drawback is that NN is sometimes not easy to
represent and fewer statistical techniques are applied.

Generally parametric estimation techniques using
historical LOC [3],[4],[11] and FP [10] data are
traditionally applied to estimate software development
effort. However, these techniques do not perform well [5]
because defects fix effort is based on counts of defects in
each development phase and different domains. It is not
easy to compare counts of lines of rewritten code or FPs
for a new project with fixing defects effort when code will
be written within the context of a different organization.
Another reason is the relationship between defect fix effort
and LOC and FP are not as simply as people expect.
Different bugs from different development phases and
different scenarios may cause different fix efforts.

Usually, the collected historical data in the real world
could have certain features missed or misclassified, such as
NASA IV&V Facility Metrics Data Program (MDP) data
repository [7] dataset. The MDP static defects data
contains defects data that remains constant throughout the
life cycle of that defect. The challenge of a MDP data set
is that defects fix effort is only based on each actual defect,
not based on each type of defect. Moreover, there are no
rigorous categories for these defects; they are only
categorized in loosely-structured free text (not clearly
categorized or defined in a proper domain) [6]. Moreover,
these collected data is a mixture of binary, numerical,
nominal, interval, and ordinal data in the real world. This
kind of mixture of historical data has seldom been
considered in existing effort estimation techniques.

In this paper, we present a new framework for non-
parametric defect fix effort estimation that can deal with
mixture of various input data categorized in loosely-
structured free text data. Binding symbolic data
manipulation with a Self-Organizing Map (SOM) Neural
Networks (NN), our proposed framework provides better
support for software defect fix effort estimation with
incomplete historical data, as well as a post-processing
probabilistic model that can compensate for the weakness
of NNs in the area of statistical analysis.

3. Experiment Design

Our methodology for software defects fix effort
framework is depicted in Fig. 1. The system architecture
consists of three components: (i) feature extraction, (ii)
self-organizing maps, and (iii) probabilistic measurement.
In our experiment, we select the metrics summarized in
Table 1 as our estimation input variables.

Fig. 1. Framework Methodology Architecture

Feature ExtractionFeature Extraction

Dissimilarity
Matrix

Self-organizing
Neural Networks
Self-organizing

Neural Networks

Probabilistic
Measurement
Probabilistic
Measurement

Training Data Testing Data

NASA IV&V MPD
Data Set

2/3 1/3

Kohonen Feature
Map of clustering

Estimation

Feature ExtractionFeature Extraction

Dissimilarity
Matrix

Self-organizing
Neural Networks
Self-organizing

Neural Networks

Probabilistic
Measurement
Probabilistic
Measurement

Training Data Testing Data

NASA IV&V MPD
Data Set

2/3 1/32/3 1/3

Kohonen Feature
Map of clustering

Estimation
Table1. Input Variables for Defect Fix Effort

Estimation

Variable Description Types

1..Fix_Hour
The actual number of
man hours the fix took
to implement

Integer

2.Severity
The severity of the
defect

1,2,3,4,5

3. How_Found
The stage in which the
defect was found

Acceptance Test,
Analysis, Customer Use,
Engineering Test
Inspection, Mission
Critical, Planned Test,
Regression Test,
Release_I&T

4. Mode
The mode the system
was operating in

DEV02, DEV03,
DEV04, OPS, Other,
TS1,TS2

5. Problem_Type
Specific reason for
closure of error report

Configuration,
COTS/OS,
Design,
not a bug,
source code

6. SLOC_COUNT
The actual number of
SLOC changed or
added

Integer

3.1 Feature Extraction

As introduced earlier, some data metric measures
related to defects fix effort are symbolic data categorized
in loosely-structured free text, which cannot be used by
NN directly as input vectors, and need to be converted to
binary data. We first converted these nominal features to
binary features [13], second applied the Jaccard
coefficients method, and then generated a dissimilarity
matrix so the neural network can accept as one of input
vectors. In this experiment, four nominal variables:
Severity, How_Found, Mode, and Problem_type,
were converted to binary variables [13]. A contingency
table shown in Fig.2 for binary data type was derived.

Fig. 2. The Contingency Table for Binary Variables

Sample i

Sample j

pdbcasum

dcdc

baba

sum

++

+

+

0

1

01

Sample i

Sample j

pdbcasum

dcdc

baba

sum

++

+

+

0

1

01

pdbcasum

dcdc

baba

sum

++

+

+

0

1

01

80

 An asymmetric dissimilarity dk was then carried out
using Jaccard coefficients.

cba
cb ji

k
d

++
+=),(

 where dk(i, j) is the dissimilarity score between ith and
jth samples with respect to the kth input variable [13].

In this experiment, the sixth variable, SLOC_COUNT, is
an interval-valued variable whose value was normalized
between 0 and 1. Manhattan distance was used to compute
another dissimilarity matrix. For m samples, m(m-1)/2
dissimilarity vector matrices with two attributes are
generated.
 NASA MDP datasets KC1 and KC3 were used in our
experiment as a test bed to assess the performance of the
estimation methodology. KC1 is the development with a
single computer system component item (CSCI) within a
large ground system, which is made up of 43 KSLOC of
C++ code [7]. KC3 is an effort that has been coded in 18
KLOC of Java. The purpose of the code is the collection,
processing and delivery of satellite metadata [7].
 A total of 947 samples corresponding to 36 different
software defects fix efforts were used in our experiment,
which were randomly divided into two data sets - 631
samples for training the self-organizing map (SOM) neural
network and the remaining 316 samples for validating the
estimation performance of the SOM. Two attributes of
dissimilarity measurement derived from normalized
SLOC_COUNT and Jaccard coefficients using four
nominal variables are the SOM inputs.

3.2 Self Organizing Maps (Kohonen Networks)

 Kohonen SOM [8][9] is a sheet-like artificial NN, the
cells of which become specifically tuned to various input
variable patterns or classes of patterns through an
unsupervised learning process. In other words, it can be
said that the SOM algorithm is an unsupervised learning
algorithm that creates topological mappings between the
input data and map units: If two input patterns are similar,
then the most active units responding to the two input
patterns are located near each other on the SOM. The
locations of the responses tend to become ordered as if
some meaningful coordinate system for different input
features were being created over the NN. The spatial
location or coordinates of a neuron in the NN match up to
a particular domain of input patterns. It is this feature that
is of particular interest since we need to figure out some
pattern with different samples. Therefore the defects fix
effort in terms of the variable, Fix_Hour, in the unseen
data, can be estimated. After the network training, all
training samples were clustered and the probability
distributions of Fix_Hour within clusters were derived.

3.3 Probabilistic Measurement

 In order to evaluate the performance of our estimation
effort prediction model, we used magnitude of relative
error (MRE) [5] as our evaluative measure:

i

ii
i rtActualEffo

edcitEfforrtActualEffo
MRE

|Pr| −
=

3.4 Experiment Setup

 As introduced in the previous section, the collected
historical data come from two different types software
development environments: KC1 produced a defects
dataset with C++ programming developments, while KC3
is based on Java programming developments. Two
hypotheses were provided and tested to support our
estimation experiment:
 H1: The framework provides improved estimate
performance if training and testing historical data are from
similar environment (programming language, domain
applications, and development organizations are similar).
 H2: The framework provides improved estimate
performance if training and testing historical data are from
different software development environments.
 Two experiments described in Table 2 are setup to
validate the above two hypotheses.

Table2. Experimental Design

Dataset
Name

Training
Datasets

Testing
Datasets

Cross
Validation

Part 1 MDP KC1 631 from KC1
316 from

KC1
Yes

Part 2
MDP KC1
and KC3

631 from KC1
68 from

KC3
No

4. Results

As introduced, the training data group was used to train

the weights of self-organizing NNs. To cluster the training
samples, self-organizing NN with 25 hidden neurons in a
hexagonal 5-by-5 network topology was initialized. Based
on our observation, a 5x5 topology were sufficient for
covering the feature space.

Self-organizing map (SOM) consists of a single layer
with the weight from the input mapping to 25 neurons.
The training process repeated to minimize the network’s
quantization error by adjusting weights till the error was
significantly small. The weight vectors were originally
located in the midpoint of feature map by assigning
identical initial values. During the training phase, the
neurons have started to move toward the various training
groups and the feature maps simultaneously update the
weights of the winner node (neuron) and its neighbours.
The result is that neighbouring neurons tend to have
similar weight vectors and to be responsive to similar input
vectors. The weights of feature map were learning to
categorize their input, also learned both the topology and
distribution of their input. After the network was well
trained, these samples were clustered into neurons to form
a feature map.
 After SOM training, the known values of defects fix
effort represented by variable Fix_Hour were assigned
to the found clusters. The probability distribution
corresponding to various Fix_Hour values within each
cluster was derived. 61 testing samples from KC1 and 613

81

defects data from KC3 were then used to validate overall
performance. Testing samples followed the same
procedure as training samples, such as going through
feature extraction and finding a set of dissimilarity vector.
During the testing phase, each unseen sample was
compared to all training sample vectors to generate 947
dissimilarity vectors. These vectors were fed into already
trained self-organizing neural network and produced an
unknown probability distribution. We then compared this
unknown distribution against known probability
distribution of each cluster. For the cluster that offers the
most likelihood, it is selected as the best response to the
Fix_Hour inquiry.
 We then use MRE as the evaluative measure to
evaluate the performance of our estimation effort
prediction model. As the histograms of defects fix effort
can be grouped as 6 groups as shown in following table,
we calculated average MRE and maximum MRE within
each histogram. Table 3. shows the performance
evaluation using data samples from KC1.

Table 3. Performance Evaluation Using KC1 Dataset

Range of Defect Fix Effort (Man-hours) Measurement
of Accuracy

0-1 2-8 9-20 21-50 51-80 81-200

Average
MRE

6% 14% 37% 51% 41% 37%

Maximum
MRE

93% 331% 251% 165% 108% 90%

 We also evaluated the estimation performance by using
another NASA MDP dataset KC3 as our other testing data.
KC3 is a metrics dataset with projects of Java
developments. 68 defects data samples of KC3 are used for
validation. The results are shown in Table 4.

Table 4. Performance Evaluation Using KC3 Dataset

Range of Defect Fix Effort (Man-hours) Measurement
of Accuracy

0-1 2-8 9-20 21-50 51-80 81-200

Average
MRE

40% 130% 181% 182% 95% 159%

Maximum
MRE

881% 520% 213% 181% 216% 186%

 From the above result, we found the average MRE is
from 6% to 51% and the maximum MRE is from 90% to
331% by using dataset KC1, which indicates that the
performance of estimation by using our method is robust
except for the bin between 21 to 50 man hours.
Performances within other ranges are less than the
excellent effort estimations norm of 42%. So Hypothesis 1
is accepted. However, when we evaluate the estimation
performance by using KC3 68 defects data as testing data,
a poorer estimation result is derived, the average MRE is
from 40% to 182%, and the maximum MRE increases
from 181% to 881%. Therefore Hypothesis 2 is rejected.
 The main reason of different estimation performances is
because the KC3 produced a defects dataset with Java
programming developments of one application type

involving data processing in satellite metadata, and KC1
produced a defects dataset with C++ programming
developments of a different application type that includes a
single CSCI within a large ground system. As two different
development environments can cause different software
requirements, analysis, designs, coding, and testing
strategies, corresponding defects fix effort may differ. So,
even if we applied non-parametric estimation techniques
like NNs with the feature of self-adaptation, if the
environments of software development are totally
different, we still cannot always anticipate better
performance. Estimation techniques only perform
consistently well in the family oriented software
development environment like product line software
development.

5. Conclusions

 In this paper, we present our strategic solution to
estimating software defects fix specific effort by using
dissimilarity matrix and self-organizing NNs for software
defects clustering and effort prediction instead of
traditional development wide project size techniques such
as Lines of Code (LOC) and Function Points (FP). By
using our new estimation method, defects fix effort/time
can be estimated using the number of defects in various
domains instead of fixed domains, using functions with
self-adaptive features. The experimental results indicate
improved performance when applied to estimates for
similar software development projects.

References:

[1] B. W. Boehm, Software Engineering Economics: Prentice

Hall, 1981.
[2] A. Mockus, Understanding and Predicting Effort in

Software Projects, 25th International Conference on
Software Engineering. May 03 - 10, 2003

[3] B. Boehm, et al. Cost models for future software life cycle
processes: COCOMO 2.0. Annals of Software
Engineering, November 1995.

[4] K. Manzoor, A Practical Approach to Estim Defect-fix
Time, http://homepages.com.pk/kashman/

[5] M. R. Lyu, Handbook of Software Reliability
Engineering(McGraw Hill, 1996).

[6] T. Menzies and R. Lutz, Better Analysis of Defect Data at
NASA, The 15th Intn’l Conf. on SE and Knowledge
Engineering, July, 2003.

[7] NASA MDP site http://mdp.ivv.nasa.gov/
[8] T. Kohonen, The Self-Organizing Maps, Proceedings of

the IEEE, 1990 78, 1464-1480
[9] T. Kohonen, Self-Organizing Maps, Springer Series in

Information Sciences, New York, 1997
[10] N. Fenton, “Software Metrics”, Second Edition, ITP, 1997
[11] S. Chulani, Bayesian Analysis of Software Cost and

Quality Models, Ph.D Dissertation, Univ. of South
California, 1999

[12] R. Kennedy, Y. Lee, Solving Data Mining Problems
through Pattern Recognition (Prentice Hall, 1997)

[13] D. Hand, H. Mannila, and P. Smyth, Principles of Data
Mining, The MIT Press, 2001.

82

Experience Report on Maintaining
Executable UML Software

Ned Chapin
InfoSci Inc., Box 7117

Menlo Park CA 94026-7117
NedChapin@acm.org

Abstract

Raising the level of abstraction at which the
personnel work is a long-established approach to
improving software personnel productivity, in both
software development and software maintenance. The
object-oriented (OO) technologies are one example of
technologies promoted to raise the level of abstraction
in software analysis and design. An outgrowth of object-
orientation, executable UML, has been advocated as a
way of bringing a lift in the level of abstraction into the
implementation and maintenance phases of the software
life cycle. Based upon an industrial case that fits MDA
(model-driven architecture) well, this paper provides an
experience report on software main-tainability effects
from using executable UML. This paper concludes with
a listing of five lessons learned, and the observation that
the reported experience with executable UML showed no
improvement in main-tenance over ordinary OO
experience at the site studied.

1. Site studied

Continuous evolution (the ICSM 2005 theme)
characterizes the job shop manufacturing plant studied
and reported on here, because the plant does assembly
work mostly on a short-term contract basis for a mix of
customers from various industries. The jobs are mostly
the manufacture of assemblies from components and
subassemblies made elsewhere, and the resulting
assemblies are in turn shipped elsewhere. The plant’s
management has elected not to use ERP (enterprise
resource planning) packaged software for its job shop
production floor operations. Instead, management
elected to develop in house and maintain in house
custom software using object-oriented (OO) technology
including using the UML (unified modelling language).
The plant’s shop floor has multiple production lines with
work stations that are reconfigured frequently as

customers and their needs change.
The character of the assembly processes makes MDA

(model-driven architecture [1]) attractive to the plant’s
management for the design of the software systems. The
software systems (“Line Systems”) used to operate the
lines are all different since each line has unique
characteristics, both as to many of the operations at some
work stations, and as to material (“cargo”) movement
between work stations. The Line System software used
with line “L6” is the plant’s pilot implementation of
executable UML [2], now in its second year. One
instance out of the seemingly continuous flow of
changes to that L6 Line System is the archetypical
enhancive maintenance task highlighted here [3].

That maintenance task initiated by the plant’s Safety
Officer dealt with cargo movement. This enhancive task
was approved by the plant management and the
information technology (IT) management, and funded for
two stages. The first or test stage (reported on here) was
to involve only one turntable of the eight four-position
turntables of the 25-segment L6 line. For testing,
turntable D on the L6 line was chosen. The task was for
the addition of two safety stops (“catches” A and B) per
turntable (Figure 1).

The three justifications for the Safety Officer’s
request were the possibility of undetected cargo on the
line, the possibility of non-existent (“ghost detection”)
cargo, and the possibility of inconsistent (contentious)
movement of cargo between segments. The L6
production line with its sixteen stub segments, routed
work in progress to and from the sixteen work stations
and two end stations (“Begin” and “End”), and provided
temporary storage between work stages for some work
in progress. Cargo motion along any part of the line
could be in either direction, and different segments could
be independently and concurrently moving cargo in any
direction, or be idle (stopped).

In executable UML, the production line situation
provides a congenial context for having the model drive

83

84

85

and then regenerating the intermediate code before
recompiling. The maintenance work rarely requires
studying and revising the intermediate (usually C or
C++) code. The field experience elsewhere thus far in
using executable UML has been insufficient to provide
a quantitative basis for confidently determining
executable UML’s effects on personnel productivity
even in software development, let alone in software
maintenance. Also, the precise action semantics are
downplayed in UML 2.0 [4]. The effects of executable
UML on the “...ilities” of software are certainly relevant
because of the “...ilities” connection to maintainability
[5], but thus far published reports of studies are in very
short supply. Hence, the plant’s management is
interested in what are the lessons learned thus far.

3. Lessons learned

The question of interest to the plant’s management is
to how does the more than a year of maintenance
experience on the L6 line with executable UML compare
with the maintenance experience on the other lines not
using executable UML? Informal surveys of the staff
involved, a review of available documentation, and an
evaluation of the source code of selected projects, point
to five lessons learned and one general conclusion. The
lessons learned are these:
! Dependencies must be made explicit. In executable

UML, the objects are dormant until activated, run
concurrently with other objects but independently,
run to their own completions, and then go dormant to
await their next activations. While running, objects
may send messages, and may receive both
backlogged and current messages. What the objects
are sensitive to, and what interactions they have and
may have with other objects are specified in
executable UML within the objects. Hence,
maintenance in executable UML has to give explicit
attention to dependencies among objects.

! Use of association classes and of subclasses is
encouraged. Adding subclasses and association
classes is convenient and expeditious when using
executable UML in maintenance. Association
classes and subclasses are not unique to executable
UML, and their use is generally regarded well in
theory, but not as well in practice in using OO
technology.

! All attributes must be single-valued. In the
maintenance of systems using OO technology,
multiple-valued attributes are sometimes inserted, but
that practice is not commonly recommended. With
executable UML, single-valued attributes are the
required way to go in maintenance.

! Dynamic creation and deletion of objects is
discouraged. While they are as permitted and as

useful in executable UML as they are in OO software
generally, they turn out to be potential bug sources
during maintenance in executable UML. The reason
is that a dynamically created or deleted object has
dependencies that have to be made explicit. While
their creation is cumbersome in maintenance with
executable UML, their deletion is worse in practice,
because any undeleted dependencies can and may
give rise to hard to locate errors.

! Documenting ripple becomes more important. When
maintaining software in executable UML, changes
usually must also be made in other parts of the
software than the part being concentrated upon,
because dependencies need to be explicit. The
temptation is to skimp on updating the UML
documentation of affected parts of the software. If an
organization’s procedures and software tools used
tolerate this, then the UML description of the system
becomes increasingly obsolete more rapidly. This
can make future maintenance slower and more costly
to do, especially when the usual OO technology is
used along with executable UML.
The general conclusion is that overall, the

maintenance experience with executable UML and the
associated MDA at this plant has thus far been
indistinguishable from that for similar software using
OO technology but not using executable UML. In
qualitative terms, maintenance tasks appear to be
estimated for and use about the same calendar time and
person time, when executable UML is used, as when it
is not used in doing the tasks. Thus far, the plant
management has not extended beyond the L6 line its use
of executable UML.

4. References

[1] OMG, MDA Guide Version 1.0.1, Object Management
Group, Inc., Needham MA, 2003.

[2] S. J. Mellor and M. J. Balcer, Executable UML: A
Foundations for Model-Driven Architecture, Addison-Wesley:
Boston MA, 2002.

[3] N. Chapin, J. E. Hale, K. Md. Khan, J. F. Ramil, and W.-G.
Tan, “Types of software evolution and software maintenance”,
Journal of Software Maintenance and Evolution: Research and
Practice, John Wiley & Sons, Ltd., Chichester, UK, January-
February 2001, pp. 3–30.

[4] K. Scott, Fast Track UML 2.0, Springer-Verlag, New York
NY, 2004.

[5] P. Oman and J. Hagemeister, “Metrics for assessing a
software system’s maintainability”, Proceedings Conference
on Software Maintenance, IEEE Computer Society Press, Los
Alamitos CA, 1992, pp. 337–344.

86

