
Rectifying Orphan Components using Group-Failover in
Distributed Real-time and Embedded Systems∗

Sumant Tambe
†

ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
sutambe@dre.vanderbilt.edu

Aniruddha Gokhale
ISIS, Dept. of EECS
Vanderbilt University

Nashville, TN 37235, USA
a.gokhale@vanderbilt.edu

ABSTRACT
Orphan requests are a significant problem for multi-tier dis-
tributed systems since they adversely impact system cor-
rectness by violating the exactly-once semantics of applica-
tions and may waste resources. Orphan requests stem from
the failure(s) of non-deterministic components involved in
nested invocations of replicated components. Resolving this
problem in the context of resource constrained, component-
based, distributed real-time and embedded (DRE) systems
that form end-to-end task chains is challenging because con-
ventional transaction-based solutions cannot assure real-time
properties of the DRE applications. To address these chal-
lenges, this paper presents a group-failover protocol that
comprises three key capabilities: real-time failure detection
and client failover, timely mitigation of orphan requests, and
two novel application state consistency strategies to ensure
the correctness of DRE systems by maintaining the exactly-
once semantics even during failures. Our solution is im-
plemented in the context of the CIAO real-time CORBA
Component Model middleware. Empirical evaluations of the
group-failover protocol in both fault-free and failure recovery
scenarios for DRE task chains of different sizes demonstrates
a low overhead and predictable performance.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems—soft real-time, fault-tolerance, availability, compo-
nents

General Terms
Components, Failover, Performance

∗This work was supported in part by NSF CAREER Award
CNS 0845789. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation
†Author has since graduated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CBSE CBSE ’11 Boulder, CO, USA
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Soft Real-time and Fault tolerance, Component-based sys-
tems

1. INTRODUCTION
Component-based technologies are gaining prominence in

distributed, real-time, and embedded (DRE) systems found
in domains, such as shipboard computing [1] and avionics
mission computing [2], since they facilitate reuse and ex-
pedite system development. The end-to-end service speci-
fications of these applications include mostly soft real-time
requirements in the form of predictable response times. The
system structure can be modeled as end-to-end task chains [3]
of software components where the application behavior and
state is divided among these components. The mission criti-
cality of such systems require them to be reliable and highly
available, which imposes the need for replication of the end-
to-end task chains.

The componentized structure of DRE systems often re-
sults in nested invocations among the components to service
client requests. The combination of replication and nested
invocations within the end-to-end task chains, however, may
result in potential undesired side-effects of replicated invo-
cations, which are (nested) requests from a replicated server
to another (possibly replicated) server [4]. These undesired
side-effects arise when the components are stateful, and one
or more components in the end-to-end task chain are non-
deterministic. In DRE systems it is reasonable to expect the
presence of stateful components that admit several forms of
non-determinism [5] stemming from local information (e.g.,
sensors and clocks), timers and timeouts, multi-threading
(e.g., dynamic scheduling, preemption), load-balancing, time-
dependent sensor calibration, and program constructs, such
as true random number generators.

Consequently, a key undesired side effect called the or-
phan request [4, 6] problem arises when one or more of the
non-deterministic, stateful components in the replicated in-
vocations fail. Intuitively, an orphan request is a request
received by a component that is no longer valid due to fail-
ure of the invoking, non-deterministic component. In such
a case, it is not guaranteed that the reinvocation of the re-
quest by a replica of the failed non-deterministic component
will lead to the same nested invocation thereby leaving the
earlier partially completed request an orphan.

Figure 1 shows how failure of a non-deterministic compo-
nent causes an orphan request in another component. As-
suming passive (i.e., primary-backup) replication [7], the

client invokes an operation on the primary replica of com-
ponent A (shown as Replica 1), which in turn calls another
component B. The primary replica of the component A, how-
ever, crashes before returning the reply to the client. The
client reinvokes the request on the backup replica of compo-
nent A (shown as Replica 2), which is promoted to primary.

Figure 1: An orphan request caused by the failure
of non-deterministic component A

Since the backup replica of A is also non-deterministic,
there are three possible behaviors when the backup replica
of A is promoted to a primary: (1) it makes no invocation,
(2) it makes an invocation with different parameters, and
(3) it makes an identical invocation on component B. The
lattermost behavior, however, is not guaranteed at all times.
If the promoted backup of component A makes no invocation
on component B, the earlier request that is continuing in the
system (as shown in the figure) is considered an orphan, and
the affected components become orphan components. If an
invocation with different parameters is made, then the state
of component B may become inconsistent with respect to
the rest of the system.

Neither of these conditions is permissible in DRE systems
because system correctness is adversely affected. The root
cause of this problem is the violation of the exactly-once se-
mantics of request execution by the non-deterministic com-
ponent, which is not allowed for mission-critical DRE sys-
tems. Simple caching [8] of the request and reply may not be
applicable since the re-invocation of the request after failure
recovery by the non deterministic component may not be
identical thereby rendering the cached values useless.

The orphan request problem has been addressed [4,6,9–11]
for enterprise systems by integrating replication and transac-
tions. However, the use of transactions becomes a significant
source of overhead in the critical path for most real-time sys-
tems causing degradation in response times to clients. Solu-
tions based on enforcing determinism [12–15] target only a
small subset of the sources of non-determinism out of many
that are possible in contemporary real-time systems. More-
over, their use is limited since they require access to the
source code.

In this paper we present a novel approach to resolving the
orphan request (and hence the orphan component) problem
for DRE systems that simultaneously meets their real-time,
fault-tolerance, and system correctness requirements. We
present a group-failover protocol that supports exactly-once
execution semantics despite the presence of replicated in-
vocations and non-deterministic stateful components. The
protocol ensures that replicated data is both consistent (strong
state consistency) and timely. We present two variations of

the protocol for state consistency that are optimized for ei-
ther the fault-free or failure scenarios. DRE system design-
ers can easily program the group-failover protocol semantics
in their applications since they do not need to implement
complex application-specific prepare, commit, and rollback
methods found in conventional transactional systems. In-
stead, our middleware implementation that is built on top
of the CIAO [16] Lightweight CORBA Component Model
(LwCCM) [17] middleware supports these capabilities out-
of-the-box.

The work presented in this paper differs from our ear-
lier work on FLARe [18] and CORFU [19]. FLARe pro-
vides real-time, fault-tolerance to client-server applications
and not to end-to-end component-based systems. Moreover,
FLARe provides only weak state consistency. CORFU ex-
poses FLARe’s capabilities at the component abstraction
level thereby allowing end-to-end task chains. However,
CORFU does not handle the orphan request problem. Nev-
ertheless, our work leverages the infrastructure provided in
FLARe and CORFU, which themselves are part of the CIAO
framework.

The rest of the paper is organized as follows. Section 2
presents related work describing why existing approaches to
solving the orphan request problem are not suitable for real-
time systems; Section 3 presents the group-failover protocol
and its two variations for strong state consistency; Section 4
describes our implementation of the group-failover protocol;
Section 5 evaluates the protocol and shows its suitability for
DRE systems, and finally Section 6 concludes the paper.

2. RELATED RESEARCH
We categorize existing research on addressing the issues of

non-determinism in replicated invocation in two categories.
The first set of work admits non-determinism but compen-
sates for the side effects of replicated invocation using trans-
actions. The second set of work focuses on enforcing deter-
minism that avoids the side effects.

2.1 Integrated Transaction and Replication
Replication and transactions are two separate techniques

for achieving fault-tolerance in reliable systems. Replica-
tion represents roll-forward recovery where an incomplete
request is re-executed at another replica. Conversely, trans-
actions represent roll-back recovery where a failed parent
transaction forces undo of all the sub-transactions no matter
their outcome. The two reliability mechanisms are different
in that the former protects processing whereas the latter
protects data to ensure system consistency.

Note that transactions provide all-or-nothing (atomicity)
guarantees whereas replication provides at-least-once guar-
antees as long as there are fewer failures than the available
replicas. Neither provides exactly-once guarantee, which is
stronger than both and is needed in DRE systems for system
correctness. Therefore, the solutions that depend on both
replication and transactions to provide exactly-once seman-
tics must integrate the two services in non-trivial ways.

Felber et al. [10] reconcile CORBA’s transaction service
(OTS) [20] and the replication service (FT-CORBA) [21]
to protect both data and processing to provide consistent
end-to-end reliable operation. Their approach restarts ex-
ecution of a failed sub-transaction on a backup and aborts
sub-transactions where a parent has failed. This reconcilia-
tion, however, does not handle the intricate details of trans-

action completion in failure scenarios.
Pleisch et al. [4] address the shortcomings in [10] by pro-

viding two alternatives to handle non-determinism: one pes-
simistic and one optimistic. The pessimistic approach forces
the subtransaction to wait for the commit of the parent,
while the optimistic approach allows subtransactions to com-
mit before its parent. Information about how to undo the
changes is sent to the backups before making the nested in-
vocation. In the pessimistic case, orphan subtransactions
are aborted whereas in the optimistic case they are compen-
sated by undo transactions.

Frølund et al. [9] present an approach to integrate replica-
tion and transactions for three-tier applications. However,
their approach is limited to stateless middle-tier servers,
where all state is forced to the end-tier databases. ITRA [11]
handles the side effects of replication by propagating the
result of each non-deterministic operation to the backups.
ITRA supports replicated transactions by replicating the
start, join, prepare, commit, and abort operations.

Kolltveit et al. [6] present an approach where a passively
replicated transaction manager is allowed to break replica-
tion transparency to abort orphan requests thus handling
non-determinism. The transaction manager must be aware
of the replication and be able to see the individual replicas
of the transaction participants instead of treating them as
an opaque group.

Despite the elegant solutions described in these approaches,
the combination of transactions with replication causes sig-
nificant overhead in the critical path for most DRE systems,
which in turn cannot assure their real-time properties. A de-
tailed description of the overhead is presented in Section 3.2.

2.2 Enforcing Determinism
Considerable research efforts have been expended in de-

signing strategies to enforce replica determinism and to cir-
cumvent certain sources of non-determinism. Slember et
al. [12,13] apply program analysis to discover the sources of
non-determinism. They target the instances of non-determin-
ism that can be compensated automatically and highlight
the remaining instances that must be manually rectified.
The work on deterministic scheduling algorithms [14, 15]
handles the non-determinism of multi-threading. A deter-
ministic schedule is ensured either by multicasting the schedul-
ing decisions to the replicas or by assuming shared state
between all threads of the same replica. The fault-tolerant
real-time MARS system [22] requires deterministic behavior
in highly responsive automotive applications which exhibit
non-determinism due to time-triggered event activation and
preemptive scheduling. Replica determinism is enforced us-
ing a combination of timed messages and a communication
protocol for agreement on external events.

Despite resolving the challenges stemming from non-deter-
minism, the approaches outlined above target only a small
subset of the sources of non-determinism out of many that
are possible in contemporary real-time systems. The au-
tomated source code analysis approach may not be appli-
cable when only component binaries are available. Some
approaches cannot be completely automated whereas others
add significant overhead in the critical path due to the need
to communicate the non-deterministic decisions.

Finally, timestamp-based orphan elimination techniques [23,
24] have been developed to remove crash and abort orphans
from the system. Closely synchronized real-time clocks are

required for timely elimination of orphans. These algorithms
also incur additional messaging overhead of periodic system-
wide refresh. This overhead is similar to the periodic garbage
collection phase in [4].

3. RECTIFYING ORPHAN COMPONENTS
USING GROUP-FAILOVER

We now present our approach based on a group-failover
protocol to rectifying orphan components in DRE systems.
Note that orphan computations are an instantaneous conse-
quence of a failure in a non-deterministic middle tier of an
end-to-end task chain. Before the failure, the requests sent
by middle tier components are potential orphan requests (as
shown in Figure 1). Upon failure of the non-deterministic
component making the nested invocation, however, they in-
stantaneously become orphan. Therefore, orphan computa-
tions cannot be prevented; instead they must be rectified be-
cause they waste resources, may hold locks thereby delaying
other computations, and may lead to system inconsistencies.

3.1 System and Fault Models
To set the context to describe our contribution, we first

describe the system and fault model assumed in this work.
System Model. We consider systems in which applications
are composed of multiple tiers (n-tier) of components/proces-
ses that communicate over a network of computing nodes.
All or a (non-null) subset of the components may be non-
deterministic and may maintain volatile state across multi-
ple client invocations (i.e., a session). The services in the
system are invoked by clients periodically via remote opera-
tion requests. Every client expects bounded response times
from its services, i.e., services have soft real-time deadlines,
which if missed, reduces the value to the client gradually
down to zero. If a deadline is missed (say, due to failures),
earlier completion of the request has higher value to the
client than later completion.

More formally, the nested invocation of components can
be modeled as end-to-end task chains [3]. To satisfy the
end-to-end response time of clients, the end-to-end schedu-
lability [25] of the computing resources is ensured based
on the deployment of components. Further, we do not al-
low component sharing across multiple services of DRE sys-
tems. Component sharing complicates system scheduling
and deployment planning. Moreover, failures of a shared
non-deterministic component may result in orphan state in
more than one service at a time, which complicates recovery
and correctness in mission-critical DRE systems.

We assume that the application hosting middleware has
access to the deployment and composition metadata of the
components, and that the deployment and configuration of
the end-to-end task chains in the DRE systems is handled
through our prior work on CORFU [19].
Communication Semantics. We assume that networks
provide bounded communication latencies and do not fail
or partition (synchronous environment). This assumption
is reasonable for many soft real-time systems, such as Su-
pervisory Control and Data Acquisition (SCADA) systems,
where nodes are connected by highly redundant high-speed
networks. Due to the synchronous environment, perfect fail-
ure detection is possible that bounds the delay for failure de-
tection and eliminates false suspicions as described in [26].
Moreover, we also assume that requests made by the client

are received in FIFO order. This assumption is justified
given the periodic model of client requests.
Fault Model. Processors and processes hosting the compo-
nents may experience fail-stop [27] failures. Passive replica-
tion (primary-backup) [28] approach is used for high-availabi-
lity and roll-forward recovery because it tolerates non-deter-
minism better than active replication and consumes less re-
sources compared to other strategies. All these properties
are highly suited for DRE systems.

The state updates in the primary are transmitted to the
backups upon completion of each request. In contrast to
traditional primary-backup schemes where a backup replica
immediately updates its state on receipt of state from a pri-
mary replica, in our scheme the state updates are pushed in
the backups only when dictated by the group-failover pro-
tocol, which is described in Section 3.3.

A minimum of f + 1 replicas will be required in a given tier
to tolerate f replica failures. We leverage the implementa-
tion of failure detectors based on per-node daemons and pe-
riodic heart-beat beacons from our prior work in FLARe [18].
If a replica crashes and restarts, it joins the group of back-
ups. Maintaining the necessary quorum of replicas is not
the focus of this paper, and we assume external mechanisms
are available that address this requirement.

3.2 Understanding the Sources of Overhead
in Transaction-based Techniques

Although conventional transaction-based approaches re-
solve the orphan request problem, they are unsuitable for
DRE systems because they cause significant messaging and
synchronization overhead in both fault-free and failure re-
covery scenarios. Empirical evaluations in [6] confirm that
the response time may suffer up to 200% increase in the
fault-free case whereas client-perceived failover delay could
vary from 200 to 400 ms. Contemporary DRE systems of-
ten have more stringent performance requirements. Below
we describe the sources of overhead in the solutions that
combine replication with transactions.
(1) A server must initiate a transaction by sending a create
message to the transaction manager;
(2) Every object that participates in the transaction must
register itself with the transaction manager using a join mes-
sage;
(3) Non-deterministic components must transfer undo in-
formation to their replicas to either abort or commit the
subtransactions in case of a failure;
(4) The server must finish the transaction using a commit
message;
(5) While finishing a transaction, the transaction manager
initiates a two phase commit (2PC) protocol that sends pre-
pare messages to all the transaction participants in the first
phase, which if acknowledged positively, sends commit mes-
sages to all the participants in the second phase;
(6) Each participant object sends its vote to the replica be-
fore sending it to the transaction manager; and finally,
(7) the reply is sent to the client only when the transaction
manager indicates successful completion of the 2PC to the
initiating server.

In case of a failure, the orphan components be eliminated
by sending abort messages (or compensating transactions)
to every orphan. Moreover, the steps for fault-free scenario
must be repeated to re-execute the aborted sub-transactions.
Note that with the increase in the number of tiers in the

system, the number of orphans that must be eliminated in-
creases. Clearly, the client has to block during this time and
may miss the deadline during recovery.

Some optimizations are possible in the related work cited
earlier. For instance, in the optimistic approach of [4], 2PC
is not required whereas in the pessimistic case, only the sec-
ond phase of 2PC is sufficient. In [6], there is no need to
send undo information to the replicas, instead, votes must
be synchronized with the replicas. The transaction manager
must be extended to support join messages with view-id of
the underlying group communication system thereby losing
the transparency of replication. Additionally, all the above
approaches also require objects to implement prepare, com-
mit, and rollback methods to participate in the 2PC.

3.3 The Group-Failover Protocol
We now develop the intuition behind our group-failover

protocol. The key observation we make is that the orphan
components resulting from a failure of a non-deterministic
component often form a group. For instance, consider a
nested invocation among stateful components A, B, C, and
D as shown in Figure 2. Just before the non-deterministic
component A returns the reply to the client, suppose A fails,
which renders components B, C, and D orphans and they
form a group. Intuitively, the orphan request problem can
be rectified in real-time by discarding the group of orphan
components, and letting the client failover to the replica
group. Note that because of the non-deterministic behavior
of one or more components in the nested invocation, the re-
sulting state updates in the components are unique to that
particular execution, and hence application state belonging
to the orphan group too must be discarded. Such an intu-
ition lies at the core of our group-failover protocol.

Figure 2: A group of orphan components (B, C, and
D) due to failure of a non-deterministic component
A

To rectify and eliminate the group of orphan components
(and requests and state) while simultaneously ensuring the
exactly-once execution semantics, three actions are required
to be performed. Moreover, all of these actions must be
performed in bounded time to suit DRE systems.

1. Accurate and real-time failure detection and
transparent failover. To ensure forward recovery,
the client must detect the failure in real-time, trans-
parently failover to the replica of component A (A′),
and must quickly resume execution of the original re-
quest to deliver acceptable response times to clients.

2. Real-time identification and elimination of or-
phans: The orphan state (and any unfinished orphan
computations) must be eliminated to avoid inconsis-
tencies in the system and conserve resources. In Fig-
ure 2 the orphan state is bounded in the group of pri-
mary components B, C, and D.

3. Ensuring state consistency in bounded time:
Exactly-once semantics require that the state of all
the components that participate in the re-execution of
the client’s request (e.g., A′, B′, C′, and D′) must be
the same as the state of the respective primary compo-
nents before the execution of the request that caused
the failure. These assurances must be provided in a
timely manner.

The rest of this section describes how our group-failover
protocol meets these requirements. For bounded-time state
consistency, we present two novel state synchronization strate-
gies: eager and lag-by-one that are tailored to suit different
operating conditions and DRE system requirements. The
eager state synchronization strategy performs extra work
during fault-free execution so that failure recovery is instan-
taneous. On the other hand, in the lag-by-one state syn-
chronization strategy no additional overhead exists for state
synchronization during fault-free execution, however, recov-
ery now takes longer than the eager strategy.

3.3.1 Failure Detection and Transparent Failover
To detect process/processor failures and to initiate recov-

ery actions, we use a monitoring infrastructure consisting
of dedicated host-monitor daemons in every node where the
components are deployed. The daemons send a periodic
heart-beat to a central replication manager (RM) process.
In case of a server process failure, the daemons notify the
RM about the failure whereas processor failures can accu-
rately be detected by RM when periodic heart-beat from a
host-monitor ceases. Upon detection of a failure, RM initi-
ates the process of identifying orphans.

Most contemporary middleware, such as CORBA support
a standard, client-side request interceptor, which enables in-
terception of the call-path at the client-side. User-supplied
code can be executed in response to various events such as
remote function call return or exceptional return (e.g., stan-
dard CORBA exceptions, such as OBJECT NOT EXIST,
COMM FAILURE). The code may also invoke other remote
services to obtain a failover replica reference. A standard
CORBA exception called LOCATION FORWARD is raised
locally, which then redirects the client to the failover tar-
get replica. Client-side request interceptors are used for the
group-failover protocol because they can be portably imple-
mented for standard-compliant CORBA clients. Note that
programmers do not need to implement the interceptors.
Even the logic can very well be generated as shown by our
prior work in GRAFT [29]. The only requirement is to in-
tegrate them in the build process of the client executable.

3.3.2 Identifying Orphans
A failure of the non-deterministic component orphans the

components it has directly or indirectly communicated with
during the execution of a remote invocation. The num-
ber of orphan components (and in turn the spread of the
orphan request and orphan state) varies depending upon
where the non-deterministic component lies in the nested
invocation and how many components have executed com-
putations in response to the direct/indirect requests from
the non-deterministic component.

Note that the group-failover protocol does not use join
messages as in the conventional transactional approach to
avoid their overhead in the critical path. Consequently, the
group-failover protocol has no run-time information about

the stage of a nested invocation. For instance, when compo-
nents A, B, C and D in Figure 2 communicate in response
to the client’s invocation, an independent observer cannot
pinpoint how far the execution has progressed (among A,
B, C, and D) without instrumenting1 each component and
incurring additional messaging overhead. Therefore, when
the non-deterministic component A fails, the span of the
orphan state cannot be determined accurately at run-time.
The possibilities vary from no orphans at all to all three (B,
C, and D) rendered orphan. To overcome this inherent dif-
ficulty, we provide two static strategies to identify the span
of orphan components and thereby confine the spread of the
orphan request.
(A) The entire end-to-end task chain strategy: This
strategy is the most pessimistic of all and designates the
entire end-to-end task chain as orphan in case of a failure.
The strategy does not need component-specific knowledge
of whether they are deterministic or non-deterministic. Pes-
simistically, it considers the entire group of components par-
ticipating in an end-to-end task chain as an atomic failover
unit (FOU). If any one of them fails, the whole unit is con-
sidered failed.

These failure atomicity semantics are desirable in systems
that employ N-version programming [30] to achieve relia-
bility though diversity. N-version programming is an ef-
fective technique to avoid Bohr-bugs, which predictably re-
peat themselves when the same set of conditions reappear
in the system. To avoid Bohr-bugs, end-to-end task chains
often use non-identical replicas of the fault-tolerant, multi-
tier applications. The replicas could be dissimilar in many
ways, such as structure, implementation, deployment, re-
source and QoS requirements, end-to-end deadlines, and pri-
orities. Due to the non-identical replication, the client fails
over to a replica of the entire end-to-end task chain while
the failed end-to-end task chain recovers from the failure.

Figure 3: A failover unit spanning two components
(B and C).

(B) Dataflow-aware component grouping strategy:
Accurate meta-information about system composition, such
as dataflow and component behavior (deterministic/non-det-
erministic) can easily be leveraged to optimize orphan elim-
ination. For instance, consider Figure 3, which shows the
dataflow between components A, B, and C where compo-
nent B is non-deterministic. Failure of component B may
make component C an orphan but not component A because
the data in component A is not dependent on component B.
Therefore, the span of the failover unit should include com-
ponents B and C only.

1Network-level packet sniffers such as Wireshark can detect
messages without intrusive modifications to the components
but cannot guarantee that the captured messages are in re-
sponse to a specific invocation from the client.

3.3.3 Eliminating Orphans through Component Life-
cycle Operations

Orphan components (and requests and state) must be
eliminated from the system to prevent inconsistencies and
to conserve resources. As noted earlier, the orphan state
is bounded inside a group of orphan components. In the
group-failover protocol, this group of orphan components is
simply discarded to achieve predictable recovery time. The
group-failover protocol uses component passivation mecha-
nisms supported by conventional component middleware for
component lifecycle management as the way to eliminate
orphan state and computations from the system. For in-
stance, activate and passivate are two life-cycle operations
supported by all LwCCM session components. Passivating a
component discards all its application-specific state as well
as middleware state (it is no longer remotely addressable
and can no longer initiate remote invocations).

3.3.4 The Eager State Synchronization Strategy
The eager strategy is a variation of the atomicity achieved

using the Two-Phase Commit (2PC) algorithm, however, it
is optimized to support the QoS demands of DRE systems.
In the eager strategy, the state of all the nested components
is synchronized with their respective replicas only after the
client-side interceptor has received the result of the non-
deterministic computation. The state that builds up at the
server-side during the execution of the client’s request is a
potential orphan state because any subsequent failure in the
upstream2 component renders these state changes orphan.
Therefore, it is only after the client-side interceptor has re-
ceived the reply, that the server-side state changes can be
made permanent in the system.

Figure 4: The eager state synchronization strategy

Figure 4 shows how the eager strategy works. A client
is shown requesting a service from a non-deterministic set
of components A, B, and C. Consider that the kth periodic
request from the client has completed and that the reply has
arrived at the client-side interceptor. Although the execu-
tion has completed, replica components (A′, B′, and C′) do
not yet have the state updates from the kth execution. The
client-side request interceptor detects successful execution
and before returning to the client application (so that it can
make the next periodic request), initiates the eager state

2Upstream with respect to the dataflow

synchronization by sending a finish message to the RM.
In response to the finish message, the RM initiates a two

phase process to synchronize the state atomically. The RM
first sends a precommit message to each state synchroniza-
tion agent (sa) located in the server processes hosting the
primary components using asynchronous messaging (e.g.,
AMI in CORBA). The intent of the precommit message is
to persist3 the application-specific state by sending it to the
replicas. The state is retrieved by using predefined stan-
dardized interfaces, such as get state implemented by the
primary components. The state synchronization agents col-
located with the primary components transfer the state to
the state synchronization agents in the process hosting the
replica components. Instead of accepting the state perma-
nently at the replica, the state is maintained instead in a
temporary buffer at the sa until the second phase.

The RM then initiates the second phase only if the first
phase completes successfully. In the second phase, RM sends
a commit message to every state synchronization agent col-
located with the replica components using AMI. In response
to the commit message, the state in the temporary buffers is
pushed in the replica components by means of a predefined
standardized interface, such as set state. When both the
phases complete, the RM returns a status indicating success
to the client-side interceptor thereby allowing the client’s
application logic to process the reply.

In case of a failure, the orphan state is eliminated as de-
scribed in Section 3.3.3. Naturally, a client’s request must be
reexecuted on replica components with the state of the last
successful execution. The eager state synchronization strat-
egy ensures that the state in the replicas is indeed from the
last successful execution. The RM has the responsibility of
maintaining state consistency. State from the last successful
execution is maintained at the replicas by ensuring atomic
state synchronization. Either all the primary components
synchronize their state with respective replicas or none at
all. This atomicity is guaranteed by the variation of the
optimized 2PC protocol we designed.

If any primary component is unable to send the state to its
replicas, the RM detects the failure during the first phase,
skips the second phase, eliminates the orphans as described
in Section 3.3.3, and returns an error value indicating fail-
ure to the client-side interceptor. The client-side interceptor
does a transparent failover to the replica group and rein-
vokes the same request to ensure that there is exactly-one
non-deterministic execution of the request. Note that a fail-
ure of the second phase (say, due to a failure of a replica)
does not affect state consistency because primary compo-
nents can serve the subsequent requests. Failed replicas may
be restarted to maintain a desired replica quorum.

3.3.5 The Lag-by-one State Synchronization Strategy
Our second strategy called the Lag-by-one is an optimiza-

tion over the eager strategy, wherein no overhead is incurred
during the fault-free execution but pays a slight penalty
in terms of recovery messaging overhead in the failure sce-
nario. We call this technique lag-by-one state synchroniza-
tion strategy because the state in the replicas is always
lagging by exactly one state update compared to the pri-
mary components. A schematic of the lag-by-one strategy
is shown in Figure 5.

The lag-by-one strategy eliminates the need for explicit

3Enterprise systems often use write-ahead logging to achieve

Figure 5: The lag-by-one state synchronization
strategy

two phases of state synchronization found in the eager ap-
proach. Instead, the potential orphan state is transferred to
temporary buffers of the state synchronization agents col-
located with the replica components immediately after the
completion of a request at every primary component. This
feature is shown in Figure 5 by double-dashed lines. The
state synchronization in this approach is initiated lazily (us-
ing AMI) immediately after sending the reply back to the
calling component thereby eliminating the overhead in the
critical path. In effect, the propagation of the reply back
to the client via the primary task chain occurs concurrently
with the AMI-based state synchronization activity.

Note that the transferred state is considered a potential
orphan until the client receives the reply and therefore, it
is maintained in the temporary buffer at the replica side as
was the case with the eager strategy. Unlike the eager ap-
proach, however, no finish message is sent to the RM at the
end of successful invocation. Instead, the client is allowed
to proceed with its subsequent periodic request invocation
and execution. Execution of the next request at the primary
components and the subsequent generation of new state is
interpreted as the successful completion of the earlier re-
quest.

In more formal terms, when the kth state update arrives
at the replica state synchronization agent, the (k − 1)th

state update (which must have been stored in the tempo-
rary buffer at each agent in the backup components) is per-
manently accepted into each of the replica component. In
effect, the explicit commit phase of the eager strategy is re-
placed by an implicit arrival of potential orphan state for
the succeeding (i.e., kth) invocation from the primary com-
ponents. Such an approach eliminates the need for explicit
messaging as well as complex interactions among the RM,
client-side interceptors, and the server components during
fault-free conditions.

This strategy, however, pays a small price in case of a
failure. Notice that the replica components are not ready
for an instantaneous client failover because the state that
client expects lies in the temporary buffers of the state syn-

the same effect.

chronization agents. More formally, when the kth invocation
completes successfully, the temporary buffers at the replica
side contain the corresponding state but the replicas them-
selves have the state at the end of the (k − 1)th execution.
If the kth request fails with partial success in a subset of
primary components, some temporary buffers at the replica
side may contain the state from the kth execution whereas
others may still have the state from the (k− 1)th execution.
Therefore, a clean-up phase is necessary that prepares the
replica components to accept the client’s reinvocation.

Upon detection of failure, the client-side interceptor sends
a prepare(k) message (Step #1 in Figure 5) to the RM re-
questing it to prepare the replicas for the kth invocation.
Arrival of a prepare message to the RM in this strategy is
an indication that there was a failure and that the RM must
proceed to eliminate the orphans. Subsequently, the RM
sends (using AMI) the commit(k-1) message (Step 2) to the
state synchronization agents collocated in the backup repli-
cas, which take one of the following two actions depending
upon the state in the temporary buffers:
(1) If the state in the temporary buffer is from the kth invo-
cation, it is discarded because the orphan was created during
the kth invocation;
(2) If the state in the temporary buffer is from the (k− 1)th

invocation, it is permanently accepted by the backup replica
components because the fact that the kth invocation was in
progress is an indication that the previous invocation was
successful (the lag-by-one property).

The RM returns to the client-side interceptor indicating
success using an appropriate return value. The client-side
interceptor thereafter transparently fails over to a backup
replica group and reinvokes the kth request (Step #3 in Fig-
ure 5).

Although lazy state transfer implemented using AMI in
the lag-by-one strategy eliminates the overhead in the crit-
ical path, dynamic workloads or failure of the replicas may
delay/prevent state transfer. To avoid the replicas lagging
behind more than one state update, the primary state syn-
chronization agents maintain a count of AMI callback han-
dlers that are missing notification of successful state trans-
fers. If the count increases beyond a specific threshold value,
pre-configured recovery actions, such as notifying a human
operator are initiated. The primary components continue to
operate while the system is restored to the desired level of
replication.

4. MIDDLEWARE IMPLEMENTATION
We now present the details of the implementation of our

group-failover protocol alluding to the three requirements.
The group-failover protocol is implemented using the open-
source Component Integrated ACE ORB (CIAO) [16] mid-
dleware, which is an implementation of Lightweight CORBA
Component Model [17] (LwCCM). We leveraged a number
of infrastructure elements from our CIAO-based prior work
called FLARe [18] and CORFU [19], however, a number of
extensions and new capabilities were implemented for this
research explained below.
(1) Failure Detection and Transparent Failover: For
failure detection and failover, we leveraged the fault mon-
itoring infrastructure from FLARe [18] and CORFU [19].
Faults are monitored using periodic heart-beats. A loss of
heart-beat triggers recovery actions at the RM. Although
FLARe handles fault detection for only single server pro-

cesses, CORFU extended the capability to end-to-end task
chains of components. CORFU, however, takes linearly in-
creasing amount of time (shutdown latency) for client failover
depending on the tier where the failure occurred.

For the group-failover protocol we optimized the algo-
rithm in the RM and made the client-perceived failover la-
tency insensitive to (1) the location of the failure and (2) the
number of components in the end-to-end task chain. For in-
stance, irrespective of which component in Figure 2 fails,
then failover-latency experienced by the client remains un-
changed. Our technique uses the system structure described
in the deployment meta-data to identify the orphans and
CORBA asynchronous messaging interface (AMI) to elimi-
nate them concurrently. The concurrent elimination of the
orphans allows the client-perceived failover latency to be in-
dependent of the number of components. The details of our
technique are described below.
(2) Identifying and Eliminating Orphans: Since our
approach to orphan identification is statically defined, we ob-
tain the necessary static meta-information about the dataflow
between components in the system from annotated system
composition models. For this we leverage and extend our
earlier work [29] on domain-specific modeling languages that
allow system developers to specify composition of the sys-
tem and the component behavioral properties using intuitive
higher-level abstractions.

Using the dataflow dependencies between components, graph
reachability algorithms are used to statically determine the
extent of orphan state due to failure of non-deterministic
components. Ad-hoc grouping of components is also sup-
ported using FOU annotations. Such application-specific
meta-information is generated and embedded in standards-
based deployment metadata for the CIAO middleware by
our modeling tools, which in turn is leveraged by the RM to
eliminate orphans at run-time.

This metadata contains remote references (e.g., CORBA-
compliant URLs) to the server processes hosting the server
components. The RM instructs host processes to passi-
vate the suspected orphan components thereby eliminating
them from the system. Unlike CORFU, remote invocations
for component passivation are implemented using CORBA
asynchronous messaging interface (AMI), which exploits con-
currency to make the shutdown latency independent of the
size of the end-to-end task chain and the location of the
failure.

Since passivating a component discards all its application-
specific state and middleware state, such as open TCP/IP
connections, the loss of connection is recognized by the client-
side middleware and a system-level exception is raised in re-
sponse to that. The client-side request interceptor detects
the exceptional return of the remote invocation and allows
the client to transparently fail over to the replica.

Passivated components can be activated again and may
join the group of replicas to maintain the quorum and receive
state updates from the then-active primary. A subsequent
activation phase after recovery is conceivable to maintain
the desired level of replication in the system. All the de-
ployment and configuration activities, including activating
and passivating the components are seamlessly handled by
the existing CIAO middleware [16].
(3) Strategies for Bounded-time State Consistency:
To support the state consistency strategies, the state syn-
chronization agent in FLARe was refined to include a tempo-

rary buffer. The RM design was improved using the Strat-
egy design pattern to support the two state synchroniza-
tion strategies. When using the eager strategy, the RM is
equipped with the messaging logic for the optimized 2PC
approach. When using the lag-by-one strategy, the RM gets
involved only during failure recovery and orphan elimina-
tion. The client-side interceptor is also strategizable. For
the eager state synchronization strategy, the interceptor is
refined to include the additional logic for ensuring atomic-
ity. In the lag-by-one strategy, the client interceptor invokes
RM during failure recovery only. Host monitors were used
directly from prior work. All these elements were imple-
mented as CORBA objects and integrated into the deploy-
ment process of components.

Our implementation of the eager synchronization strategy
uses CORBA AMI in both phases to exploit parallelism dur-
ing state transfer (Step #2 and #4 in Figure 4). RM uses
AMI to send the precommit to all the primary state syn-
chronization agents in parallel and waits for all of them to
complete state transfer in parallel. The use of AMI makes
the eager state synchronization strategy (nearly) insensitive
to the number of components involved in the group. For
lag-by-one, AMI is used to lazily transfer state (see double
dashed lines in Figure 5) thereby eliminating the overhead of
state transfer in the critical path. With every asynchronous
call a callback handler is registered, which is invoked upon
completion of the remote request. It is also possible to abort
waiting for a callback based on a timeout.

5. EVALUATING THE GROUP-FAILOVER
PROTOCOL

We empirically evaluated our implementation of the group-
failover protocol at ISISlab (www.isislab.vanderbilt.edu) on
a testbed of up to 6 blades. Each blade has two 2.8 GHz
CPUs, 1GB memory and they are connected by a Gigabit
LAN.
Methodology and Rationale. We evaluated the overhead
and the client-perceived failover latency in fault-free and fail-
ure scenarios, respectively. In every experiment we varied
the number of nested components from 2 to 5 to show that
both state synchronization strategies have bounded over-
head independent of the task chain size. Dummy compu-
tations, calibrated to consume 25ms of CPU time, were per-
formed on every component in response to the client request.
As a result, the server-side execution time increases from
50ms to 125ms as the number of server-side components in-
crease from 2 to 5. We executed every experiment 20 times
and averaged the data over all the runs. We deployed host-
monitors on every node and a single instance of replication
manager.4

5.1 Overhead measurements in fault-free sce-
narios

In the fault-free scenario experiments, we measured the
response time, which includes (1) the actual server-side exe-
cution time, (2) overhead of the state synchronization phases
(if any), and (3) the communication latency between client
and the (front) server and the server components themselves.
The evaluations are presented in Figure 6 and Table 1.

4Fault tolerance of the replication manager can be achieved
through replication and is outside the scope of the paper.

Figure 6: Overhead of the eager and lag-by-one
strategies during fault-free scenarios (Jitter upto
12ms)

Nesting level 2 3 4 5

Eager strategy (ms) 8.2 12.1 11.9 10.6
Eager strategy w/o AMI (ms) 13 23 26.1 32.7

Lag-by-one strategy (ms) 7.6 4.8 9.7 8.2

Table 1: Overhead of the eager and lag-by-one
strategies (fault-free)

Figure 6 shows the overhead of the eager and lag-by-
one strategies along with the actual execution time during
fault-free executions. Table 1 shows that the overhead was
bounded between 8.2 ms and 12.1 ms for both phases of the
eager strategy. Because of the two phases in the eager strat-
egy, it has higher overhead than the lag-by-one strategy. Al-
though lag-by-one strategy does not execute any additional
steps during fault-free scenario, in practice, the overhead of
the lag-by-one strategy was observed between 4.8 ms and
9.7 ms. This is primarily due to the communication latency
between client and the (front) server and between server
components themselves. Note that the overhead in both the
strategies is independent of the nesting level because of AMI.
To better understand the benefits of AMI, we implemented
the two phases of eager strategy without AMI. From the re-
sults in Table 1, it is evident that without AMI the overhead
is sensitive to the number of nested components.

These results indicate that the overhead of both the strate-
gies is low compared to the protocols that integrate trans-
actions and replication, and that the additional work per-
formed is bounded irrespective of the size of the task chain.

5.2 Client-perceived failover latency in failure
scenarios

The objective of this experiment is to evaluate the failover
latency that a client will experience when the server compo-
nent that the client is communicating with (i.e., head of the
chain) fails. Upon detecting the failure we measure the time
needed to begin execution at the backup replica components.

Figure 7 shows the client-perceived failover latency for
different nesting levels (2 to 5). The failover latency of the
eager strategy is about 1 ms because the only step neces-
sary in this case is to reinvoke the request on the replica
components. The observed failover latency is the sum of
time needed for failure detection and subsequent reinvoca-
tion. We also measured the overhead of the prepare phase of

Figure 7: Client-perceived failover latency of the
state synchronization strategies

the lag-by-one strategy using a high resolution timer in the
client-side interceptor. We evaluated the implementations of
prepare phase with and without AMI. When the replication
manager exploits concurrency by sending the commit mes-
sages using AMI, we see that the overhead of the prepare
phase is not dependent on the nesting level. On the other
hand, when commit messages do not use AMI, the over-
head is clearly dependent on the number of components in
the task chain. These results indicate that the performance
of group-failover protocols is acceptable in failure scenarios,
and that the latencies are bounded irrespective of the task
chain size (i.e., nesting level).

6. CONCLUDING REMARKS
Orphan requests (and components) are an instantaneous

consequence of a failure in DRE systems where multiple
tiers of non-deterministic stateful components are replicated
for high availability. While soft real-time systems require
timely elimination of orphans, equally important is the need
to maintain state consistency and to deliver acceptable re-
sponse times to clients. This paper presented the group-
failover protocol, which is a novel approach to ensure con-
sistent and timely data for multi-tiered DRE systems (mod-
eled as end-to-end task chains) in the presence of failures
of non-deterministic stateful components. Unlike previous
approaches, the group-failover protocol has negligible mes-
saging overhead depending upon the choice of the state syn-
chronization strategy. State consistency is ensured using the
eager and lag-by-one state synchronization strategies, which
present different tradeoffs during fault-free and failure sce-
narios. Empirical evaluations of the protocol demonstrate
that the performance is suitable for soft real-time systems
and the overhead is largely insensitive to the number of tiers.

Failing over groups of components may appear too pes-
simistic, however, for a class of DRE systems where fast and
predictable failover is important while maintaining strong
state consistency, our approach provides an acceptable trade-
off. Moreover, using model-based techniques to annotate the
groups provides intuitive mechanisms in addition to the ben-
efits of automation. The middleware artifacts resulting from
this research are part of the open source CIAO middleware.

7. REFERENCES
[1] D. C. Schmidt, R. Schantz, M. Masters, J. Cross,

D. Sharp, and L. DiPalma, “Towards Adaptive and

Reflective Middleware for Network-Centric Combat
Systems,” in CrossTalk - The Journal of Defense
Software Engineering. Hill AFB, Utah, USA:
Software Technology Support Center, nov 2001, pp.
10–16.

[2] D. C. Sharp and W. C. Roll, “Model-Based
Integration of Reusable Component-Based Avionics
System,” Proceedings of the Workshop on
Model-Driven Embedded Systems in RTAS 2003,
Washington, DC, May 2003.

[3] J. W. S. Liu, Real-time Systems. New Jersey:
Prentice Hall, 2000.

[4] S. Pleisch, A. Kupsys, and A. Schiper, “Preventing
Orphan Requests in the Context of Replicated
Invocation,” in Proceedings of 22nd Symposium on
Reliable Distributed Systems, 2003, pp. 119–129.

[5] S. Poledna, “Replica Determinism in Distributed
Real-time Systems: A Brief Survey,” Real-Time Syst.,
vol. 6, no. 3, pp. 289–316, 1994.

[6] H. Kolltveit and S. olaf Hvasshovd, “Preventing
orphan requests by integrating replication and
transactions,” in 11th East-European Conference on
Advances in Databases and Information Systems,
ADBIS. Springer, 2007.

[7] R. Guerraoui and A. Schiper, “Software-Based
Replication for Fault Tolerance,” IEEE Computer,
vol. 30, no. 4, pp. 68–74, Apr. 1997.

[8] R. B. David, D. Lomet, S. Paparizos, H. Yu, and
S. Ch, “Persistent Applications via Automatic
Recovery,” in 7th International Database Engineering
and Applications Symposium (IDEAS 2002), 2002, pp.
258–267.

[9] S. Frolund and R. Guerraoui, “Transactional
Exactly-Once,” Technical report, Hewlett-Packard
Laboratories, 1999.

[10] P. Felber and P. Narasimhan, “Reconciling Replication
and Transactions for the End-to-End Reliability of
CORBA Applications,” in Proceedings of the
International Symposium on Distributed Objects and
Applications (DOA’02), 2002, pp. 737–754.

[11] E. Dekel and G. Goft, “ITRA: Inter-Tier Relationship
Architecture for End-to-end QoS,” Journal of
Supercomputing, vol. 28, no. 1, pp. 43–70, 2004.

[12] J. Slember and P. Narasimhan, “Using Program
Analysis to Identify and Compensate for
Nondeterminism in Fault-Tolerant, Replicated
Systems,” in SRDS ’04: Proceedings of the 23rd IEEE
International Symposium on Reliable Distributed
Systems, 2004, pp. 251–263.

[13] ——, “Living with Nondeterminism in Replicated
Middleware Applications,” in Middleware ’06:
Proceedings of the ACM/IFIP/USENIX 2006
International Conference on Middleware, 2006, pp.
81–100.

[14] R. Jimenez-peris, M. Patino-Martinez, S. Arevalo, and
J. Carlos, “Deterministic Scheduling for Transactional
Multithreaded Replicas,” in Proceedings of the IEEE
19th Symposium on Reliable Distributed Systems,
2000, pp. 164–173.

[15] C. Basile, Z. Kalbarczyk, and R. Iyer, “A Preemptive
Deterministic Scheduling Algorithm for Multithreaded
Replicas,” International Conference on Dependable

Systems and Networks, vol. 0, p. 149, 2003.

[16] Institute for Software Integrated Systems,
“Component-Integrated ACE ORB (CIAO),”
www.dre.vanderbilt.edu/CIAO, Vanderbilt University.

[17] Lightweight CORBA Component Model RFP,
realtime/02-11-27 ed., Object Management Group,
Nov. 2002.

[18] J. Balasubramanian, S. Tambe, C. Lu, A. Gokhale,
C. Gill, and D. C. Schmidt, “Adaptive Failover for
Real-time Middleware with Passive Replication,” in
Proceedings of the 15th Real-time and Embedded
Applications Symposium (RTAS ’09), San Francisco,
CA, Apr. 2009, pp. 118–127.

[19] F. Wolf, J. Balasubramanian, S. Tambe, A. Gokhale,
and D. C. Schmidt, “Supporting Component-based
Failover Units in Middleware for Distributed
Real-time and Embedded Systems,” Journal of
Software Architectures: Embedded Software Design,
Special Issue on Embedded and Real-time (in print),
Nov. 2010.

[20] Transaction Services Specification, OMG Document
formal/97-12-17 ed., Object Management Group, Dec.
1997.

[21] Fault Tolerant CORBA, Chapter 23, CORBA v3.0.3,
OMG Document formal/04-03-10 ed., Object
Management Group, Mar. 2004.

[22] S. Poledna, “Replica Determinism in Fault-Tolerant
Real-Time Systems,” Ph.D. dissertation, Technical
University of Vienna, Vienna, Austria, 1994.

[23] M. Herlihy and M. McKendry, “Timestamp-Based
Orphan Elimination,” IEEE Transaction on Software
Engineering, vol. 15, no. 7, pp. 825–831, 1989.

[24] B. Liskov, R. Scheifler, E. Walker, and W. Weihl,
“Orphan Detection,” Proceedings of the 17th
International Symposium on Fault-Tolerant
Computing, pp. 2–7, 1987.

[25] J. Sun, “Fixed-Priority End-to-End Scheduling in
Distribured Real-time Systems,” Ph.D. dissertation,
Department of Computer Science, University of
Illinois at Urbana-Champagne, 1997.

[26] T. D. Chandra and S. Toueg, “Unreliable Failure
Detectors for Reliable Distributed Systems,” Journal
of the ACM, vol. 43, pp. 225–267, 1995.

[27] R. D. Schlichting and F. B. Schneider, “Fail-stop
Processors: An Approach to Designing Fault-tolerant
Computing Systems,” ACM Transaction on Computer
Systems, vol. 1, no. 3, pp. 222–238, 1983.

[28] N. Budhiraja, K. Marzullo, F. B. Schneider, and
S. Toueg, “The Primary-backup Approach,” in
Distributed systems (2nd Ed.). New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co., 1993, pp.
199–216.

[29] S. Tambe, A. Dabholkar, and A. Gokhale, “Generative
Techniques to Specialize Middleware for Fault
Tolerance,” in Proceedings of the 12th IEEE
International Symposium on Object-oriented Real-time
distributed Computing (ISORC 2009). Tokyo, Japan:
IEEE Computer Society, Mar. 2009.

[30] A. Avizienis and C. Liming, “On the Implementation
of N-Version Programming for Software
Fault-Tolerance During Prograrnm Execution,”
Compsac, pp. 149–155, 1977.

