
Model-Driven Engineering of Fault Tolerance in Enterprise Distributed Real-time
and Embedded Systems

Sumant Tambe*, Aniruddha Gokhale, Jaiganesh Balasubramanian, Krishnakumar

Balasubramanian, Douglas C. Schmidt
Vanderbilt University, Nashville, TN, USA

Contact : *sutambe@dre.vanderbilt.edu

Large scale enterprise distributed real-time and embedded (DRE) systems, such as those found in
aerospace, defense, telecommunications and healthcare domains, have stringent, simultaneous
QoS requirements in terms of performance, availability and reliability. In spite of rigorous
software design, test and certification processes, however, it is difficult to rule out all latent
defects in the system. In particular, it is difficult, if not impossible, to deal with unplanned
failures such as hardware, software or network link failures. Redundancy by means of replication
of critical system components in fault-tolerant systems is a popular and successful solution to this
problem. The spectrum of fault-tolerant systems ranges from totally application controlled fault-
tolerance (FT) at one end to completely application-agnostic or infrastructure controlled fault
tolerance to the other.

Building fault-tolerant enterprise DRE systems is hard due to the effort required to address these
concerns in addition to actual system development work. For example, application-controlled
fault-tolerance incurs additional development work for application developers. Conversely, infra-
structure-controlled fault-tolerance alone can be insufficient to cater to the dependability needs of
different kinds of applications. Providing ad hoc modifications or extensions to infrastructure-
provided solutions engineered in this way could potentially impact its reusability or affect project
schedules when provided by applications alone. Moreover, the complexity of provisioning fault-
tolerance QoS requirements can distract application developers from their primary job of
developing business-logic.

Model-Driven Engineering (MDE) is a promising approach to address these challenges because
it raises the abstraction of system design to a level higher than is possible with third-generation
programming languages alone. Modeling different system components as fault-tolerant and auto-
generating supporting run-time components helps to separate the dependability concerns from
other system development concerns. Moreover, information from models can be used to auto-
generate near-optimal deployment plans, which helps decrease the probability of simultaneous
failures in deployed enterprise DRE systems.

Our fault-tolerance modeling environment extends the Platform Independent Component
Modeling Language (PICML), which is a domain specific modeling language that deals with the
different design and deployment phases of component based systems including specification,
assembly and packaging, with new FT elements. This presentation will focus on the following
three contributions of applying MDE to design fault tolerant enterprise DRE systems: (a)
Demonstrating how modeling FT elements at different granularities can help in separation of
concerns, and (b) how generative technologies can be used to rapidly and reliably enhance the
system with FT capabilities, and (c) how system deployment concerns can be alleviated applying
placement decision algorithms on the models.

1. Modeling fault-tolerance aspects of enterprise DRE systems. The newly introduced

elements allow control over the granularity of protected system components such as software
components, component assemblies and application workflows. It allows FT elements to be

mailto:*sutambe@dre.vanderbilt.edu

modeled orthogonally to the system components and therefore achieves separation of FT
concerns from the main system composition and functionality development concerns. The
following modeling elements are supported:

a. Fail-over units (FOUs), which enable control over the granularity of protected system
components, such as software components, component assemblies, and operational
strings. These modeling abstractions can capture the fail-over granularities of system
entities, the degree of replication for FOUs and requirements for liveness monitoring of
FOUs.

b. Replication groups (RGs), which allow capturing the replication requirements of
software components within a FOU. These models will specify replication strategies,
such as active, passive or other variants, and state synchronization policies for
components.

c. Shared Risk Groups (SRGs), which define groupings of application components that
share the risk of simultaneous failure by virtue of failure of resources they share, such as
processes, nodes, racks or even data centers. Risk factors will be determined by
assigning metrics, such as co-failure probabilities for the components in a risk group or
the geographic distance between the placement of replicas that may determine
availability.

2. Generative capabilities for provisioning FT capabilities. The model interpreters and
generative tools use the dependability requirements captured by the modeling tools for
synthesizing metadata to describe replica deployment plans and FT provisioning mechanisms
in component middleware systems, such as Lightweight CCM as follows:

a. The placement model interpreter provides a strategizable framework to use different
constraint-based algorithms to come up with a component and replica placement plan to
minimize the co-failure probability of the system as a whole.

b. The deployment plan model interpreter translates the models into supporting run-time
components to realize ready-to-deploy, robust, fault-tolerant component-based enterprise
DRE systems. This includes placing the status monitoring and fault recovery components
without the need for the application developer having to model these explicitly.

