
CQML: Aspect-oriented Modeling for Modularizing and Weaving QoS Concerns
in Component-based Systems

Sumant Tambe, Akshay Dabholkar, Aniruddha Gokhale
Department of EECS, Vanderbilt University, Nashville, TN, USA

{sutambe, aky, gokhale}@dre.vanderbilt.edu

Abstract

Current domain-specific modeling (DSM) frameworks
for designing component-based systems often consider the
system’s structural and behavioral concerns as the two
dominant concerns of decomposition while treating non-
functional or quality of service (QoS) concerns as an af-
ter thought. Such frameworks lack a strong decoupling be-
tween the modeling of the system’s structural composition
and their QoS requirements. This lack of QoS modular-
ization limits (1) reusability of such frameworks, (2) ease
of maintenance when new non-functional characteristics
are added, and (3) independent evolution of the modeling
frameworks along both the structural and non-functional
dimensions.

This paper describes Component QoS Modeling Lan-
guage (CQML), which is a reusable, extensible, and aspect-
oriented modeling approach that provides strong separa-
tion between the structural and non-functional dimensions.
CQML supports independent evolution of structural as well
as QoS metamodel of composition modeling languages. The
join point model of CQML enables declarative QoS as-
pect modeling and supports automatic weaving of struc-
tural changes effected by QoS requirements. We evaluate
the capabilities of CQML for a variety of structural mod-
eling languages and provide quantitative results indicating
the modeling effort saved in automating the weaving of QoS
concerns.

1 Introduction
Recent advances in domain-specific modeling

(DSM) [19] have resulted in numerous DSM tool suites
for designing large, component-based software systems
with multiple quality of service (QoS) requirements (e.g.,
predictable latencies, fault-tolerance, and security.) Re-
cent successes with DSM tools in this area include the
Embedded Systems Modeling Language (ESML) [13] for
avionics mission computing, SysWeaver [7] for embedded
systems, and our earlier work on the Platform Independent

Component Modeling Language (PICML) [3] for a range
of distributed, real-time systems. These DSM tools pro-
vide support for component-based software engineering
(CBSE) [5] wherein systems can be modeled by composing
different components, each encapsulating a reusable unit of
functionality.

Despite the number of benefits of these DSM tools and
techniques, designing operational QoS-intensive systems
remains a significantly hard problem due to multiple cross-
cutting non-functional characteristics (i.e., the secondary
concerns) that must be simultaneously satisfied along with
the system’s functional composition (i.e., primary) con-
cerns.

As an example of a non-functional requirement that
affects system’s the structural dimension, consider fault-
tolerance requirements, such as various replication styles
(active, passive). Such fault-tolerance requirements may be
specified at several different levels of granularity, such as
per component, across a group of components, and across
nested component groups. Replication, which is the most
widely used technique for developing highly available sys-
tems, inherently requires additional copies of components
that must be composed with the original business compo-
nents. This illustrates the scattering of the fault-tolerance
concern across the system’s functional composition dimen-
sion. Scattering of fault-tolerance concerns is also observed
along other non-functional concerns, such as deployment
planning because application deployment must now account
for the placement of the replicated business components,
proxies, and application liveness monitoring components
along with original business components.

To assist in designing systems where non-functional con-
cerns crosscut with structural concerns, DSM tools must
provide strong decoupling between the system’s structural
and non-functional concerns and must combine them when
the final system is realized. Such decoupling should not
only provide different views for different concerns (view-
per-concern) but should also enable independent evolution
of the modeling capabilities of each view. Evolution of the
modeling capabilities of a concern view often requires en-

hancements to the metamodel of the view. Supporting in-
dependent evolution of metamodels of each concern views
shortens the development lifecycle by allowing parallel en-
hancements to the modeling capabilities (i.e., the meta-
model) and models pertaining to the view.

Moreover, platform-independent notion of QoS require-
ments is largely independent of the structural capabilities of
the chosen implementation platform. Despite QoS being a
platform-agnostic concept, DSM tools tend to tightly cou-
ple QoS with the structural characteristics. However, the
variability in the structural capabilities of the contemporary
component platforms need not prevent their corresponding
DSM tools from having a platform-independent modeling
support for QoS such as fault-tolerance, timeliness, authen-
tication and authorization and network level QoS. However,
contemporary DSM tools are based on ad-hoc designs of
metamodels for modeling QoS that couple them tightly with
structural capabilities, preventing their reuse in other com-
ponent platforms and limiting extensibility.

This paper describes our solution to address these limi-
tations of DSM design tools for CBSE. We present Com-
ponent QoS Modeling Language (CQML), which is a
reusable, aspect-oriented modeling (AOM) [10] frame-
work developed using the Generic Modeling Environment
(GME) [1]. CQML is designed to be superimposed on a
wide range of structural composition modeling languages
as long as they conform to a small set of invariant struc-
tural properties defined by CQML. Based on these invariant
properties, CQML defines an abstract join point [14] model
for associating QoS aspects to the structural elements. The
join point model defines where the QoS aspects meet struc-
tural elements.

Around its abstract join point model, CQML has an ex-
tensible QoS modeling framework that allows declarative
QoS requirements to be associated with structural compo-
nent models. The QoS requirements are modularized us-
ing what we call declarative QoS aspects. They bind the
QoS advice to the join points of the underlying structural
modeling language. In this paper we demonstrate how ab-
stract syntax of purely structural modeling languages can
be retroactively enhanced with the QoS modeling capabili-
ties of CQML by superimposing CQML’s join point model.
We evaluate this capability using three different structural
modeling languages for component-based systems.

Based on CQML’s QoS annotation capabilities, we pro-
pose an analysis framework with a round-tripping mecha-
nism to populate the results of the analysis back into the
original models. The semantics of declarative QoS advices
are handled in the analysis framework. The framework
leverages CQML’s abstract join point model and a novel
technique called metamodel reflection to read and update
structural models built using different languages without
knowing all the details about their abstract syntax.

We evaluate capabilities of CQML by illustrating an ex-
ample of an availability QoS advice. We demonstrate how
application models built using different structural languages
annotated with availability QoS advice can be analyzed us-
ing our deployment planning tool, which is a part of the
analysis framework. Finally, we show how structural ma-
nipulations effected by the analysis can be woven back into
the original models automatically.

The remainder of this paper is organized as follows: Sec-
tion 2 describes extensible QoS modeling capabilities of
CQML; Section 3 evaluates the capabilities of CQML; Sec-
tion 4 describes related research; and Section 5 concludes
the paper.

2 Solution: Extensible QoS Modeling Using
CQML

In this section we describe the design of the Com-
ponent QoS Modeling Language (CQML), which is a
platform-independent, QoS modeling framework that al-
lows component-based system developers and designers
to express QoS design intent at different levels of gran-
ularity using intuitive visual representations. CQML has
been developed using the Generic Modeling Environment
(GME) [1] toolkit. CQML strongly separates the system’s
QoS concerns from the structural composition concerns. It
also supports customizable QoS modeling for multitude of
component-based platforms depending upon their structural
characteristics. Figure 1 shows the process of using CQML.
We now describe how CQML uses this process to resolve
the challenges described before.

2.1 Identifying Invariant Properties of Component-
based Structural Modeling Languages

Our focus is on general component-based systems,
which are composed using multiple components orches-
trated to form application workflows. Contemporary com-
ponent models often have first class support for primitives,
such as components, connectors, and methods. The struc-
tural artifacts of a component-based system can be realized
using these primitives in a language specifically designed
for modeling system structure.

Since CQML is aimed specifically at modularizing
non-functional concerns of component-based systems in
a platform-independent manner, CQML requires an un-
derlying base composition modeling language that al-
lows construction and manipulation of platform-specific
structural models. Many platform-specific as well as
platform-independent component structural modeling lan-
guages, such as Embedded Systems Modeling Lan-
guage(ESML) [13] for embedded systems, J2EEML [22]
for Enterprise Java Beans, and Platform Independent Com-
ponent Modeling Language (PICML) [3] for Light-weight
CORBA Component Model (LwCCM) [16] exist today that

2

Figure 1: Process Model for Reusing CQML for QoS Modularization and Weaving

capture various composition semantics. In this paper we
have focused on languages developed using GME since
CQML is also developed using GME. However, the con-
cepts behind CQML can be applied in other tool environ-
ments.

Figure 2: A Feature Model of Composition Modeling Lan-
guage

We refer to such a structural modeling language as sys-
tem composition modeling language (or base language in
short.) We formalize the features of a base language in a
feature model [6] shown in Figure 2. CQML is designed
taking into account the mandatory and optional features
present in such languages. The base language should have
first class modeling support for components, connectors,
and remotely invocable methods at the minimum. ESML,
J2EEML, and PICML support all the mandatory entities
mentioned in Figure 2 and therefore these languages can
play the role of a base language for CQML as shown in
step 1 in Figure 1. In step 2, metamodel composition [4]
techniques are used to mixin the metamodel of CQML with
that of the base composition modeling language producing
a composite language, which has the capabilities of both the
constituent languages. In step 3, the composite language is
used to model component-based systems with QoS aspect
modeling capabilities of CQML. In step 4, system models
annotated with CQML QoS aspects are used for analyses
without having to deal with the specifics of the underlying
base language. Finally, in step 5, system models are pop-
ulated automatically with the results of analysis, if needed.

We describe step 4 and 5 in detail in section 2.5.

2.2 Extensible Design of CQML

Based on the feature model of component-based mod-
eling languages, CQML builds an extensible QoS model-
ing layer. CQML associates declarative QoS aspects to one
or more of the invariant properties of the underlying base
language. We have designed several declarative QoS as-
pects that are applicable to a general class of component-
based systems. We have developed (1) FailOverUnit [20],
which modularizes fault-tolerance requirements of compo-
nents and assemblies, (2) SecurityQoS, which modularizes
role-based access control policies of port based communica-
tion between components, and (3) NetworkQoS [2], which
modularizes network level QoS requirements while invok-
ing remote methods. Some examples of the above concrete
QoS characteristics are shown in Figure 3. A FailOverUnit
is used to annotate component A as a fault-tolerant compo-
nent. For connections between component B and C, net-
work level QoS attributes (e.g., priority of communication
traffic) are associated using NetworkQoS modeling element.
In this paper, we do not explain the semantics of all the
above concrete QoS characteristics in detail, however, in-
terested readers are encouraged to read [2] and [20] to
read more on NetworkQoS and FailOverUnit modeling re-
spectively.

To support extensions of QoS metamodel, CQML de-
fines a set of abstract QoS elements: Component-QoS,
Connection-QoS, Port-QoS, Assembly-QoS and Method-
QoS. CQML can be extended with new concrete declarative
QoS modeling capabilities by inheriting from these basic
abstract QoS elements. To enhance CQML with a concrete
QoS aspect, a language designer has to extend the meta-
model of CQML at the well-defined points of extension
represented by the five abstract QoS elements. By doing
so, the concrete modeling aspects inherit the (1) abstract
syntax, (2) associations, (3) cardinality constraints, and (4)
visualization constraints of the abstract QoS entities. For
example, as shown in Figure 4, FailOverUnit inherits as-

3

Figure 3: Declarative QoS Aspect Modeling Capability of
CQML

sociation constraints from the abstract ComponentQoS and
AssemblyQoS. Therefore, FailOverUnit can be associated
with components and assemblies only and never with ports
or connections.

Figure 4: Simplified Meta Model of CQML

Separation of structural concerns and QoS concerns is
achieved using separate views for QoS and structural ele-
ments (view-per-concern). The visibility of concrete QoS
modeling elements is controlled using visualization con-
straints defined on abstract QoS elements. CQML defines
visibility constraints on them such that they project QoS
concerns in the QoS view of GME model editor, which is
different from the view where structural concerns are edited
and manipulated. These constraints are inherited by all the
concrete QoS elements that are derived from one or more
abstract QoS elements as shown in Figure 4. Due to in-
heritance of these constraints, the concrete QoS elements
are also projected and manipulated in the QoS view. Thus

CQML metamodel not only provides QoS modeling capa-
bility, it does so while achieving separation of concerns at
modeling level.

2.3 An Abstract Join Point Model for Component
Modeling Languages

Along with the abstract QoS elements in the previ-
ous section, CQML defines an abstract representation of
the mandatory and optional features of a generic struc-
tural modeling language. For example, CQML defines
AbstractComponent, AbstractConnection, AbstractMethod,
AbstractPort, and AbstractAssembly. These abstract types
do not have semantics of their own except being able to
associate QoS aspects with them. Moreover, the abstract
nature stems from the fact that they cannot exist without a
concrete instantiation in the underlying base modeling lan-
guage. In the following section we describe how a concrete
instantiation is done using a technique called metamodel
composition.

2.4 Instantiating Abstract Join Point Model Using A
Concrete Structural Modeling Language

CQML’s support for QoS aspect modeling can be super-
imposed on a structural modeling language by composing
the metamodel of CQML with the metamodel of the base
language to create a composite language as described by
Step 2 in Figure 1. Domain abstractions in the base lan-
guage such as component, assembly, port inherit from the
corresponding abstract elements in CQML. Due to such in-
heritance, the domain abstractions in the base language in-
herit all the QoS related associations and constraints from
CQML elements. Models of the new composite language
can not only use the associations defined in the original
language but also the associations inherited from CQML.
Thus, all the concrete QoS aspects and their constraints are
mixed-in with the underlying structural modeling language.

Note that the abstract join point model achieves a strong
decoupling between structural and CQML metamodels.
The structural metamodel of the base language can be en-
hanced without affecting the CQML metamodel and vice-
versa. Therefore, the abstract join point model is the key
to support independent evolution of the structural as well
as CQML metamodel. Moreover, using the abstract join
point model, multiple composite languages can be created
by composing CQML with different structural modeling
languages using the same process. Figure 5 shows an ex-
ample of how CQML is composed with PICML to create
a composite language using inheritance mechanism. Af-
ter composition, PICML’s component and assembly can be
associated with everything that CQML’s abstract compo-
nent and abstract assembly can be associated with (e.g.,
FailOverUnit).

An important benefit of our approach is that CQML in-
troduces QoS modeling capability in a base language with-

4

Figure 5: Composing CQML’s Abstract Component Model
With A Base Language Using Inheritance

out affecting its original syntax and semantics. CQML
can be composed flexibly with the underlying base lan-
guage even though it does not support some optional fea-
tures shown in Figure 2. Using CQML with a base lan-
guage that supports less number of primitives gives rise to a
smaller concrete QoS model. On the other hand, composing
CQML with a base language with all the mandatory as well
as optional primitives gives rise to a larger QoS model.

In Section 3 we show how CQML is composed with
three different base languages (PICML, J2EEML, and
ESML) that have different structural modeling capabil-
ities. Composing CQML with them gives rise to dif-
ferent QoS modeling capabilities in each composite lan-
guage: PICML′, J2EEML′, and ESML′. Reuse promoted
by CQML’s generic QoS entities and its design thus lends
itself to easier development of component-based systems
modeling languages with QoS support. It reduces the need
of reinventing previously designed artifacts for every new
QoS aspect that is added.

2.5 A Framework for Developing QoS Analyses and
Automated Weaving of QoS Advice

The intent of our analysis framework is not to define new
techniques for analyzing component-based systems, but to
support them. Hence, we leverage the join point model of
CQML and the ability to associate declarative QoS aspects
to the structural elements to conduct base language inde-
pendent analyses of the structural properties of the system.
Based on structural properties, several different analyses
such as component collocation optimization [3], component
workflow monitoring [21], and deployment planning [20]
are possible. The analysis phase is represented by Step 4 in
Figure 1.

The analyses are developed in a fashion that is indepen-
dent of the underlying base language as CQML provides
the necessary indirection (layer of abstraction) between the
analysis tools and the actual platform-specific component
model of the base language. CQML hides away the plat-

form specific aspects of the component model and gives a
clean, simplified way of associating and accessing declara-
tive QoS aspect information from the models.

Different kinds of artifacts are possible from the analysis
phase. Some analysis results are for human consumption
whereas some other analysis artifacts lead to structural ma-
nipulation of the original model so that the analysis results
can be processed using other tools. For example, deploy-
ment planning shown in [20] not only generates a place-
ment for components in the system, but also requires a hu-
man to add new replica components in the original model so
that a complete fault-tolerant system can be deployed. Un-
less an automated process is defined to populate the analysis
results back into the model, performing model manipula-
tions manually after analyses quickly becomes a time con-
suming and tedious task in the software development pro-
cess. Therefore, an automated support to perform model
manipulations is necessary after the analysis phase. There-
fore, we have developed an aspect weaver framework that
provides a way to populate the results, if any, of the analysis
back into the model. We use the Constraint-Specification
Aspect Weaver (C-SAW) [11] and Embedded Constraints
Language (ECL) to populate the model with the result of
the analysis tool.

In Section 3 we show how we have used our deployment
planning [20] tool that takes into account the availability
aspect (FailOverUnit) modeled using CQML to generate a
placement for the components that meets the availability re-
quirements. After the analysis, we also generate ECL code
to automatically populate the replica components and their
interconnection in the model which would have otherwise
done manually.

2.5.1 Architecture of the Aspect Weaver Framework

Figure 6 shows the overall architecture of our aspect weaver
framework. It consists of four main subcomponents: (1)
instance search engine, (2) QoS aspect visitor, (3) anal-
ysis component, and (4) ECL code generator. The in-
stance search engine is a generic component, which can be
used across multiple analyses, however, the remaining three
components are specific to every QoS aspect and the analy-
sis performed on it.

Instance Search Engine. It searches and collects the in-
stances of the concrete structural elements such as compo-
nents, assemblies, and ports in a model, irrespective of the
underlying base language. These structural elements are in-
stances of the types defined in the metamodel of the com-
posite language. The instance search engine depends on
the fact that the elements that it searches are the instances
of the types that specialize the abstract elements defined in
CQML. The output of the instance search engine is a set of
instances of abstract structural components. It filters out the
base language specific type information from the collected

5

Figure 6: Architecture of CQML-based Aspect Weaver
Framework

components before passing them to the next stage.

QoS Aspect Visitor. The QoS aspect visitor obtains the
abstracted set of instances of the structural elements from
the instance search engine. It then traverses the declara-
tive QoS aspects defined in the model. The traversals are
based on the abstract syntax and the associations defined in
CQML. The associations defined in CQML are inherited by
the base language using the metamodel composition tech-
nique described in Section 2.4. Therefore, generic traversals
can be written that remain unaffected by the base language
specific details of the structural elements. A key character-
istic of the QoS aspect visitor is that it can be reused across
multiple base language models as QoS associations inher-
ited from CQML remain consistent across multiple com-
posite languages.

Analysis Component. QoS-specific analysis algorithms
are implemented in the analysis component. The abstract
set of structural elements and declarative QoS aspects pro-
cessed by the earlier two stages are available for analysis. In
Section 3.2, we show how our deployment planning analy-
sis [20] can be integrated with the aspect weaver framework.

ECL Code Generator. As the name suggests, it is used to
generate ECL code that populates the model with the result
of the analysis. The ECL code modularizes model manipu-
lations that might be necessary in the later stages of system
lifecycle. The generated ECL code automatically carries
out the necessary model manipulations without any user in-
tervention. This eliminates the need for the user to learn
ECL and reduces modeling efforts.

3 Evaluating CQML
This section describes our evaluation of CQML. First,

we demonstrate how purely structural modeling languages
can be enhanced with QoS annotation capabilities by com-
posing them with CQML. We show this capability with
three different component-based structural modeling lan-
guages. Second, we evaluate CQML’s QoS analysis frame-
work by developing a deployment planning analysis for
structural models of component-based systems irrespective
of their underlying base language. Finally, we demonstrate
how our deployment planner generates ECL code to auto-
mate model manipulations to significantly reduce human
modeling efforts.

3.1 Composability of CQML with Structural Model-
ing Languages

To evaluate composability of CQML we chose three
component-based structural composition languages: the
Platform Independent Component Modeling Language
(PICML) [3] for Light-weight CORBA Component Model
(LW-CCM) [16], J2EEML [22] for Enterprise Java Beans
(EJB), and the Embedded Systems Modeling Language
(ESML) [13] for embedded systems.

There are many commonalities and differences among
these languages that stem from the differences in the under-
lying component model that they model. Table 1 summa-
rizes the similarities and the differences between these three
languages. All of them are component-based system model-
ing languages, which treat components as first class entities
and have varying degree of support for assemblies (nesting
of components and assemblies.) For example, J2EEML and
PICML support hierarchical composition of assemblies but
ESML has a flat, single level structure of components. All
the three languages support the notion of a connection. The
notion of provided interfaces (an implementation of a par-
ticular interface) is present in PICML and ESML but not
quite explicit in J2EEML. It manifests itself in a weaker
form of just a set of invocable methods on a bean. Simi-
larly, the notion of required interfaces1 is present in PICML
and ESML but is absent in EJB and hence in J2EEML. In
summary, PICML′ feature set turns out to be a super-set of
the features of the other two languages.

Using specializations to the join point model, we com-
posed CQML with the above three languages giving rise
to three composite languages: PICML′, J2EEML′, and
ESML′. The concrete join point model of the three compos-
ite languages varies because of the varying structural capa-
bilities of the underlying base languages. The richness of
the join point model determines the ability of the composite
language to attach declarative QoS aspect to the structural
elements in a model.

1It describes an ability of a component to use an interface implementa-
tion supplied by some external component.

6

Supported Features PICML J2EEML ESML

Component, Methods, Yes Yes Yes
and Connections

Provided Interface Ports Yes No Yes
Required Interface Ports Yes No Yes

Assemblies Yes Yes No

Table 1: Comparison of Capabilities of Selected Three
Modeling Languages

Structural PICML′ J2EEML′ ESML′

Elements

Component FailOverUnit FailOverUnit FailOverUnit
Assembly FailOverUnit FailOverUnit N.A.

Connections NetworkQoS NetworkQoS NetworkQoS
Provided SecurityQoS N.A. SecurityQoS

Interface Ports
Required SecurityQoS N.A. SecurityQoS

Interface Ports

Table 2: Enhanced QoS Aspect Modeling Capabilities of
Composite Languages PICML′, J2EEML′, and ESML′

Table 2 summarizes the enhanced QoS aspect modeling
capabilities of the composite languages. All three compos-
ite languages had new support for modeling FailOverUnits,
which are associated with components. However, J2EEML′

could not support the QoS advice association with required
interface like PICML′ and ESML′ could because there is no
support for ports built in to J2EEML. Similarly, in ESML,
FailOverUnit cannot be associated with assemblies because
assemblies is not supported.

All the above QoS modeling enhancements are projected
into and manipulated from the QoS view. This graph-
ical view of the model is separate from structural view
where hierarchical systems are composed using compo-
nents. This feature provides visual separation of structural
concerns from QoS concerns. Moreover, the metamodel of
the structural view and CQML can be enhanced in parallel,
if needed, and can be composed again as shown in Figure 1.

The results indicate that CQML can be composed with
a variety of component-based structural composition lan-
guages to introduce QoS modeling support in them while
supporting strong separation and independent evolution of
QoS and structural concerns.

3.2 Evaluating CQML’s Analysis Framework and Au-
tomatic Model Weaving Support

In this section we demonstrate how base language in-
dependent QoS analysis can be conducted using CQML’s
analysis framework. Moreover, we also evaluate savings in
human modeling efforts due to automatic weaving of mod-

eling artifacts generated by QoS analysis. We leverage our
previous work on availability analysis called MDDPro [20].

We developed a variant of our MDDPro deployment
planning tool to evaluate the modeling and automation ca-
pabilities of CQML. Based on the availability concerns that
are captured using FailOverUnit, our variant of MDDPro
(1) generates replicas of the components annotated with
FailOveUnit and (2) runs a placement planner on the com-
ponents and their replicas to decide a placement. The plan-
ner is based on the shared risk group (SRG) [20] hierarchy
of the hosts in a domain that allows us to place compo-
nent replicas in a way that minimizes the risk of simulta-
neous failure of replicated functionality. MDDPro also al-
lows plugging in different replica placement algorithms to
improve system availability.

To evaluate the framework, we developed a prototype
component-based application for an aircraft GPS auto-
navigator. Our GPS auto-navigator has four compo-
nents as shown in Figure 7: Timer, GPS, AirFrame and
NavDisplay. The Timer component sends a periodic mes-
sage to the GPS component in response to which the GPS
component updates its location information from satellite
and sends it to the AirFrame component. The AirFrame
component adjusts the path of the aircraft, if necessary, and
sends the current location information to the NavDisplay
component, which renders it on a graphical device for hu-
man consumption. A shared risk group (SRG) hierarchy of
four hosts was created where the system is to be deployed.

Figure 7: A Model of Aircraft GPS Auto-navigator in
PICML′

We created three structurally identical models of the
GPS navigator in three composite languages: PICML′,
J2EEML′, and ESML′. The model in PICML′ is shown
in Figure 7. We annotated the GPS component in all three
models identically using CQML’s availability QoS aspect
model, FailOverUnit. We specified that 2 replicas of the
GPS component be made as shown in Figure 7. The de-
ployment planner of MDDPro visits the availability models
that are attached to the GPS component. Based on the com-
ponent replication degree and the given shared risk group
hierarchy [20], the planner generated placement for the four
primary components as well as the two replicas of GPS in
all three models. We verified that the output of the plan-

7

of Generated FailOverUnit associated Generated FailOverUnit associated with GPS,
Replica ECL LOC with GPS Component ECL LOC AirFrame, and NavDisplay Components

Comp. Conn. Ports Component Connection Ports
1 52 1 3 3 114 3 12 9
2 74 2 6 6 246 6 32 18
3 96 3 9 9 426 9 60 27

Table 3: Savings in Modeling Effort of Components, Connections, and Ports due to Automatic Generation

ner, which is a simple component to physical host map-
ping is identical for all three models of the composite lan-
guages. Our results indicate that deployment planning can
be done in a base language independent way using CQML
tool-suite.

Even though base language independent analysis can be
done using CQML’s tool-suite, some artifacts generated by
the deployment planner such as replica components must be
populated back into the original model so that appropriate
platform-specific descriptors (e.g., packing and deployment
metadata in XML) can be generated from the model in the
later stages of system lifecycle. Creating such replica com-
ponents manually is a tedious and error prone task and does
not scale well as the size of the system model increases.
Therefore, we developed a generator that executes after the
deployment planner and synthesizes ECL code that weaves
the availability QoS aspect in the original system model
with replica components and their interconnections.

Figure 8: Result of Weaving Generated Components and
Connection in PICML′

The generated ECL code performs the following steps to
weave the availability QoS aspect. First, it creates multiple
identical copies (clones) of the components and assemblies
that are annotated with FailOverUnit QoS aspect. The num-
ber of clones are dictated by the degree of replication cap-
tured using FailOverUnit. Figure 8 shows GPS_Replica1
and GPS_Replica2 which are clones of the GPS component
to which FailOverUnit was associated in the original model.
Second, the ECL code recreates the same connections for
the replica components as that of the original GPS compo-
nent. For example, the GPS component has connections

with the Timer and the AirFrame component, which are
recreated between the GPS_Replica1 and GPS_Replica2
components. Figure 8 shows the final result of weaving of
generated components and connections in the aircraft GPS
auto-navigator model in PICML′ language.

Table 3 summarizes the savings in efforts due to automa-
tion provided by the CQML tool-suite. The table shows
how much modeling effort is saved by generated ECL code
if (1) only the GPS component has FailOverUnit associated
with it and (2) GPS, AirFrame, and NavDisplay have a
FailOverUnit associated with them. Savings in the man-
ual efforts in the second case are much more significant
because the number of connections between components
grows multiplicatively when replication degree of compo-
nents increases linearly. Note that Figure 8 shows only the
first case.

It is clear from the table that without automatic ECL
code generation capability of CQML tool-suite, the modeler
would have to manually create the components and connec-
tions between them. Moreover, the modeler also must take
deployment decisions of the replicated components if the
deployment planner is not used. ECL code generator pro-
duces necessary aspect weaving code for C-SAW to execute
and thereby eliminating the manual steps.

4 Related Work
Capturing QoS specifications at design-time has long

been a goal of researchers [9, 23]. A prior effort, called
Component Quality Modeling Language [23], developed
by Aagadel is a platform-independent, general-purpose lan-
guage for defining QoS properties. It allows both in-
terface annotation as well as component type annotation.
Moreover, it has support for UML integration based on
a lightweight QoS profile and has QoS negotiation capa-
bilities. All the previous work on QoS specification lan-
guages including QML [9] (QoS Modeling Language) and
QuO [24] (Quality Objects) is superseded by [23].

Therefore, we limit our comparison with the QoS specifi-
cation language developed by Aagedal. CQML has been de-
signed to be superimposed on domain specific component-
based system composition modeling languages and not with
interface definition languages as in the case of Aagedal’s

8

QoS language. The latter allows QoS annotations at type
level (IDL interface and component definition) only and
therefore, cannot be used to specify QoS requirements on
components on a per-instance basis. Although, the QoS
specification capability in CQML is not as general as in
Aagedal’s quality modeling language, instance level QoS
specification is possible in our CQML.

Lightweight and heavyweight extensions for UML are
possible to create QoS profiles using extensibility mecha-
nisms provided by UML. Lightweight extensions use only
the mechanism of stereotypes, tagged values, and con-
straints. Heavyweight extensions require modification to
the UML metamodel, which is naturally more intrusive than
lightweight approaches. The OMG has adopted UML pro-
file [15] for schedulability, performance and time specifi-
cation, which is based on lightweight extensibility mecha-
nisms of UML. OMG has also adopted a more general pro-
file for modeling QoS [17]. This UML profile provides a
way to specify the QoS ontology with QoS characteristics.
It has support for attaching QoS requirements to UML ac-
tivity diagrams. A common feature between these UML
profiles and CQML is that both have first class support for
QoS concerns. Compared to the lightweight mechanisms
of above-mentioned UML profiles, CQML requires heavy-
weight metamodel level composition of two languages. A
benefit of this approach is that the full strength of the
metaprogramming environment (e.g., GME) can be lever-
aged in the process.

The SysWeaver [7] approach is a MDE-based technique
for developing real-time systems. It supports design-time
timing behavior verification of real-time systems and also
supports automatic code generation and weaving for mul-
tiple target platforms. In the SysWeaver approach, there is
an explicit step where the system functional model speci-
fied in Simulink must be translated into SysWeaver model
to perform different analyses. On the other hand, we elimi-
nate the need for transformation of platform-specific system
functionality models into analysis domain models. We ex-
pect great savings in manual efforts where such automatic
transformations are not provided or possible. Moreover,
SysWeaver does not address tangling of availability con-
cerns into structural concerns. The replicas of protected
components need to be explicitly modeled in the functional
view of the Simulink model.

Object Management Group (OMG) has developed an ex-
tension to Unified Modeling Language (UML) for Mod-
eling and Analysis of Real-time and Embedded systems
(MARTE) [18]. MARTE profile provides foundations for
model-based descriptions of real time and embedded sys-
tems and provides facilities to annotate UML models with
information required to perform specific analyses such as,
performance and schedulability analysis. MARTE profile
has provisions for a generic component model as well.

CQML and MARTE profile both share common design
goals such as annotating application models with informa-
tion necessary for performing multiple analyses on models.
However, MARTE considers UML as its only underlying
modeling language where as CQML’s modeling capabili-
ties can be superimposed on multiple DSMLs provided a
small set of invariants are satisfied by them. Contrary to
CQML, the analysis framework of MARTE profile does not
propose any round-tripping mechanism to populate the re-
sults of analysis back into the original models.

Another approach [8] for managing QoS is based on the
QuO framework. It is an aspect-based approach to pro-
gramming QoS adaptive applications that separates the QoS
and adaptation concerns from the functional and distribu-
tion concerns. It puts more emphasis on encapsulating the
system adaptation and interactions as an aspect. But it is
more applicable to the CORBA-based platforms. The work
described in [12] shows similarities between network-level
configurable protocols and aspects. Both of the above men-
tioned approaches focus on lower-level OS and network
related QoS whereas CQML is an aspect-oriented mod-
eling approach that focuses on the higher level platform-
independent QoS concerns in component based systems and
provides intuitive, visual abstractions. These lower-level
concerns can be modeled as separate declarative QoS as-
pects in CQML.

5 Concluding Remarks
Large-scale component-based systems often incur sec-

ondary non-functional concerns comprising quality of ser-
vice (QoS), which crosscut the system’s primary concern:
structural composition. The scattering and tangling of these
secondary concerns impede comprehensibility, reusability
and evolution of component-based systems. A Domain-
specific Modeling (DSM)-based approach holds promise to
address these challenges because it raises the level of ab-
straction at which the systems are designed and reasoned
about. The complexity of system design incurred due to
the crosscutting concerns, however, is not eliminated even
at a higher level of abstraction because of lack of the right
DSM-level modularizing abstractions.

The key contribution of this paper is to address the chal-
lenges in DSM tools for component-based system develop-
ment. We described a reusable, platform-independent Com-
ponent QoS Modeling Language (CQML) that defines an
abstract join point model which when composed with a base
structural modeling language, enhances the host language
with declarative QoS modeling capability without breaking
the syntax, semantics and the tool support of the host lan-
guage. CQML not only provides separate views to spec-
ify and manipulate QoS concerns and system’s structural
concerns but also allows QoS metamodel to be extended
without affecting the structural modeling capabilities of the

9

host language. We evaluated this capability of CQML by
composing it with three structural modeling languages for
component-based systems: Platform Independent Compo-
nent Modeling Language (PICML) [3], J2EEML [22], and
Embedded Systems Modeling Language (ESML) [13]. Fi-
nally, we also demonstrated how CQML’s availability QoS
aspects can be used to automatically generate placement de-
cisions using our deployment planner and how replica com-
ponents and their interconnections be weaved into the orig-
inal model using an aspect-oriented model weaver.

The capabilities of CQML are available in open source
from the CoSMIC tool web site at www.dre.vanderbilt.
edu/cosmic.

References
[1] Ákos Lédeczi, Árpád Bakay, M. Maróti, P. Völgyesi,

G. Nordstrom, J. Sprinkle, and G. Karsai. Compos-
ing domain-specific design environments. Computer,
34(11):44–51, 2001.

[2] J. Balasubramanian, S. Tambe, B. Dasarathy, S. Gadgil,
F. Porter, A. Gokhale, and D. C. Schmidt. Netqope:
A model-driven network qos provisioning engine for dis-
tributed real-time and embedded systems. In RTAS’ 08: Pro-
ceedings of the 14th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium, pages 113–122, Los
Alamitos, CA, USA, 2008. IEEE Computer Society.

[3] K. Balasubramanian. Model-Driven Engineering of
Component-based Distributed, Real-time and Embedded
Systems. PhD thesis, Department of Electrical Engineer-
ing and Computer Science, Vanderbilt University, Nashville,
Sept. 2007.

[4] K. Balasubramanian, D. C. Schmidt, Z. Molnar, and
A. Ledeczi. Component-based system integration via
(meta)model composition. In ECBS ’07: Proceedings of the
14th Annual IEEE International Conference and Workshops
on the Engineering of Computer-Based Systems, pages 93–
102, Washington, DC, USA, 2007. IEEE Computer Society.

[5] Clemens Szyperski. Component Software — Beyond Object-
Oriented Programming - Second Edition. Addison-Wesley,
Reading, Massachusetts, 2002.

[6] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Reading, Massachusetts, 2000.

[7] D. de Niz, G. Bhatia, and R. Rajkumar. Model-based de-
velopment of embedded systems: The sysweaver approach.
In RTAS ’06: Proceedings of the 12th IEEE Real-Time and
Embedded Technology and Applications Symposium, pages
231–242, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[8] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky.
Building Adaptive Distributed Applications with Middle-
ware and Aspects. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software devel-
opment, pages 66–73, New York, NY, USA, 2004. ACM
Press.

[9] S. Frolund and J. Koistinen. Quality of Service Specifica-
tion in Distributed Object Systems. IEE/BCS Distributed
Systems Engineering Journal, 5:179–202, Dec. 1998.

[10] J. Gray, T. Bapty, and S. Neema. Handling Crosscutting
Constraints in Domain-Specific Modeling. Communications
of the ACM, pages 87–93, October 2001.

[11] J. Gray, T. Bapty, S. Neema, D. C. Schmidt, A. Gokhale, and
B. Natarajan. An Approach for Supporting Aspect-Oriented
Domain Modeling. In Proceedings of the 2nd International
Conference on Generative Programming and Component
Engineering (GPCE’03), 2003.

[12] M. Hiltunen, F. Taïani, and R. Schlichting. Reflections
on Aspects and Configurable Protocols. In AOSD ’06:
Proceedings of the 5th international conference on Aspect-
oriented software development, pages 87–98, New York,
NY, USA, 2006. ACM Press.

[13] G. Karsai, S. Neema, B. Abbott, and D. Sharp. A Modeling
Language and Its Supporting Tools for Avionics Systems.
In Proceedings of 21st Digital Avionics Systems Conference,
Los Alamitos, CA, Aug. 2002. IEEE Computer Society.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-Oriented Pro-
gramming. In Proceedings of the 11th European Con-
ference on Object-Oriented Programming, pages 220–242,
June 1997.

[15] Object Management Group. UML Profile for Schedulability,
Performance, and Time Specification, Final Adopted Speci-
fication ptc/02-03-02 edition, Mar. 2002.

[16] Object Management Group. Light Weight CORBA
Component Model Revised Submission, OMG Document
realtime/03-05-05 edition, May 2003.

[17] Object Management Group. UML Profile for Modeling
Quality of Service and Fault Tolerance Characteristics and
Mechanisms Joint Revised Submission, OMG Document
realtime/03-05-02 edition, May 2003.

[18] Object Management Group. UML Profile for Modeling and
Analysis of Real-Time and Embedded systems (MARTE),
OMG Document realtime/05-02-06 edition, May 2005.

[19] D. C. Schmidt. Model-Driven Engineering. IEEE Computer,
39(2):25–31, 2006.

[20] S. Tambe, J. Balasubramanian, A. Gokhale, and T. Damiano.
MDDPro: Model-Driven Dependability Provisioning in En-
terprise Distributed Real-Time and Embedded Systems. In
Proceedings of the International Service Availability Sym-
posium (ISAS), pages 127–144, Durham, New Hampshire,
USA, 2007.

[21] S. Tambe, A. Dabholkar, A. Gokhale, and A. Kavimandan.
Towards A QoS Modeling and Modularization Framework
for Component-based Systems . In Proceedings of the ED-
DOC Workshop on Advances in Quality of Service Manage-
ment (AQuSerM), September 2008.

[22] J. White, D. C. Schmidt, and A. Gokhale. Simplifying au-
tonomic enterprise java bean applications via model-driven
engineering and simulation. Journal of Software and System
Modeling, 7(1):3–23, 2008.

[23] J. Øyvind Aagedal. Quality of Service Support in Develop-
ment of Distributed Systems. PhD thesis, University of Oslo,
Oslo, Mar. 2001.

[24] J. A. Zinky, D. E. Bakken, and R. Schantz. Architectural
Support for Quality of Service for CORBA Objects. Theory
and Practice of Object Systems, 3(1):1–20, 1997.

10

