
More C++ Idioms/Print Version 1

More C++ Idioms/Print Version

Preface

C++ has indeed become too "expert friendly" --- Bjarne Stroustrup, The Problem with Programming [1],
Technology Review, Nov 2006.

Stroustrup's saying is true because experts are intimately familiar with the idioms in the language. With the increase in
the idioms a programmer understands, the language becomes friendlier to him or her. The objective of this open
content book is to present modern C++ idioms to programmers who have moderate level of familiarity with C++, and
help elevate their knowledge so that C++ feels much friendlier to them. It is designed to be an exhaustive catalog of
reusable idioms that expert C++ programmers often use while programming or designing using C++. This is an effort
to capture their techniques and vocabulary into a single work. This book describes the idioms in a regular format:
Name-Intent-Motivation-Solution-References, which is succinct and helps speed learning. By their nature, idioms tend
to have appeared in the C++ community and in published work many times. An effort has been made to refer to the
original source(s) where possible; if you find a reference incomplete or incorrect, please feel free to suggest or make
improvements.

The world is invited to catalog reusable pieces of C++ knowledge (similar to the book on design patterns by GoF).
The goal here is to first build an exhaustive catalog of modern C++ idioms and later evolve it into an idiom language,
just like a pattern language. Finally, the contents of this book can be redistributed under the terms of the GNU Free
Documentation License.

Aimed toward: Anyone with an intermediate level of knowledge in C++ and supported language paradigms

Authors
• Sumant Tambe talk -- The initiator and lead contributor since July 2007.
• Many other C++ aficionados who continuously improve the writeup, examples, and references where necessary.

Praise of the Book
• "Great and valuable work!" -- Bjarne Stroustrup (February, 2009)

Table of Contents
Note: synonyms for each idiom are listed in parentheses.

1. Adapter Template
2. Address Of
3. Algebraic Hierarchy
4. Attach by Initialization
5. Barton-Nackman trick
6. Base-from-Member
7. Boost mutant
8. Calling Virtuals During Initialization
9. Capability Query
10. Checked delete
11. Clear-and-minimize
12. Coercion by Member Template
13. Compile Time Control Structures
14. Computational Constructor
15. Concrete Data Type

http://en.wikibooks.org/w/index.php?title=File:More_CPP_Idioms.jpg
http://www.technologyreview.com/Infotech/17831
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/GNUFDL
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/GNUFDL
http://en.wikibooks.org/w/index.php?title=User:Sutambe
http://en.wikibooks.org/w/index.php?title=User_talk:Sutambe
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Adapter_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Address_Of
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Algebraic_Hierarchy
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Attach_by_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Barton-Nackman_trick
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Base-from-Member
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Boost_mutant
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Calling_Virtuals_During_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Capability_Query
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Checked_delete
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Clear-and-minimize
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Coercion_by_Member_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Compile_Time_Control_Structures
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Computational_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Concrete_Data_Type


More C++ Idioms/Print Version 2

16. Const auto_ptr
17. Construct On First Use
18. Construction Tracker
19. Copy-and-swap
20. Copy-on-write
21. Counted Body (intrusive reference counting)
22. Curiously Recurring Template Pattern
23. Detached Counted Body (non-intrusive reference counting)
24. Empty Base Optimization
25. Emulated Exception
26. enable-if
27. Envelope Letter
28. Erase-Remove
29. Examplar
30. Execute-Around Pointer
31. Export Guard Macro
32. Expression-template
33. Fake Vtable
34. Fast Pimpl
35. Final Class
36. Free Function Allocators
37. Friendship and the Attorney-Client
38. Function Object
39. Generic Container Idioms
40. Hierarchy Generation
41. Include Guard Macro
42. Inline Guard Macro
43. Inner Class
44. Int-To-Type
45. Interface Class
46. Iterator Pair
47. Making New Friends
48. Metafunction
49. Move Constructor
50. Multi-statement Macro
51. Multiple Member Initialization
52. Member Detector
53. Named Constructor
54. Named External Argument
55. Named Loop (labeled loop)
56. Named Parameter
57. Named Template Parameters
58. Nifty Counter (Schwarz Counter)
59. Non-copyable Mixin
60. Non-member get
61. Non-member Non-friend Function
62. Non-throwing swap

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Const_auto_ptr
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Construct_On_First_Use
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Construction_Tracker
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-and-swap
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-on-write
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Counted_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Detached_Counted_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Empty_Base_Optimization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Emulated_Exception
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/enable-if
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Envelope_Letter
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Erase-Remove
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Examplar
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Execute-Around_Pointer
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Export_Guard_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Expression-template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Fake_Vtable
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Fast_Pimpl
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Final_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Free_Function_Allocators
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Friendship_and_the_Attorney-Client
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Function_Object
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Generic_Container_Idioms
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Hierarchy_Generation
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Include_Guard_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Inline_Guard_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Inner_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Int-To-Type
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Interface_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Iterator_Pair
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Making_New_Friends
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Metafunction
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Move_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Multi-statement_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Multiple_Member_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Member_Detector
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_External_Argument
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_Loop
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_Parameter
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_Template_Parameters
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Nifty_Counter
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-copyable_Mixin
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-member_get
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-member_Non-friend_Function
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-throwing_swap


More C++ Idioms/Print Version 3

63. Non-Virtual Interface (Public Overloaded Non-Virtuals Call Protected Non-Overloaded Virtuals)
64. nullptr
65. Object Generator
66. Object Template
67. Overload Set Creation
68. Parameterized Base Class (Parameterized Inheritance)
69. Pimpl (Handle Body, Compilation Firewall, Cheshire Cat)
70. Policy Clone (Metafunction wrapper)
71. Policy-based Design
72. Polymorphic Exception
73. Recursive Type Composition
74. Requiring or Prohibiting Heap-based Objects
75. Resource Acquisition Is Initialization (RAII, Execute-Around Object, Scoped Locking)
76. Resource Return
77. Return Type Resolver
78. Runtime Static Initialization Order Idioms
79. Safe bool
80. Scope Guard
81. Substitution Failure Is Not An Error (SFINAE)
82. Shortening Long Template Names
83. Shrink-to-fit
84. Small Object Optimization
85. Smart Pointer
86. Storage Class Tracker
87. Tag Dispatching
88. Temporary Base Class
89. Temporary Proxy
90. The result_of technique
91. Thin Template
92. Traits
93. Type Erasure
94. Type Generator (Templated Typedef)
95. Type Safe Enum
96. Type Selection
97. Virtual Constructor
98. Virtual Friend Function

Address Of

Intent
Find address of a object of a class that has an overloaded unary ampersand (&) operator.

Motivation
C++ allows overloading of unary ampersand (&) operator for class types. The return type of such an operator need 
not be the actual address of the object. Intentions of such a class are highly debatable but the language allows it 
nevertheless. Address-of idiom is way to find the real address of an object irrespective of the overloaded unary

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-Virtual_Interface
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/nullptr
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Object_Generator
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Object_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Overload_Set_Creation
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Parameterized_Base_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Policy_Clone
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Policy-based_Design
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Polymorphic_Exception
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Recursive_Type_Composition
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Requiring_or_Prohibiting_Heap-based_Objects
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Acquisition_Is_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Return
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Return_Type_Resolver
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Runtime_Static_Initialization_Order_Idioms
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Safe_bool
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Scope_Guard
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/SFINAE
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Shortening_Long_Template_Names
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Shrink-to-fit
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Small_Object_Optimization
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Smart_Pointer
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Storage_Class_Tracker
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Tag_Dispatching
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Temporary_Base_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Temporary_Proxy
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/The_result_of_technique
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Thin_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Traits
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Erasure
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Generator
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Safe_Enum
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Selection
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Friend_Function


More C++ Idioms/Print Version 4

ampersand operator and its access protection.
In the example below, main function fails to compile because operator & of nonaddressable class is
private. Even if it were accessible, a conversion from its return type double to a pointer would not been possible
or meaningful.

class nonaddressable 

{

public:

    typedef double useless_type;

private:

    useless_type operator&() const;

};

int main(void)

{

  nonaddressable na;

  nonaddressable * naptr = &na; // Compiler error here.

  return 0;

}

Solution and Sample Code
The Address-of idiom retrieves the address of an object using a series of casts.

template <class T>

T * addressof(T & v)

{

  return reinterpret_cast<T *>(& const_cast<char&>(reinterpret_cast<const volatile char &>(v)));

}

int main(void)

{

  nonaddressable na;

  nonaddressable * naptr = addressof(na); // No more compiler error.

  return 0;

}



More C++ Idioms/Print Version 5

Known Uses
• Boost addressof utility [2]

Algebraic Hierarchy

Intent
To hide multiple closely related algebraic abstractions (numbers) behind a single generic abstraction and provide a
generic interface to it.

Also Known As
• State (Gamma et al.)

Motivation
In pure object-oriented languages like Smalltalk, variables are run-time bindings to objects that act like labels.
Binding a variable to an object is like sticking a label on it. Assignment in these languages is analogous to peeling a
label off one object and putting it on another. On the other hand, in C and C++, variables are synonyms for addresses
or offsets instead of being labels for objects. Assignment does not mean re-labelling, it means overwriting old
contents with new one. Algebraic Hierarchy idiom uses delegated polymorphism to simulate weak variable to object
binding in C++. Algebraic Hierarchy uses Envelope Letter idiom in its implementation. The motivation behind this
idiom is to be able write code like the one below.

Number n1 = Complex (1, 2); // Label n1 for a complex number

Number n2 = Real (10); // Label n2 for a real number

Number n3 = n1 + n2; // Result of addition is labelled n3

Number n2 = n3; // Re-labelling

Solution and Sample Code
Complete code showing implementation of Algebraic Hierarchy idiom is shown below.

#include <iostream>

using namespace std;

struct BaseConstructor { BaseConstructor(int=0) {} };

class RealNumber;

class Complex;

class Number;

class Number

{

    friend class RealNumber;

    friend class Complex;

  public:

    Number ();

    Number & operator = (const Number &n);

http://www.boost.org/doc/libs/1_47_0/libs/utility/utility.htm#addressof
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Envelope_Letter


More C++ Idioms/Print Version 6

    Number (const Number &n);

    virtual ~Number();

    virtual Number operator + (Number const &n) const;

    void swap (Number &n) throw ();

    

    static Number makeReal (double r);

    static Number makeComplex (double rpart, double ipart);

  protected:

    Number (BaseConstructor);

  

  private:

    void redefine (Number *n);

    virtual Number complexAdd (Number const &n) const;

    virtual Number realAdd (Number const &n) const;

    

    Number *rep;

    short referenceCount;

};

class Complex : public Number

{

  friend class RealNumber;

  friend class Number;

  

  Complex (double d, double e);

  Complex (const Complex &c);

  virtual ~Complex ();

  

  virtual Number operator + (Number const &n) const;

  virtual Number realAdd (Number const &n) const;

  virtual Number complexAdd (Number const &n) const;

  double rpart, ipart;

};

class RealNumber : public Number

{

  friend class Complex;

  friend class Number;

  

  RealNumber (double r);

  RealNumber (const RealNumber &r);

  virtual ~RealNumber ();

  

  virtual Number operator + (Number const &n) const;



More C++ Idioms/Print Version 7

  virtual Number realAdd (Number const &n) const;

  virtual Number complexAdd (Number const &n) const;

    

  double val;

};

/// Used only by the letters.

Number::Number (BaseConstructor)

: rep (0),

  referenceCount (1)

{}

/// Used by user and static factory functions.

Number::Number () 

  : rep (0),

    referenceCount (0)

{}

/// Used by user and static factory functions.

Number::Number (const Number &n)

: rep (n.rep),

  referenceCount (0)

{

  cout << "Constructing a Number using Number::Number\n";

  if (n.rep)

    n.rep->referenceCount++;

}

Number Number::makeReal (double r)

{

  Number n;

  n.redefine (new RealNumber (r));

  return n;

}

Number Number::makeComplex (double rpart, double ipart)

{

  Number n;

  n.redefine (new Complex (rpart, ipart));

  return n;

}

Number::~Number()

{

  if (rep && --rep->referenceCount == 0)

    delete rep;

}



More C++ Idioms/Print Version 8

Number & Number::operator = (const Number &n)

{

  cout << "Assigning a Number using Number::operator=\n";

  Number temp (n);

  this->swap (temp);

  return *this;

}

void Number::swap (Number &n) throw ()

{

  std::swap (this->rep, n.rep);

}

Number Number::operator + (Number const &n) const

{

  return rep->operator + (n);

}

Number Number::complexAdd (Number const &n) const 

{

  return rep->complexAdd (n);

}

Number Number::realAdd (Number const &n) const

{

  return rep->realAdd (n);

}

void Number::redefine (Number *n)

{

  if (rep && --rep->referenceCount == 0)

    delete rep;

  rep = n;

}

Complex::Complex (double d, double e)

  : Number (BaseConstructor()),

    rpart (d),

    ipart (e)

{

  cout << "Constructing a Complex\n";

}

Complex::Complex (const Complex &c)

  : Number (BaseConstructor()),

    rpart (c.rpart),



More C++ Idioms/Print Version 9

    ipart (c.ipart)

{

  cout << "Constructing a Complex using Complex::Complex\n";

}

Complex::~Complex()

{

  cout << "Inside Complex::~Complex()\n";

}

Number Complex::operator + (Number const &n) const

{ 

  return n.complexAdd (*this); 

}

Number Complex::realAdd (Number const &n) const

{

  cout << "Complex::realAdd\n";

  RealNumber const *rn = dynamic_cast <RealNumber const *> (&n);

  return Number::makeComplex (this->rpart + rn->val, 

                              this->ipart);

}

Number Complex::complexAdd (Number const &n) const

{

  cout << "Complex::complexAdd\n";

  Complex const *cn = dynamic_cast <Complex const *> (&n);

  return Number::makeComplex (this->rpart + cn->rpart, 

                              this->ipart + cn->ipart);

}

RealNumber::RealNumber (double r)

  : Number (BaseConstructor()),

    val (r)

{

  cout << "Constructing a RealNumber\n";

}

RealNumber::RealNumber (const RealNumber &r)

  : Number (BaseConstructor()),

    val (r.val)

{

  cout << "Constructing a RealNumber using RealNumber::RealNumber\n";

}

RealNumber::~RealNumber()

{



More C++ Idioms/Print Version 10

  cout << "Inside RealNumber::~RealNumber()\n";

}

Number RealNumber::operator + (Number const &n) const

{ 

  return n.realAdd (*this); 

}

Number RealNumber::realAdd (Number const &n) const

{

  cout << "RealNumber::realAdd\n";

  RealNumber const *rn = dynamic_cast <RealNumber const *> (&n);

  return Number::makeReal (this->val + rn->val);

}

Number RealNumber::complexAdd (Number const &n) const

{

  cout << "RealNumber::complexAdd\n";

  Complex const *cn = dynamic_cast <Complex const *> (&n);

  return Number::makeComplex (this->val + cn->rpart, cn->ipart);

}

namespace std

{

template <>

void swap (Number & n1, Number & n2)

{

  n1.swap (n2);

}

}

int main (void)

{

  Number n1 = Number::makeComplex (1, 2);

  Number n2 = Number::makeReal (10);

  Number n3 = n1 + n2;

  cout << "Finished\n";

  return 0;

}



More C++ Idioms/Print Version 11

Related Idioms
• Handle Body
• Envelope Letter

References
Advanced C++ Programming Styles and Idioms by James Coplien, Addison Wesley, 1992.

Solution and Sample Code

Barton-Nackman trick

Intent
Support overloaded operators without relying on namespaces or function template overload resolution.

Also Known As
The inventors originally referred to it as Restricted Template Expansion, though this term has never been widely
used.

Motivation
John Barton and Lee Nackman first published this idiom in 1994 in order to work around limitations of the C++
implementations available at the time. Though it is no longer necessary for its original purpose, the current standard
retains support for it.
At the time Barton and Nackman originally developed the idiom, C++ did not support overloading of function
templates and many implementations still didn't support namespaces. This caused problems when defining operator
overloads for class templates. Consider the following class:

template<typename T>

class List {

   // ...

};

The most natural way to define the equality operator is as a non-member function at namespace scope (and since
compilers at the time didn't support namespaces, therefore at global scope). Defining operator== as a
non-member function means that the two arguments are treated symmetrically, which doesn't happen if one
argument is a this pointer to the object. Such an equality operator might look like this:

template<typename T>

bool operator==(List<T> const & lft, List<T> const & rgt) {

   //...

}

However, since function templates couldn't be overloaded at the time, and since putting the function in its own
namespace wouldn't work on all platforms, this would mean that only one class could have such an equality operator.
Doing the same thing for a second type would cause an ambiguity.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Envelope_Letter


More C++ Idioms/Print Version 12

Solution and Sample Code
The solution works by defining an operator in the class as a friend function:

template<typename T>

class List {

 public:

    friend bool operator==(const List<T> & lft,

                           const List<T> & rgt) {

        // ...

    }

};

Instantiating the template now causes a non-template function to be injected into global scope with the argument
types being concrete, fixed types. This non-template function can be selected through function overload resolution
the same way as any other non-template function.
The implementation can be generalised by providing the friend functions as part of a base class that is inherited from
via the Curiously Recurring Template Pattern:

template<typename T>

class EqualityComparable {

public:

    friend bool operator==(const T & lft, const T & rgt) { return 

lft.equalTo(rgt); }

    friend bool operator!=(const T & lft, const T & rgt) { return 

!lft.equalTo(rgt); }

};

class ValueType :

    private EqualityComparable<ValueType> {

 public:

    bool equalTo(const ValueType & other) const;

};

Related Idioms
• Curiously Recurring Template Pattern

References
• Barton-Nackman trick on Wikipedia [3]

Base-from-Member

Intent
To initialize a base class from a data-member of the derived class.

Motivation
Sometimes it becomes necessary to initialize a base class from a data member of the current/derived class. It sounds
contradictory to the rules of C++ language because base classes are always initialized before any of the data

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern
http://en.wikipedia.org/wiki/Barton-Nackman_trick


More C++ Idioms/Print Version 13

members get a chance to execute their constructors, if any. The idiom boils down to pushing the parameter data
member in a private base class and putting that private base class before the dependent base class in the derivation
order. The language rules dictate that base classes are always initialized in the order of declaration.

Solution and Sample Code
Following code is obtained from Boost[4] library. Following code indicates the requirement.

#include <streambuf>  // for std::streambuf

#include <ostream>    // for std::ostream

class fdoutbuf

    : public std::streambuf

{

public:

    explicit fdoutbuf( int fd );

    //...

};

class fdostream

    : public std::ostream

{

protected:

    fdoutbuf buf;

public:

    explicit fdostream( int fd ) 

        : buf( fd ), std::ostream( &buf ) // This is not allowed. 

                                          // buf can't be initialized 

before std::ostream.

        {}

    //...

};

Here is the solution using base-from-member idiom.

#include <streambuf>  // for std::streambuf

#include <ostream>    // for std::ostream

class fdoutbuf

    : public std::streambuf

{

public:

    explicit fdoutbuf( int fd );

    //...

};

struct fdostream_pbase

{

    fdoutbuf sbuffer;



More C++ Idioms/Print Version 14

    explicit fdostream_pbase( int fd )

        : sbuffer( fd )

        {}

};

class fdostream

    : protected fdostream_pbase

    , public std::ostream

{

    typedef fdostream_pbase  pbase_type;

    typedef std::ostream     base_type;

public:

    explicit fdostream( int fd )

        : pbase_type( fd ), base_type( &sbuffer )

        {}

    //...

};

References
[1] http:/ / www. technologyreview. com/ Infotech/ 17831
[2] http:/ / www. boost. org/ doc/ libs/ 1_47_0/ libs/ utility/ utility. htm#addressof
[3] http:/ / en. wikipedia. org/ wiki/ Barton-Nackman_trick
[4] Boost Utility http:/ / www. boost. org/ libs/ utility/ base_from_member. html

Boost mutant

Intent
Reverse a pair of POD data without physically reorganizing or copying the data items.

Motivation
The need of this idiom is best motivated using the Boost.Bimap (http:/ / www. boost. org/ doc/ libs/ 1_43_0/ libs/
bimap/ doc/ html/ index. html) data structure. Boost.Bimap is a bidirectional maps library for C++. In bimap<X,Y>,
values of types X and Y both can serve as keys. The implementation of such a data structure can be optimized using
the boost mutant idiom.

Solution and Sample Code
Boost mutant idiom makes use of reinterpret_cast and depends heavily on assumption that the memory layouts of
two different structures with identical data members (types and order) are interchangeable. Although the C++
standard does not guarantee this property, virtually all the compilers satisfy it. Moreover, the mutant idiom is
standard if only POD types are used.[1] The following example shows how boost mutant idiom works.
template <class Pair>

struct Reverse

{

    typedef typename Pair::first_type  second_type;

    typedef typename Pair::second_type first_type;

http://www.technologyreview.com/Infotech/17831
http://www.boost.org/doc/libs/1_47_0/libs/utility/utility.htm#addressof
http://en.wikipedia.org/wiki/Barton-Nackman_trick
http://www.boost.org/libs/utility/base_from_member.html
http://www.boost.org/doc/libs/1_43_0/libs/bimap/doc/html/index.html
http://www.boost.org/doc/libs/1_43_0/libs/bimap/doc/html/index.html


More C++ Idioms/Print Version 15

    second_type second;

    first_type first;

};

template <class Pair>

Reverse<Pair> & mutate(Pair & p)

{

  return reinterpret_cast<Reverse<Pair> &>(p);

}

int main(void)

{

  std::pair<double, int> p(1.34, 5);

  std::cout << "p.first = " << p.first << ", p.second = "  << p.second << std::endl;

  std::cout << "mutate(p).first = " << mutate(p).first << ", mutate(p).second = "  << mutate(p).second << std::endl;

}

Given a std::pair<X,Y> object of POD data members only, the layout of the
Reverse<std::pair<X,Y>> is identical to that of pair's on most compilers. The Reverse template reverses
the names of the data members without physically reversing the data. A helper mutate function is used to easily
construct a Reverse<Pair> reference, which can be considered as a view over the original pair object. The
output of the above program confirms that the reverse view can be obtained without reorganizing data:
p.first = 1.34, p.second = 5
mutate(p).first = 5, mutate(p).second = 1.34

Known Uses
• Boost.Bimap (http:/ / www. boost. org/ doc/ libs/ 1_43_0/ libs/ bimap/ doc/ html/ index. html)

References
• Boost.Bimap (http:/ / www. boost. org/ doc/ libs/ 1_43_0/ libs/ bimap/ doc/ html/ index. html) library, Matias

Capeletto

Calling Virtuals During Initialization

Intent
Simulate calling of virtual functions during object initialization.

Also Known As
Dynamic Binding During Initialization idiom

http://www.boost.org/doc/libs/1_43_0/libs/bimap/doc/html/index.html
http://www.boost.org/doc/libs/1_43_0/libs/bimap/doc/html/index.html


More C++ Idioms/Print Version 16

Motivation
Sometimes it is desirable to invoke virtual functions of derived classes while a derived object is being initialized.
Language rules explicitly prohibit this from happening because calling member functions of derived object before
derived part of the object is initialized is dangerous. It is not a problem if the virtual function does not access data
members of the object being constructed. But there is no general way of ensuring it.

 class Base {

 public:

   Base();

   ...

   virtual void foo(int n) const; // often pure virtual

   virtual double bar() const;    // often pure virtual

 };

 

 Base::Base()

 {

   ... foo(42) ... bar() ...

   // these will not use dynamic binding

   // goal: simulate dynamic binding in those calls

 }

 

 class Derived : public Base {

 public:

   ...

   virtual void foo(int n) const;

   virtual double bar() const;

 };

Solution and Sample Code
There are multiple ways of achieving the desired effect. Each has its own pros and cons. In general the approaches
can be divided into two categories. One using two phase initialization and other one using only single phase
initialization.
Two phase initialization technique separates object construction from initializing its state. Such a separation may not
be always possible. Initialization of object's state is clubbed together in a separate function, which could be a
member function or a free standing function.

class Base {

 public:

   void init();  // may or may not be virtual

   ...

   virtual void foo(int n) const; // often pure virtual

   virtual double bar() const;    // often pure virtual

 };

 

 void Base::init()

 {

   ... foo(42) ... bar() ...

   // most of this is copied from the original Base::Base()



More C++ Idioms/Print Version 17

 }

 

 class Derived : public Base {

 public:

   Derived (const char *);

   virtual void foo(int n) const;

   virtual double bar() const;

 };

• using non-member function

template <class Derived, class Parameter>

std::auto_ptr <Base> factory (Parameter p)

{

  std::auto_ptr <Base> ptr (new Derived (p));

  ptr->init (); 

  return ptr;

}

A non-template version of this approach can be found here. The factory function can be moved inside base class but
it has to be static.

class Base {

  public:

    template <class D, class Parameter>

    static std::auto_ptr <Base> Create (Parameter p)

    {

       std::auto_ptr <Base> ptr (new D (p));       

       ptr->init (); 

       return ptr;

    }

};

int main ()

{

  std::auto_ptr <Base> b = Base::Create <Derived> ("para");

}

Constructors of class Derived should be made private to prevent users from accidentally using them. Interfaces
should be easy to use correctly and hard to use incorrectly - remember? The factory function should then be friend of
the derived class. In case of member create function, Base class can be friend of Derived.
• Without using two phase initialization
Achieving desired effect using a helper hierarchy is described here but an extra class hierarchy has to be maintained,
which is undesirable. Passing pointers to static member functions is C'ish. Curiously Recurring Template Pattern
idiom can be useful in this situation.

class Base {

};

template <class D>

class InitTimeCaller : public Base {

  protected:



More C++ Idioms/Print Version 18

    InitTimeCaller () {

       D::foo ();

       D::bar ();

    }

};

class Derived : public InitTimeCaller <Derived> 

{

  public:

    Derived () : InitTimeCaller <Derived> () {

            cout << "Derived::Derived()\n";

      }

    static void foo () {

            cout << "Derived::foo()\n";

      }

    static void bar () {

            cout << "Derived::bar()\n";

      }

};

Using Base-from-member idiom more complex variations of this idiom can be created.

References
http:/ / www. parashift. com/ c+ + -faq-lite/ strange-inheritance. html#faq-23. 6

Capability Query

Intent
To check at runtime whether an object supports an interface

Motivation
Separating interface from implementation is a good object oriented software design practice. In C++, the Interface
Class idiom is used to separate interface from implementation and invoke the public methods of any abstraction
using runtime polymorphism. Extending the example in the interface class idiom, a concrete class may implement
multiple interfaces as shown below.

class Shape { // An interface class

   public:

    virtual ~Shape();

    virtual void draw() const = 0;

    //...

};

class Rollable { // One more interface class

  public:

    virtual ~Rollable();

    virtual void roll() = 0;

};

class Circle : public Shape, public Rollable { // circles roll - 

http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.6
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Interface_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Interface_Class


More C++ Idioms/Print Version 19

concrete class

    //...

    void draw() const;

    void roll();

    //...

};

class Square : public Shape { // squares don't roll - concrete class

    //...

    void draw() const;

    //...

};

Now if we are given a container of pointers to abstract Rollable class, we can simply invoke the roll function on
every pointer, as described in the interface class idiom.

std::vector<Rollable *> rollables;

//  Fill up rollables vector somehow.

for (vector<Rollable *>::iterator iter (rollables.begin());

     iter != rollables.end();

     ++iter)

{

  iter->roll();

}

Sometimes it is not possible to know in advance whether or not an object implements a particular interface. Such a
situation commonly arises if an object inherits from multiple interface classes. To discover the presence or absence
of the interface at runtime, capability query is used.

Solution and Sample Code
In C++, a capability query is typically expressed as a dynamic_cast between unrelated types .

Shape *s = getSomeShape();

if (Rollable *roller = dynamic_cast<Rollable *>(s))

  roller->roll();

This use of dynamic_cast is often called a cross-cast, because it attempts a conversion across a hierarchy, rather
than up or down a hierarchy. In our example hierarchy of shapes and rollables, dynamic_cast to Rollable
will succeed only for Circle and not for Square as the later one does not inherit from Rollable interface
class.
Excessive use of capability queries is often an indication of bad object-oriented design.



More C++ Idioms/Print Version 20

Known Uses
Acyclic Visitor Pattern (http:/ / www. objectmentor. com/ resources/ articles/ acv. pdf) - Robert C. Martin.

Related Idioms
• Interface Class
• Inner Class

References
Capability Queries - C++ Common Knowledge by Stephen C. Dewhurst

Checked delete

Intent
Increase safety of delete expression.

Motivation and Sample Code
The C++ Standard allows, in 5.3.5/5, pointers to incomplete class types to be deleted with a delete-expression. When
the class has a non-trivial destructor, or a class-specific operator delete, the behavior is undefined. Some compilers
issue a warning when an incomplete type is deleted, but unfortunately, not all do, and programmers sometimes
ignore or disable warnings.
In the following example, main.cpp can see the definition of Object. However, main() calls delete_object() -- defined
in deleter.cpp -- which does not see the definition of Object, but only forward declares it. Calling delete on a
partially defined type like this is undefined behavior which some compilers do not flag.

////////////////////

// File: deleter.hpp

////////////////////

// declares but does not define Object

class Object;

void delete_object(Object* p);

////////////////////

// File: deleter.cpp

////////////////////

#include "deleter.hpp"

// Deletes an Object without knowing its definition

void delete_object(Object* p) { delete p; }

////////////////////

// File: object.hpp

////////////////////

struct Object

{

  // this user-defined destructor won't be called when delete

  // is called on a partially-defined (i.e., predeclared) Object

http://www.objectmentor.com/resources/articles/acv.pdf
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Interface_Class
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Inner_Class


More C++ Idioms/Print Version 21

  ~Object() {

     // ...

  }

};

////////////////////

// File: main.cpp

////////////////////

#include "deleter.hpp"

#include "object.hpp"

int main() {

  Object* p = new Object;

  delete_object(p);

}

Solution and Sample Code
The checked delete idiom relies on calls to a function template to delete memory, rather than calls to delete,
which fails for declared but undefined types.
The following is the implementation of boost::checked_delete, a function template in the Boost Utility library. It
forces a compilation error by invoking the sizeof operator on the parameterizing type, T. If T is declared but not
defined, sizeof(T) will generate a compilation error or return zero, depending upon the compiler. If
sizeof(T) returns zero, checked_delete triggers a compilation error by declaring an array with -1 elements. The
array name is type_must_be_complete, which should appear in the error message in that case, helping to explain the
mistake.

template<class T> 

inline void checked_delete(T * x)

{

    typedef char type_must_be_complete[ sizeof(T)? 1: -1 ];

    (void) sizeof(type_must_be_complete);

    delete x;

}

template<class T> 

struct checked_deleter : std::unary_function <T *, void>

{

    void operator()(T * x) const

    {

        boost::checked_delete(x);

    }

};

NOTE: This same technique can be applied to the array delete operator as well.
WARNING: std::auto_ptr does not use anything equivalent to checked delete. Therefore, instantiating std::auto_ptr
using an incomplete type may cause undefined behavior in its destructor if, at the point of declaration of the
std::auto_ptr, the template parameter type is not fully defined.



More C++ Idioms/Print Version 22

References
http:/ / www. boost. org/ libs/ utility/ checked_delete. html

Clear-and-minimize

Intent
Clear a container and minimize the capacity of the container.

Also Known As
This is sometimes called the the swap with temporary idiom.

Motivation
Standard library containers often allocate more memory than the actual number of elements in them. Such a policy
results in an optimization of saving some allocations when a container grows in size. On the other hand, when size of
the container reduces, there is often leftover capacity in the container. The leftover capacity of the container can be
unnecessary wastage of memory resources. clear-and-minimize idiom has been developed to clear a container and
reduce the extra capacity to a minimum of zero and thereby saving memory resources.

Solution and Sample Code
Clear-and-minimize idiom is as simple as the one given below.

std::vector <int> v;

//... Lots of push_backs and then lots of remove on v.

std::vector<int>().swap (v);

The first half of the statement, std::vector<int>() creates a temporary vector of integers and it is guaranteed to
allocate zero raw memory or an implementation minimum. The second half of the statement swaps the temporary
vector with v using non-throwing swap idiom, which is efficient. After swapping, the temporary created by the
compiler goes out of scope and the chunk of memory originally held by v.

Solution in C++0x
In C++0x, some containers declare the function shrink_to_fit(), e.g. vector, deque, basic_string.
shrink_to_fit() which is a non-binding request to reduce capacity() to size(). Thus, using clear()
and shrink_to_fit() is a non-binding request to clear-and-minimize.

Related Idioms
• Shrink-to-fit
• Non-throwing swap

http://www.boost.org/libs/utility/checked_delete.html
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Shrink-to-fit
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-throwing_swap


More C++ Idioms/Print Version 23

References
• Programming Languages — C++ (http:/ / open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2008/ n2800. pdf) draft

standard.

Coercion by Member Template

Intent
To increase the flexibility of a class template's interface by allowing the class template to participate in the same
implicit type conversions (coercion) as its parameterizing types enjoy.

Motivation
It is often useful to extend a relationship between two types to class templates specialized with those types. For
example, suppose that class D derives from class B. A pointer to an object of type D can be assigned to a pointer to
B; C++ supports that implicitly. However, types composed of these types do not share the relationship of the
composed types. That applies to class templates as well, so a Helper<D> object normally cannot be assigned to a
Helper<B> object.

class B {};

class D : public B {};

template <class T>

class Helper {};

B *bptr;

D *dptr;

bptr = dptr; // OK; permitted by C++

Helper<B> hb;

Helper<D> hd; 

hb = hd; // Not allowed but could be very useful

There are cases where such conversions are useful, such as allowing conversion from std::auto_ptr<D> to
std::auto_ptr<B>. That is quite intuitive, but isn't supported without using the Coercion by Member Template
Idiom.

Solution and Sample Code
Define member template functions, in a class template, which rely on the implicit type conversions supported by the
parameter types. In the following example, the templated constructor and assignment operator work for any type U,
for which initialization or assignment of a T * from a U * is allowed.

template <class T>

class Ptr

{

  public:

    Ptr () {}

    Ptr (Ptr const & p)

      : ptr (p.ptr)

http://open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2800.pdf


More C++ Idioms/Print Version 24

    {

      std::cout << "Copy constructor\n";

    }

    // Supporting coercion using member template constructor.

    // This is not a copy constructor, but behaves similarly.

    template <class U>

    Ptr (Ptr <U> const & p)

      : ptr (p.ptr) // Implicit conversion from U to T required

    {

      std::cout << "Coercing member template constructor\n";

    }

    // Copy assignment operator.

    Ptr & operator = (Ptr const & p)

    {

      ptr = p.ptr;

      std::cout << "Copy assignment operator\n";

      return *this;

    }

    // Supporting coercion using member template assignment operator.

    // This is not the copy assignment operator, but works similarly.

    template <class U>

    Ptr & operator = (Ptr <U> const & p)

    {

      ptr = p.ptr; // Implicit conversion from U to T required

      std::cout << "Coercing member template assignment operator\n";

      return *this;

    } 

    T *ptr;

};

int main (void)

{

   Ptr <D> d_ptr;

   Ptr <B> b_ptr (d_ptr); // Now supported

   b_ptr = d_ptr;         // Now supported

}

Another use for this idiom is to permit assigning an array of pointers to a class to an array of pointers to that class'
base. Given that D derives from B, a D object is-a B object. However, an array of D objects is-not-an array of B
objects. This is prohibited in C++ because of slicing. Relaxing this rule for an array of pointers can be helpful. For
example, an array of pointers to D should be assignable to an array of pointers to B (assuming B's destructor is
virtual). Applying this idiom can achieve that, but extra care is needed to prevent copying arrays of pointers to one
type to arrays of pointers to a derived type. Specializations of the member function templates or SFINAE can be
used to achieve that.



More C++ Idioms/Print Version 25

The following example uses a templated constructor and assignment operator expecting Array<U *> to only
allow copying Arrays of pointers when the element types differ.

template <class T>

class Array

{

  public:

    Array () {}

    Array (Array const & a)

    {

      std::copy (a.array_, a.array_ + SIZE, array_);

    }

    template <class U>

    Array (Array <U *> const & a)

    {

      std::copy (a.array_, a.array_ + SIZE, array_);

    }

    template <class U>

    Array & operator = (Array <U *> const & a)

    {

      std::copy (a.array_, a.array_ + SIZE, array_);

    }

    enum { SIZE = 10 };

    T array_[SIZE];

};

Many smart pointers such as std::auto_ptr, boost::shared_ptr employ this idiom.

Caveats
A typical mistake in implementing the Coercion by Member Template Idiom is failing to provide the non-template
copy constructor or copy assignment operator when introducing the templated copy constructor and assignment
operator. A compiler will automatically declare a copy constructor and a copy assignment operator if a class does not
declare them, which can cause hidden and non-obvious faults when using this idiom.

Known Uses
• std::auto_ptr
• boost::shared_ptr



More C++ Idioms/Print Version 26

Related Idioms
• Generic Container Idioms

References
• std::auto_ptr Implementation (http:/ / www. josuttis. com/ libbook/ util/ autoptr. hpp. html)

Solution and Sample Code

Computational Constructor

Intent
• Optimize return-by-value
• Allow Return Value Optimization (RVO) on compilers that cannot handle Named Return Value Optimization

(NRVO)

Motivation
Returning large C++ objects by value is expensive in C++. When a locally created object is returned by-value from a
function, a temporary object is created on the stack. The temporaries are often very short-lived because they are
either assigned to other objects or passed to other functions. Temporary objects generally go out-of-scope and hence
destroyed after the statement that created them is executed completely.
Over the years compilers have evolved to apply several optimizations to avoid creation of temporaries because it is
often wasteful and hampers performance. Return Value Optimization (RVO) and Named Return Value Optimization
(NRVO) are two popular compiler techniques that try to optimize away the temporaries (a.k.a. copy elision). A brief
explanation of RVO is in order.
Return Value Optimization

The following example demonstrates a scenario where the implementation may eliminate one or both of the copies
being made, even if the copy constructor has a visible side effect (printing text). The first copy that may be
eliminated is the one where Data(c) is copied into the function func's return value. The second copy that may be
eliminated is the copy of the temporary object returned by func to d1. More on RVO is available on Wikipedia
(http:/ / en. wikipedia. org/ wiki/ Return_value_optimization)

struct Data {

  Data(char c = 0) 

  { 

    std::fill(bytes, bytes + 16, c); 

  }

  Data(const Data & d) 

  { 

    std::copy(d.bytes, d.bytes+16, this->bytes);

    std::cout << "A copy was made.\n"; 

  }

private:

  char bytes[16];

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Generic_Container_Idioms
http://www.josuttis.com/libbook/util/autoptr.hpp.html
http://en.wikipedia.org/wiki/Return_value_optimization


More C++ Idioms/Print Version 27

};

Data func(char c) {

  return Data(c);

}

int main(void) {

   Data d1 = func(‘A’);
}

Following pseudo-code shows how both the copies of Data can be eliminated.

void func(Data * target, char c) 

{  

  new (target) Data (c);  // placement-new syntax (no dynamic 

allocation here)

  return;                 // Note void return type.

}

int main (void)

{

   char bytes[sizeof(Data)];                   // uninitialized 

stack-space to hold a Data object

   func(reinterpret_cast<Data *>(bytes), 'A'); // Both the copies of Data 

elided

   reinterpret_cast<Data *>(bytes)->~Data();   // destructor

}

Named Return Value Optimization (NRVO) is a more advanced cousin of RVO and not all compilers support it.
Note that function func above did not name the local object it created. Often functions are more complicated than
that. They create local objects, manipulate its state, and return the updated object. Eliminating the local object in
such cases requires NRVO. Consider the following somewhat contrived example to emphasize the computational
part of this idiom.

class File {

private: 

  std::string str_;

public:

  File() {}

  void path(const std::string & path) { 

    str_ = path;  

  }

  void name(const std::string & name)  {

    str_ += "/";

    str_ += name;

  }

  void ext(const std::string & ext) {

    str_ += ".";

    str_ += ext;

  }



More C++ Idioms/Print Version 28

};

File getfile(void) {

  File f;

  f.path("/lib");

  f.name("libc");

  f.ext("so");

  f.ext("6");

  // RVO is not applicable here because object has a name = f

  // NRVO is possible but its support is not universal.

  return f; 

}

int main (void) {

  File  f = getfile(); 

}

In the above example, function getfile does a lot of computation on object f before returning it. The
implementation cannot use RVO because the object has a name ("f"). NRVO is possible but its support is not
universal. Computational constructor idiom is a way to achieve return value optimization even in such cases.

Solution and Sample Code
To exploit RVO, the idea behind computational constructor idiom is to put the computation in a constructor so that
the compiler is more likely to perform the optimization. A new four parameter constructor has been added just to
enable RVO, which is a computational constructor for class File. The getfile function is now much more
simple than before and the compiler will likely apply RVO here.

class File 

{

private: 

  std::string str_;

public:

  File() {}

  

  // The following constructor is a computational constructor

  File(const std::string & path, 

       const std::string & name,

       const std::string & ext1,

       const std::string & ext2) 

    : str_(path + "/" + name + "." + ext1 + "." + ext2) { }

  void path(const std::string & path);

  void name(const std::string & name);

  void ext(const std::string & ext);

};

File getfile(void) {



More C++ Idioms/Print Version 29

  return File("/lib", "libc", "so", "6"); // RVO is now applicable 

}

int main (void) {

  File  f = getfile(); 

}

Consequences
A common criticism against the computational constructor idiom is that it leads to unnatural constructors, which is
party true for the class File shown above. If they idiom is applied judiciously, it can limit the proliferation of
computational constructors in a class and yet provide better run-time performance.

References
• Dov Bulka, David Mayhew, “Efficient C++; Performance Programming Techniques”, Addison Wesley

Concrete Data Type

Intent
To control object's scope and lifetime by allowing or disallowing dynamic allocation using the free store (heap)

Motivation
C++ provides two ways of controlling lifetime of an object and binding it with a program level identifier (variable).
First is a scoped variable and an object, which are destroyed immediately after the scope ends (e.g., function scope
integers). Second is a scoped variable (often a pointer) and a dynamically allocated object in the free store. In this
case, at the end of the scope of the variable, the variable ceases to exist but the object's lifetime continues (e.g.,
singletons, a window object). It is possible to force the choice of the lifetime of an object either first way or the
second using the Concrete Data Type idiom.

Solution and Sample Code
This idiom simply uses class level access modifiers (private, protected) to achieve the goal. The following code
shows how a MouseEventHandler class forces dynamic allocation.

class EventHandler 

{

  public:

    virtual ~EventHandler () {}

};

class MouseEventHandler : public EventHandler // Note inheritance

{

  protected:

    ~MouseEventHandler () {} // A protected virtual destructor.

  public:

    MouseEventHandler () {} // Public Constructor.

};

int main (void)

{



More C++ Idioms/Print Version 30

  MouseEventHandler m; // A scoped variable is not allowed as 

destructor is protected.

  EventHandler *e = new MouseEventHandler (); // Dynamic allocation is 

allowed

  delete e;  // Polymorphic delete. Does not leak memory.

}

Another way to force dynamic allocation is to prevent direct access to the constructor and instead provide a static
function instance() to return a dynamically allocated object. It is in many ways similar to the Singleton design
pattern. Moreover, it is not strictly necessary to use polymorphic delete to reclaim memory. A member function
destroy() can serve the purpose saving the space required for a v-table pointer.

class MouseEventHandler // Note no inheritance

{

  protected:

    MouseEventHandler () {} // Protected Constructor.

    ~MouseEventHandler () {} // A protected, non-virtual destructor.

  public:

    static MouseEventHandler * instance () { return new 

MouseEventHandler(); }

    void destroy () { delete this; }  // Reclaim memory.

};

An opposite extreme of this idiom is to force scoped variable (a.k.a. automatic variable) only. It can be achieved
using a private new operator.

class ScopedLock

{

  private:

    static void * operator new (unsigned int size); // Disallow dynamic

 allocation

    static void * operator new (unsigned int size, void * mem);  // 

Disallow placement new as well.

};

int main (void)

{

   ScopedLock s; // Allowed

   ScopedLock * sl = new ScopedLock (); // Standard new and nothrow new

 are not allowed.

   void * buf = ::operator new (sizeof (ScopedLock));

   ScopedLock * s2 = new(buf) ScopedLock;  // Placement new is also not

 allowed

}

ScopedLock object can't be allocated dynamically with standard uses of new operator, nothrow new, and the
placement new.



More C++ Idioms/Print Version 31

References
• Concrete Data Type (http:/ / users. rcn. com/ jcoplien/ Patterns/ C+ + Idioms/ EuroPLoP98.

html#ConcreteDataType) - J. Coplien.

Const auto_ptr

Intent
To prevent transfer of ownership of a held resource.

Motivation
Often it is desirable to enforce a design decision of non-transferable ownership in code and enforce it with the help
of compiler. Ownership in consideration here is of any resource such as memory, database connections and so on.
const auto_ptr idiom can be used if we don't want ownership of the acquired resource to be transfered outside the
scope or from one object to the another.
auto_ptr without any cv-qualifier (fancy name for const and volatile) has move semantics as described in the Move
Constructor idiom. It basically means that ownership of memory is unconditionally transferred from right hand side
object to the left hand side object of an assignment, but it ensures that there is always a single owner of the resource.
const auto_ptr can prevent the transfer.

Solution and Sample Code
Declare the auto_ptr holding memory resource as const.

const auto_ptr <X> xptr (new X());

auto_ptr <X> yptr (xptr); // Not allowed, compilation error.

xptr.release();           // Not allowed, compilation error.

xptr.reset( new X() );      // Not allowed, compilation error.

Compiler issues a warning here because the copy-constructor of yptr is not really a copy-constructor but in fact it is a
move constructor, which takes a non-const reference to an auto_ptr, as given in Move Constructor idiom. A
non-const reference can't bind with a const variable and therefore, compiler flags an error.

Consequences
• An undesirable consequence of const auto_ptr idiom is that compiler can't provide a default copy-constructor to a

class that has a const auto_ptr member in it. This is because the compiler generated copy-constructor always takes
a const RHS as a parameter, which can't bind with a non-const move constructor of auto_ptr. The solution is to
use Virtual Constructor idiom or use boost::scoped_ptr, which explicitly prohibits copying by denying access to
assignment and copy-constructor.

http://users.rcn.com/jcoplien/Patterns/C++Idioms/EuroPLoP98.html#ConcreteDataType
http://users.rcn.com/jcoplien/Patterns/C++Idioms/EuroPLoP98.html#ConcreteDataType
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Move_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Move_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Move_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Virtual_Constructor


More C++ Idioms/Print Version 32

Related Idioms
• Move Constructor

References
• http:/ / www. gotw. ca/ publications/ using_auto_ptr_effectively. htm
• http:/ / www. boost. org/ libs/ smart_ptr/ scoped_ptr. htm

Construct On First Use

Intent
Ensure that an object is initialized before its first use. Specifically, ensure that non-local static object is initialized
before its first use.

Also Known As
Lazy construction/evaluation

Motivation
Static objects that have non-trivial constructors must be initialized before they are used. It is possible to access an
uninitialized non-local static object before its initialization if proper care is not exercised.

struct Bar {

  Bar () {

    cout << "Bar::Bar()\n";

  }

  void f () {

    cout << "Bar::f()\n";

  }

};

struct Foo {

  Foo () {

    bar_.f ();

  }

  static Bar bar_;

};

Foo f;

Bar Foo::bar_;

int main () {}

In the above code, Bar::f() gets called before its constructor. It should be avoided.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Move_Constructor
http://www.gotw.ca/publications/using_auto_ptr_effectively.htm
http://www.boost.org/libs/smart_ptr/scoped_ptr.htm


More C++ Idioms/Print Version 33

Solution and Sample Code
There are 2 possible solutions, which depends upon whether the destructor of the object in consideration has
non-trivial destruction semantics. Wrap the otherwise static object in a function so that function initializes it before it
is used.
• Construct on first use using dynamic allocation

struct Foo {

  Foo () {

    bar().f ();

  }

 Bar & bar () {

    static Bar *b = new Bar ();

    return *b;

 }

};

If the object has a destructor with non-trivial semantics, local static object is used instead of dynamic allocation as
given below.
• Construct on first use using local static

struct Foo {

  Foo () {

    bar().f ();

  }

 Bar & bar () {

    static Bar b;

    return b;

 }

};

Known Uses
• Singleton pattern implementations often use this idiom.
• ACE_TSS<T> class template in Adaptive Communication Environment (ACE) for creating and accessing objects

in thread specific storage (TSS) uses this idiom.

Related Idioms
• Schwarz Counter
• Nifty Counter

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Nifty_Counter
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Nifty_Counter


More C++ Idioms/Print Version 34

Construction Tracker

Intent
To identify the data member that throws an exception when initialization of two or more objects in the constructor's
initialization list can throw the same exception type

Motivation
When two or more objects are initialized in a constructor's initialization list and all of them can throw the same
exception (std::exception), tracking which one of them failed become a tricky issue as there can be only one try
block surrounding the initialization list. Such a try block has a special name called 'constructor try block', which is
nothing but a 'function-try block'.

Solution and Sample Code
Construction Tracker idiom uses a simple technique to track successful construction on objects in the initialization
list. A counter is simply incremented as constructors of objects finish successfully one-by-one. It cleverly uses
bracket operator to inject the counter increments in between calls to the constructors all being invisible to the user of
the class.

#include <iostream>

#include <stdexcept>

#include <cassert>

struct B {

    B (char const *) { throw std::runtime_error("B Error"); }

};

struct C {

    C (char const *) { throw std::runtime_error("C Error"); }

};

class A {

   B b_;

   C c_;

   enum TrackerType { NONE, ONE, TWO };

public:

   A( TrackerType tracker = NONE)

   try    // A constructor try block.

     : b_((tracker = ONE, "hello")) // Can throw std::exception

     , c_((tracker = TWO, "world")) // Can throw std::exception

     {

        assert(tracker == TWO);

        // ... constructor body ...

     }

   catch (std::exception const & e)

     {

        if (tracker == ONE) {

           std::cout << "B threw: " << e.what() << std::endl;

        }

        else if (tracker == TWO) {



More C++ Idioms/Print Version 35

           std::cout << "C threw: " << e.what() << std::endl;

        }

        throw;

     }

};

int main (void) 

{

    try {

        A a;

    }

    catch (std::exception const & e) {

          std::cout << "Caught: " << e.what() << std::endl;

    }

    return 0;       

}

The double parentheses is how the bracket operator is used to place in the assignment to the tracker. This idiom
critically depends upon the constructor of B and C taking at least one parameter. If class B and C does not take
parameters, then an adapter class needs to be written such that it the adapter class will accept a dummy parameter
and calling the default parameters of B and C. Such an adapter can be written using More C++ Idioms/Parameterized
Base Class idiom using mixin-from-below technique. The adapter class can also be completely encapsulated inside
class A. In the consturctor of class A, the tracker parameter has a default value and therefore it does no bother the
user.

References
• Smart Pointers Reloaded (III): Constructor Tracking (http:/ / erdani. org/ publications/ cuj-2004-02. pdf)

Copy-and-swap

Intent
To create an exception safe implementation of overloaded assignment operator.

Also Known As
Create-Temporary-and-Swap

Motivation
Exception safety is a very important corner stone of highly reliable C++ software that uses exceptions to indicate
"exceptional" conditions. There are at least 3 types of exception safety levels: basic, strong, and no-throw. Basic
exception safety should be offered always as it is usually cheap to implement. Guaranteeing strong exception safety
may not be possible in all the cases. Create a temporary and swap idiom elegantly implements a strongly exception
safe assignment operator.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Parameterized_Base_Class
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Parameterized_Base_Class
http://erdani.org/publications/cuj-2004-02.pdf


More C++ Idioms/Print Version 36

Solution and Sample Code
Create a temporary and swap idiom acquires new resource before it forfeits its current resource. To acquire the new
resource, it uses RAII idiom. If the acquisition of the new resource is successful, it exchanges the resources using the
non-throwing swap idiom. Finally, the old resource is released as a side effect of using RAII in the first step.

class String

{

    char * str; 

  public:

    String & operator = (String const &s)

    {

      String temp (s); // Copy-constructor -- RAII

      temp.swap (*this); // Non-throwing swap

      return *this;

    }// Old resources released when destructor of temp is called.

    void swap (String &s) throw () // Also see the non-throwing swap 

idiom

    {

       std::swap(this->str, s.str);

    }

};

Some variations of the above implementation are also possible. A check for self assignment is not strictly necessary
but can give some performance improvements in (rarely occurring) self-assignment cases.

class String

{

    char * str;

  public:

    String & operator = (String const &s)

    {

      if (this != &s)

        String(s).swap (*this); // Copy-constructor and non-throwing 

swap

      // Old resources are released with the destruction of the 

temporary above

      return *this;

    }

    void swap (String &s) throw () // Also see non-throwing swap idiom

    {

       std::swap(this->str, s.str);

    }

};

copy elision and copy-and-swap idiom

Strictly speaking, explicit creation of a temporary inside the assignment operator is not necessary. The parameter
(right hand side) of the assignment operator can be passed-by-value to the function. The parameter itself serves as a

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-throwing_swap


More C++ Idioms/Print Version 37

temporary.

String & operator = (String s) // the pass-by-value parameter serves as

 a temporary

{

   s.swap (*this); // Non-throwing swap

   return *this;

}// Old resources released when destructor of s is called.

This is not just a matter of convenience but in fact an optimization. If the parameter (s) binds to an lvalue (another
non-const object), a copy of the object is made automatically while creating the parameter (s). However, when s
binds to an rvalue (temporary object, literal), the copy is typically elided, which saves a call to a copy constructor
and a destructor. In the earlier version of the assignment operator where the parameter is accepted as const reference,
copy elision does not happen when the reference binds to an rvalue. This results in an additional object being created
and destroyed.
In C++0x, such an assignment operator is known as a unifying assignment operator because it eliminates the need to
write two different assignment operators: copy-assignment and move-assignment. As long as a class has a
move-constructor, a C++0x compiler will always use it to optimize creation of a copy from another temporary
(rvalue). Copy-elision is a comparable optimization in non-C++0x compilers to achieve the same effect.

String createString(); // a function that returns a String object.

String s;

s = createString(); 

// right hand side is a rvalue. Pass-by-value style assignment operator

 

// could be more efficient than pass-by-const-reference style 

assignment 

// operator.

Not every class benefits from this style of assignment operator. Consider a String assignment operator, which
releases old memory and allocates new memory only if the existing memory is insufficient to hold a copy of the right
hand side String object. To implement this optimization, one would have to write a custom assignment operator.
Since a new String copy would nullify the memory allocation optimization, this custom assignment operator would
have to avoid copying its argument to any temporary Strings, and in particular would need to accept its parameter by
const reference.



More C++ Idioms/Print Version 38

Related Idioms
• Resource Acquisition Is Initialization
• Non-throwing swap

Copy-on-write

Intent
Achieve lazy copy optimization. Like lazy initialization, do the work just when you need because of efficiency.

Also Known As
• COW (copy-on-write)
• Lazy copy

Motivation
Copying an object can sometimes cause a performance penalty. If objects are frequently copied but infrequently
modified later, copy-on-write can provide significant optimization. To implement copy-on-write, a smart pointer to
the real content is used to encapsulate the object's value, and on each modification an object reference count is
checked; if the object is referenced more than once, a copy of the content is created before modification.

Solution and Sample Code
#ifndef COWPTR_HPP

#define COWPTR_HPP

#include <boost/shared_ptr.hpp>

template <class T>

class CowPtr

{

    public:

        typedef boost::shared_ptr<T> RefPtr;

    private:

        RefPtr m_sp;

        void detach()

        {

            T* tmp = m_sp.get();

            if( !( tmp == 0 || m_sp.unique() ) ) {

                m_sp = RefPtr( new T( *tmp ) );

            }

        }

    public:

        CowPtr(T* t)

            :   m_sp(t)

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Resource_Acquisition_Is_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Non-throwing_swap


More C++ Idioms/Print Version 39

        {}

        CowPtr(const RefPtr& refptr)

            :   m_sp(refptr)

        {}

        CowPtr(const CowPtr& cowptr)

            :   m_sp(cowptr.m_sp)

        {}

        CowPtr& operator=(const CowPtr& rhs)

        {

            m_sp = rhs.m_sp; // no need to check for self-assignment 

with boost::shared_ptr

            return *this;

        }

        const T& operator*() const

        {

            return *m_sp;

        }

        T& operator*()

        {

            detach();

            return *m_sp;

        }

        const T* operator->() const

        {

            return m_sp.operator->();

        }

        T* operator->()

        {

            detach();

            return m_sp.operator->();

        }

};

#endif //COWPTR_HPP

This implementation of copy-on-write is generic, but apart from the inconvenience of having to refer to the inner
object through smart pointer dereferencing, it suffers from at least one drawback: classes that return references to
their internal state, like

char & String::operator[](int)

can lead to unexpected behaviour.[2]

Consider the following code snippet

CowPtr<String> s1 = "Hello";

char &c = s1->operator[](4); // Non-const detachment does nothing here

CowPtr<String> s2(s1); // Lazy-copy, shared state

c = '!'; // Uh-oh



More C++ Idioms/Print Version 40

The intention of the last line is to modify the original string s1, not the copy, but as a side effect s2 is also
accidentally modified.
A better approach is to write a custom copy-on-write implementation which is encapsulated in the class we want to
lazy-copy, transparently to the user. In order to fix the problem above, one can flag objects that have given away
references to inner state as "unshareable"—in other words, force copy operations to deep-copy the object. As an
optimisation, one can revert the object to "shareable" after any non-const operations that do not give away references
to inner state (for example, void String::Clear()), because client code expects such references to be
invalidated anyway.[2]

Known Uses
• Active Template Library
• Many Qt classes

References
[1] http:/ / beta. boost. org/ doc/ libs/ 1_43_0/ libs/ bimap/ test/ test_mutant. cpp
[2] Herb Sutter, More Exceptional C++, Addison-Wesley 2002 - Items 13–16

• wikipedia:Copy-on-write

Counted Body/Reference Counting (intrusive)

Intent
Manage logical sharing of a resource/object, prevent expensive copying, and allow proper resource deallocation of
objects that use dynamically allocated resources.

Also Known As
• Reference Counting (intrusive)
• Counted Body

Motivation
When Handle/Body idiom is used, quite often it is noticed that copying of bodies is expensive. This is because
copying of bodies involves allocation of memory and copy construction. Copying can be avoided by using pointers
and references, but these leave the problem of who is responsible for cleaning up the object. Some handle must be
responsible for releasing memory resources allocated for the body. Usually it is the last one. Without automatic
reclamation of memory resources of memory, it leaves a user-visible distinction between built-in types and
user-defined types.

Solution and Sample Code
The solution is to add a reference count to the body class to facilitate memory management; hence the name
"Counted Body." Memory management is added to the handle class, particularly to its implementation of
initialization, assignment, copying, and destruction.

namespace { // anonymous namespace

class StringRep {

friend class String;

public:

      StringRep(const char *s): count(1) {

http://beta.boost.org/doc/libs/1_43_0/libs/bimap/test/test_mutant.cpp
http://en.wikipedia.org/wiki/Copy-on-write
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Counted_Body


More C++ Idioms/Print Version 41

            strcpy(rep=new char[strlen(s)+1], s);

      }

      ~StringRep() { delete [] rep; }

      int count; char *rep;

};

} // anonymous namespace

class String {

public:

      String():rep(new StringRep("")) { }

      String(const String &s): rep(s.rep) { rep->count++; }

      String &operator=(const String &s){

            String(s).swap(*this); // copy-and-swap idiom

            return *this;

      }

      ~String() { // StringRep deleted only when the last handle goes 

out of scope.

            if(rep && --rep->count <= 0) delete rep;

      }

      String(const char *s): rep(new StringRep(s)) { }

        void swap (String & s) throw ()  {

          std::swap(this->rep, s.rep);

        }

      . . . .

private:

      StringRep *rep;

};

int main() 

{

      String a = "hello", b = "world";

      a = b;

      return 0;

}

Gratuitous copying is avoided, leading to a more efficient implementation. This idiom presumes that the programmer
can edit the source code for the body. When that's not possible, use Detached Counted Body. When counter is stored
inside body class, it is called intrusive reference counting and when the counter is stored external to the body class it
is known as non-intrusive reference counting. This implementation is a variation of shallow copy with the semantics
of deep copy and the efficiency of Smalltalk name-value pairs.



More C++ Idioms/Print Version 42

Consequences
Creation of multiple reference counts will result into multiple deletion of the same body, which is undefined. Care
must be taken to avoid creating multiple reference counts to the same body. Intrusive reference counting easily
supports it. With non-intrusive reference counting, programmer discipline is required to prevent duplicate reference
counts.

Known Uses
• boost::shared_ptr (non-intrusive reference counting)
• boost::intrusive_ptr (intrusive reference counting)
• std::tr1::shared_ptr
• the Qt toolkit, e.g. QString

Related Idioms
• Handle Body
• Detached Counted Body (non-intrusive reference counting)
• Smart Pointer
• Copy-and-swap

References
http:/ / users. rcn. com/ jcoplien/ Patterns/ C+ + Idioms/ EuroPLoP98. html#CountedBody

Curiously Recurring Template Pattern

Intent
Specialize a base class using the derived class as a template argument.

Also Known As
• CRTP
• Mixin-from-above

Motivation
To extract out a type independent but type customizable functionality in a base class and to mix-in that
interface/property/behavior into a derived class, customized for the derived class.

Solution and Sample Code
In CRTP idiom, a class T, inherits from a template that specializes on T.

class T : public X<T> {…};

This is valid only if the size of X<T> can be determined independently of T. Typically, the base class template will
take advantage of the fact that member function bodies (definitions) are not instantiated until long after their
declarations, and will use members of the derived class within its own member functions, via the use of a
static_cast, e.g.:

  template <class Derived>

  struct base

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Detached_Counted_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Smart_Pointer
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-and-swap
http://users.rcn.com/jcoplien/Patterns/C++Idioms/EuroPLoP98.html#CountedBody


More C++ Idioms/Print Version 43

  {

      void interface()

      {

          // ...

          static_cast<Derived*>(this)->implementation();

          // ...

      }

  

      static void static_interface()

      {

          // ...

          Derived::static_implementation();

          // ...

      }

      // The default implementation may be (if exists) or should be 

(otherwise) 

      // overriden by inheriting in derived classes (see below)

      void implementation();

      static void static_implementation();

  };

  // The Curiously Recurring Template Pattern (CRTP)

  struct derived_1 : base<derived_1>

  {

      // This class uses base variant of implementation

      //void implementation();

      

      // ... and overrides static_implementation

      static void static_implementation();

  };

  struct derived_2 : base<derived_2>

  {

      // This class overrides implementation

      void implementation();

      // ... and uses base variant of static_implementation

      //static void static_implementation();

  };



More C++ Idioms/Print Version 44

Known Uses
Barton-Nackman trick

Related Idioms
• Parameterized Base Class Idiom
• Barton-Nackman trick

References
Curiously Recurring Template Pattern on Wikipedia (http:/ / en. wikipedia. org/ wiki/
Curiously_Recurring_Template_Pattern)

Empty Base Optimization

Intent
Optimize storage for data members of empty class types

Also Known As
• EBCO: Empty Base Class Optimization
• Empty Member Optimization

Motivation
Empty classes come up from time to time in C++. C++ requires empty classes to have non-zero size to ensure object
identity. For instance, an array of EmptyClass below has to have non-zero size because each object identified by
the array subscript must be unique. Pointer arithmetic will fall apart if sizeof(EmptyClass) is zero. Often the
size of such a class is one.

class EmptyClass {};

EmptyClass arr[10]; // Size of this array can’t be zero. 

When the same empty class shows up as a data member of other classes, it consumes more than a single byte.
Compilers often align data on 4-byte boundaries to avoid splitting. The four bytes taken by the empty class object are
just placeholders and serve no useful purpose. Avoiding wastage of space is desirable to save memory and help fit
more objects in the cpu cache lines.

Solution and Sample Code
C++ makes special exemption for empty classes when they are inherited from. The compiler is allowed to flatten the
inheritance hierarchy in a way that the empty base class does not consume space. For instance, in the following
example, sizeof(AnInt) is 4 on 32 bit architectures and sizeof(AnotherEmpty) is 1 byte even though
both of them inherit from the EmptyClass

class AnInt  : public EmptyClass 

{

   int data;

};   // size = sizeof(int)

class AnotherEmpty : public EmptyClass {};  // size =  1

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Barton-Nackman_trick
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Parameterized_Base_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Barton-Nackman_trick
http://en.wikipedia.org/wiki/Curiously_Recurring_Template_Pattern
http://en.wikipedia.org/wiki/Curiously_Recurring_Template_Pattern


More C++ Idioms/Print Version 45

EBCO makes use of this exemption in a systematic way. It may not be desirable to naively move the empty classes
from member-list to base-class-list because that may expose interfaces that are otherwise hidden from the users. For
instance, the following way of applying EBCO will apply the optimization but may have undesirable side-effects:
The signatures of the functions (if any in E1, E2) are now visible to the users of class Foo (although they can’t call
them because of private inheritance).

class E1 {};

class E2 {};

// **** before EBCO ****

class Foo {

  E1 e1;

  E2 e2;

  int data;

}; // sizeof(Foo) = 8

// **** after EBCO ****

class Foo : private E1, private E2 {

  int data;

}; // sizeof(Foo) = 4

A practical way of using EBCO is to combine the empty members into a single member that flattens the storage. The
following template BaseOptimization applies EBCO on its first two type parameter. The Foo class above has
been rewritten to use it.

template <class Base1, class Base2, class Member>

struct BaseOptimization : Base1, Base2 

{

   Member member;

   BaseOptimization() {}

   BaseOptimization(Base1 const& b1, Base2 const & b2, Member const& 

mem)

       : Base1(b1), Base2(b2), m(mem) { }

   Base1 * first()  { return this; }

   Base2 * second() { return this; }

};

class Foo {

  BaseOptimization<E1, E2, int> data;

}; // sizeof(Foo) = 4

With this technique, there is no change in the inheritance relationship of the Foo class. It is critical to make sure
that the base classes do not conflict with each other. I.e., Base1 and Base2 are part of independent hierarchies.
Caveat

Object identity issues do not appear to be consistent across compilers. The addresses of the empty objects may or 
may not be the same. For instance, the pointer returned by first and second member methods of 
BaseOptimization class may be the same on some compilers and different on others. See more discussion on



More C++ Idioms/Print Version 46

StackOverflow (http:/ / stackoverflow. com/ questions/ 7694158/
boost-compressed-pair-and-addresses-of-empty-objects)

Known Uses
boost::compressed_pair (http:/ / www. boost. org/ doc/ libs/ 1_47_0/ libs/ utility/ compressed_pair. htm) makes use
of this technique to optimize the size of the pair

References
• The Empty Base Class Optimization (EBCO) (http:/ / www. informit. com/ articles/ article. aspx?p=31473&

seqNum=2)
• The "Empty Member" C++ Optimization (http:/ / www. cantrip. org/ emptyopt. html)
• Internals of boost::compressed_pair (http:/ / www. ibm. com/ developerworks/ aix/ library/ au-boostutilities/

index. html)

Intent
The enable_if family of templates is a set of tools to allow a function template or a class template specialization to
include or exclude itself from a set of matching functions or specializations based on properties of its template
arguments. For example, one can define function templates that are only enabled for, and thus only match, an
arbitrary set of types defined by a traits class. The enable_if templates can also be applied to enable class template
specializations. Applications of enable_if are discussed in length in [1] and [2].

Also Known As
Substitution Failure Is Not An Error

Motivation
Sensible operation of template function overloading in C++ relies on the SFINAE
(substitution-failure-is-not-an-error) principle [3]: if an invalid argument or return type is formed during the
instantiation of a function template, the instantiation is removed from the overload resolution set instead of causing a
compilation error. The following example, taken from [1], demonstrates why this is important:

int negate(int i) { return -i; }

template <class F>

typename F::result_type negate(const F& f) { return -f(); }

Suppose the compiler encounters the call negate(1). The first definition is obviously a better match, but the compiler
must nevertheless consider (and instantiate the prototypes) of both definitions to find this out. Instantiating the latter
definition with F as int would result in:

int::result_type negate(const int&);

where the return type is invalid. If this was an error, adding an unrelated function template (that was never called)
could break otherwise valid code. Due to the SFINAE principle the above example is not, however, erroneous. The
latter definition of negate is simply removed from the overload resolution set.
The enable_if templates are tools for controlled creation of the SFINAE conditions.

http://stackoverflow.com/questions/7694158/boost-compressed-pair-and-addresses-of-empty-objects
http://stackoverflow.com/questions/7694158/boost-compressed-pair-and-addresses-of-empty-objects
http://www.boost.org/doc/libs/1_47_0/libs/utility/compressed_pair.htm
http://www.informit.com/articles/article.aspx?p=31473&seqNum=2
http://www.informit.com/articles/article.aspx?p=31473&seqNum=2
http://www.cantrip.org/emptyopt.html
http://www.ibm.com/developerworks/aix/library/au-boostutilities/index.html
http://www.ibm.com/developerworks/aix/library/au-boostutilities/index.html


More C++ Idioms/Print Version 47

Solution
template <bool, class T = void> struct enable_if {};

template <class T> struct enable_if<true, T> { typedef T type; };

Sample code
// following function is defined for all arithmetic types

template <class T>

typename enable_if<is_arithmetic<T>::value, T>::type 

foo(T t)

{

  return t;

}

// the enable_if template can be used either as the return type, or as 

an extra argument.

template <class T>

T foo(T t, typename enable_if<is_arithmetic<T> >::type* dummy = 0);

Hence, an extra parameter of type void* is added, but it is given a default value to keep the parameter hidden from
client code. Note that the second template argument was not given to enable_if, as the default void gives the desired
behavior.
Whether to write the enabler as an argument or within the return type is largely a matter of taste, but for certain
functions, only one alternative is possible:
• Operators have a fixed number of arguments, thus enable_if must be used in the return type.
• Constructors and destructors do not have a return type; an extra argument is the only option.
• There does not seem to be a way to specify an enabler for a conversion operator. Converting constructors,

however, can have enablers as extra default arguments.

Known Uses
Boost library, C++0x STL, etc.

Related Idioms
• SFINAE

References
• Jaakko Järvi, Jeremiah Willcock, Howard Hinnant, and Andrew Lumsdaine. Function overloading based on

arbitrary properties of types. C/C++ Users Journal, 21(6):25--32, June 2003.
• Jaakko Järvi, Jeremiah Willcock, and Andrew Lumsdaine. Concept-controlled polymorphism. In Frank Pfennig

and Yannis Smaragdakis, editors, Generative Programming and Component Engineering, volume 2830 of LNCS,
pages 228--244. Springer Verlag, September 2003.

• David Vandevoorde and Nicolai M. Josuttis. C++ Templates: The Complete Guide. Addison-Wesley, 2002.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/SFINAE


More C++ Idioms/Print Version 48

Envelope Letter

Intent
Supporting multiple implementations of a single abstract data type (ADT) instance across its lifetime

Motivation
When using Handle Body idiom and/or Counted Body idiom, quite often we come across situations where not only
multiple implementations of an ADT share a common signature but also all the implementations (bodies) of a given
ADT share signature with the ADT's interface (handle). In such cases, adding a new operation to a handle/body pair
causes redundant update to both classes. If we want to capture this relationship between handle and body interfaces,
envelope/letter idiom is used.

Solution and Sample Code
Derive all body classes from a common base class. To reflect the commonality in signature between the handle and
the body, use the handle class as the common base class for alternative bodies. Make handle member functions
virtual. Each alternative implementation derived from the handle class (in its role as the class defining the interface
to the implementations) overrides suitable virtual functions. The base class implementation of these member
functions defines the handle class functionality: it forwards requests to its associated body class instance.

class RealNumber;

class ComplexNumber;

class Number

{

  public:

    virtual ~Number() {}

    virtual Number multiply (Number const &);

  protected:

    Number * nptr;

};

class ComplexNumber : public Number

{

  public:

    virtual Number multiply (Number const & n) {

      // ...

      if (this becomes a RealNumber number after multiplication) {

         this->nptr = new RealNumber (...); // metamorphize

         // ....

      }

      // ....

    }

};

class RealNumber : public Number 

{

// ...

};

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Counted_Body


More C++ Idioms/Print Version 49

The ADT instance can now "metamorphize" between different body classes at run time. For example, A
ComplexNumber can change itself to a Realnumber if its imaginary part becomes zero after some mathematical
operation. An advantage of such a dynamic change in type is often increased efficiency. Moreover, new signatures
need be added in one less place than if the information were duplicated. This idiom is the basis for Virtual
Constructor idiom. In Algebraic Hierarchy, this pattern forms the basis for a Promotion Ladder.

Related Idioms
• Handle Body

References
• http:/ / users. rcn. com/ jcoplien/ Patterns/ C+ + Idioms/ EuroPLoP98. html#EnvelopeLetter
• Advanced C++ Programming Styles and Idioms by James Coplien, Addison Wesley, 1992.
• "Changing behavior of an object at runtime" (http:/ / stackoverflow. com/ questions/ 729905/

changing-behavior-of-an-object-at-runtime) from Stack Overflow.

Copyright
Copyright ©1998 Lucent Technologies, Bell Labs Innovations. All rights reserved. Permission granted to reprint
verbatim for non-commercial use provided this copyright notice appears.

Extended Example
// envelope_letter.cpp

// complete example for

// http://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Envelope_Letter

// .

// Rough draft.

// FIXME: horrific memory leakage.

// FIXME: way too much coupling between classes.

// FIXME: Surely there's a way to do this without a bunch of 

"dynamic_cast"?

// FIXME: multiplying a complex times 0 or 0.0 returns a complex.

//     Should it metamorphose to a integer or a real instead?

// 2010-06-26:DAV: cleanup.

// 2010-06-25:DAV: technically "runs", and gives numerically correct 

results.

// 2010-06-21:DAV: David Cary 

http://en.wikibooks.org/wiki/User:DavidCary started

// public domain.

#include <iostream>

// "Number" is the Envelope class

// Client code only uses the "Number" class.

// Client code never directly uses "RealNumber, "ComplexNumber", etc.

class Number {

    public:

    Number();

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Algebraic_Hierarchy
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Promotion_Ladder
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Handle_Body
http://users.rcn.com/jcoplien/Patterns/C++Idioms/EuroPLoP98.html#EnvelopeLetter
http://stackoverflow.com/questions/729905/changing-behavior-of-an-object-at-runtime
http://stackoverflow.com/questions/729905/changing-behavior-of-an-object-at-runtime


More C++ Idioms/Print Version 50

    Number( int i );

    Number( double f );

    Number( double x, double y );

    virtual Number * clone();

    Number( const Number &copy ): letter(copy.letter->clone()) {

    }; // nice class

    virtual Number & operator= (const Number &rhs); // nice class

    virtual ~Number(){ // destructor

        delete letter;

        letter = 0;

    };

    virtual Number * multiply ( const Number & rhs ){

        letter = letter->multiply( rhs );

        return this;

    };

    // use Virtual Friend Function idiom,

    // since friend functions can't be made virtual.

    virtual void print(std::ostream& out) const{

        letter->print(out);

    };

    friend std::ostream& operator<<( std::ostream& out, const Number& number){

        number.print(out);

        return out;

    };

    // FIXME: should this be private or protected?

    // "letter" always points to an object of one of the child classes,

    // never to an object of the Number base class.

    Number * letter;

};

// file Number.hpp ends here

// file Number.cpp

#include "Number.hpp"

#include <cassert>

    Number * Number::clone(){

        Number * r = new Number();

        if( letter ){

            r->letter = letter->clone();

        }else{

            r->letter = 0;

        };

        return r;

    };

    Number & Number::operator= (const Number &rhs){

        if( this != &rhs ){



More C++ Idioms/Print Version 51

            delete letter;

            letter = 0;

            letter = rhs.letter->clone();

        };

        return *this;

    }; // nice class

// RealNumber and ComplexNumber are two kinds of Letter classes

// They derive from the Envelope class Number

// in its role as the class defining the interface to the 

implementations.

// (Although they technically inherit a Number * letter member,

// ComplexNumber never uses it -- its letter member is always the NULL 

pointer).

class IntegerNumber;

class RealNumber;

class ComplexNumber;

class ComplexNumber : public Number {

    public:

    ComplexNumber( double x, double y );

    Number * multiply( const ComplexNumber & rhs);

    Number * multiply( const Number & rhs);

    void print(std::ostream& out) const{

        out << "(" << first_part << ", " << second_part << ")";

    };

    private:

    double first_part;

    double second_part;

};

class IntegerNumber : public Number {

    public:

    IntegerNumber( int i ): the_integer(i) {

        std::cout << "IntegerNumber:: creating IntegerNumber." << std::endl;

    };

    IntegerNumber * clone(){

        IntegerNumber * r = new IntegerNumber(the_integer);

        return r;

    };

    void print(std::ostream& out) const{

        out << the_integer;

    };

    Number * multiply ( const Number & rhs ){

        std::cout << "IntegerNumber:: multiply by some Number." << std::endl;

        // if letter and rhs are both Integers, letter->add returns an 

Integer



More C++ Idioms/Print Version 52

        // if letter is a Complex, or rhs is a Complex, what comes back

 is Complex

        const Number * the_letter = 0;

        if( rhs.letter ){ // peel off redundant layer of abstraction

            std::cout << "rhs is an envelope -- extract the letter" << std::endl;

            the_letter = rhs.letter;

        }else{

            std::cout << "rhs is a letter." << std::endl;

            the_letter = &rhs;

        };

        const IntegerNumber * int_rhs = dynamic_cast<const IntegerNumber *>(the_letter);

        if( int_rhs ){

            std::cout << "IntegerNumber:: multiply by IntegerNumber." << std::endl;

            the_integer *= int_rhs->the_integer;

            return this;

        };

        // since the dynamic_cast "failed",

        // the_letter is clearly *not* an IntegerNumber.

        // Perhaps it's Real? or Complex?

        std::cout << "IntegerNumber:: metamorphizing to Complex in order to multiply..." << std::endl;

        ComplexNumber * r = new ComplexNumber( the_integer, 0.0 );

        r->multiply(rhs);

        std::cout << "IntegerNumber:: finished metamorphosis and multiply by some Number..." << std::endl;

        return r;

    };

    // FIXME: shouldn't this be private?

    // private:

    int the_integer;

};

class RealNumber : public Number {

    public:

    RealNumber( double x ): real_part(x) {

        std::cout << "RealNumber:: creating RealNumber." << std::endl;

    };

    void print(std::ostream& out) const{

        out << real_part;

    };

    Number * multiply ( const Number & rhs ){

        std::cout << "RealNumber:: multiply by some Number." << std::endl;

        // Should we try to check if the rhs is an integer or real,

        // before deferring to CompledNumber::multiply?

        std::cout << "RealNumber:: metamorphizing to Complex in order to multiply..." << std::endl;

        ComplexNumber * r = new ComplexNumber( real_part, 0.0 );

        r->multiply(rhs);

        std::cout << "IntegerNumber:: finished metamorphosis and multiply by some Number..." << std::endl;



More C++ Idioms/Print Version 53

        return r;

    };

    // FIXME: shouldn't this be private?

    // private:

    double real_part;

};

ComplexNumber::    

ComplexNumber( double x, double y ):

        first_part(x), second_part(y) {

        std::cout << "ComplexNumber:: creating ComplexNumber." << std::endl;

    };

    Number * ComplexNumber::    multiply( const ComplexNumber & rhs){

        std::cout << "ComplexNumber:: multiply by ComplexNumber." << std::endl;

        double a = first_part*rhs.first_part - 

second_part*rhs.second_part;

        double b = first_part*rhs.second_part + 

second_part*rhs.first_part;

        first_part = a;

        second_part = b;

        if( 0 == second_part ){

            std::cout << "ComplexNumber:: metamorphosis" << std::endl;

            return( new RealNumber(first_part) ); // metamorphize

        }

        return this;

    }

Number * ComplexNumber::multiply( const Number & rhs){

        std::cout << "ComplexNumber:: multiply by some Number." << std::endl;

        const Number * the_letter = 0;

        if( rhs.letter ){ // peel off redundant layer of abstraction

            std::cout << "rhs is an envelope -- extract the letter" << std::endl;

            the_letter = rhs.letter;

        }else{

            std::cout << "rhs is a letter." << std::endl;

            the_letter = &rhs;

        };

        const ComplexNumber * complex_rhs = dynamic_cast<const ComplexNumber *>(the_letter);

        if( complex_rhs ){

            std::cout << "ComplexNumber:: multiply by ComplexNumber." << std::endl;

            std::cout << "ComplexNumber:: multiplying ..." << std::endl;

            return( multiply( *complex_rhs ) );

        };

        const IntegerNumber * integer_rhs = dynamic_cast<const IntegerNumber *>(the_letter);

        if( integer_rhs ){

            first_part *= integer_rhs->the_integer;



More C++ Idioms/Print Version 54

            second_part *= integer_rhs->the_integer;

            return this;

        };

        const RealNumber * real_rhs = dynamic_cast<const RealNumber *>(the_letter);

        if( real_rhs ){

            first_part *= real_rhs->real_part;

            second_part *= real_rhs->real_part;

            return this;

        };

        // unexpected: what else could it be?

        assert(0);

}

Number::Number(): letter(0) {

        std::cout << "Number:: creating default Number()." << std::endl;

};

Number::Number( int i ): letter(0) {

        std::cout << "Number:: creating IntegerNumber." << std::endl;

        letter = new IntegerNumber( i );

};

Number::Number( double f ): letter(0) {

        std::cout << "Number:: creating RealNumber." << std::endl;

        letter = new RealNumber( f );

};

Number::Number( double x, double y ): letter(0) {

        std::cout << "Number:: creating ComplexNumber." << std::endl;

        letter = new ComplexNumber( x, y );

};

/* Example client code: */

void print_it( Number &x ){

    std::cout << "value: " << x << std::endl;

};

void test_Number(){

    std::cout << "testing ..." << std::endl;

    Number a(2);

    Number b(3.1,7.5);

    Number c(3);

    std::cout << "testing a ..." << a << std::endl;

    std::cout << "testing b ..." << b << std::endl;

    std::cout << "testing function called with derived class ..." << std::endl;

    print_it(a);

    print_it(b);



More C++ Idioms/Print Version 55

    print_it(c);

    std::cout << "testing integer multiply : 3*2 ..." << std::endl;

    c.multiply(a);

    print_it(c);

    std::cout << "testing integer*complex multiply :" << a << "*" << b << " ..." << std::endl;

    a.multiply(b);

    print_it(a);

}

int main(){

    test_Number();

}

Erase-Remove

Intent
To eliminate elements from a STL container to reduce the size of it.

Also Known As
Remove-Erase (based on the order of execution, rather than the typed order on the source code line)

Motivation
std::remove algorithm does not eliminate elements from the container! It simply moves the elements not being
removed to the front of the container, leaving the contents at the end of the container undefined. This is because
std::remove algorithm works only using a pair of forward iterators (Iterator Pair idiom) and generic concept of
forward iterators does not know how to eliminate data elements from an arbitrary data structure. Only container
member functions can eliminate container elements as only members know the details of internal data structure.
Erase-Remove idiom is used to really eliminate data elements from a container.

Solution and Sample Code
std::remove algorithm returns an iterator to the beginning of the range of "unused" elements. It does not change the
end() iterator of the container nor does the size of it. Member erase function can be used to really eliminate the
members from the container in the following idiomatic way.

std::vector<int> v; 

// fill it up somehow

v.erase(std::remove(v.begin(), v.end(), 99), v.end()); // really remove

 all elements with value 99

The order of evaluation of v.end() and invocation of std::remove is unimportant here because std::remove algorithm
does not change end() iterator in any way.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Iterator_Pair


More C++ Idioms/Print Version 56

References
Effective STL, Item 32 - Scott Meyers

Execute-Around Pointer

Intent
Provide a smart pointer object that transparently executes actions before and after each function call on an object,
given that the actions performed are the same for all functions.[1]

Also Known As
Double application of smart pointer.

Motivation
Often times it is necessary to execute a functionality before and after every member function call of a class. For
example, in a multi-threaded application it is necessary to lock before modifying the data structure and unlock it
afterwards. In a data structure visualization application might be interested in the size of the data structure after every
insert/delete operation.

using namespace std;

class Visualizer {

    std::vector <int> & vect;

  public:

    Visualizer (vector<int> &v) : vect(v) {}

    void data_changed () {

       std::cout << "Now size is: " << vect.size();

    }

};

int main () // A data visualization application.

{

  std::vector <int> vector;

  Visualizer visu (vector);

  //...

  vector.push_back (10);

  visu.data_changed ();

  vector.push_back (20);

  visu.data_changed ();

  // Many more insert/remove calls here

  // and corresponding calls to visualizer.

}

Such a repetition of function calls is error-prone and tedious. It would be ideal if calls to visualizer could be
automated. Visualizer could be used for std::list <int> as well. Such funcitonality which is not a part of single class
but rather cross cuts multiple classes is commonly known as aspects. This particular idiom is useful for designing
and implementing simple aspects.



More C++ Idioms/Print Version 57

Solution and Sample Code
class VisualizableVector {

  public:

    class proxy {

      public:

        proxy (vector<int> *v) : vect (v) {

          std::cout << "Before size is: " << vect->size ();

        }

        vector<int> * operator -> () {

          return vect;

        }

        ~proxy () {

          std::cout << "After size is: " << vect->size ();

        }

      private:

        vector <int> * vect;

    };

    VisualizableVector (vector<int> *v) : vect(v) {}    

    proxy operator -> () {

       return proxy (vect);

    }

  private:

    vector <int> * vect;

};

int main()

{

  VisualizableVector vector (new vector<int>);

  //...

  vector->push_back (10); // Note use of -> operator instead of . 

operator

  vector->push_back (20);

}

Overloaded -> operator of visualizableVector creates a temporary proxy object and it is returned. Constructor of
proxy object logs size of the vector. The overloaded -> operator of proxy is then called and it simply forwards the
call to the underlying vector object by returning a raw pointer to it. After the real call to the vector finishes,
destructor of proxy logs the size again. Thus the logging for visualization is transparent and the main function
becomes free from clutter. This idiom is a special case of Execute Around Proxy, which is more general and
powerful.
The real power of the idiom can be derived if we combine it judiciously with templates and chain the overloaded ->
operators.

template <class NextAspect, class Para>

class Aspect

{

  protected:

    Aspect (Para p): para_(p) {}

    Para  para_;



More C++ Idioms/Print Version 58

  public:

    NextAspect operator -> () 

    {

      return para_;

    }

};

template <class NextAspect, class Para>

struct Visualizing : Aspect <NextAspect, Para>

{

  public:

    Visualizing (Para p) 

       : Aspect <NextAspect, Para> (p) 

    {

      std::cout << "Before Visualization aspect" << std::endl;

    }

    ~Visualizing () 

    {

      std::cout << "After Visualization aspect" << std::endl;

    }

};

template <class NextAspect, class Para>

struct Locking : Aspect <NextAspect, Para>

{

  public:

    Locking (Para p) 

       : Aspect <NextAspect, Para> (p) 

    {

            std::cout << "Before Lock aspect" << std::endl;

    }

    ~Locking () 

    {

      std::cout << "After Lock aspect" << std::endl;

    }

};

template <class NextAspect, class Para>

struct Logging : Aspect <NextAspect, Para>

{

  public:

    Logging (Para p) 

        : Aspect <NextAspect, Para> (p) 

    {

            std::cout << "Before Log aspect" << std::endl;

    }

    ~Logging () 

    {

      std::cout << "After Log aspect" << std::endl;



More C++ Idioms/Print Version 59

    }

};

template <class Aspect, class Para>

class AspectWeaver 

{

public:

    AspectWeaver (Para p) : para_(p) {}    

    Aspect operator -> () 

    {

       return Aspect (para_);

    }

private:

      Para para_;

};

#define AW1(T,U) AspectWeaver <T <U, U>, U >

#define AW2(T,U,V) AspectWeaver <T < U <V, V> , V>, V >

#define AW3(T,U,V,X) AspectWeaver <T < U <V <X, X>, X> , X>, X >

int main()

{ 

  AW3(Visualizing, Locking, Logging, vector <int> *) 

        X (new vector<int>);

  //...

  X->push_back (10); // Note use of -> operator instead of . operator

  X->push_back (20);

  return 0;

}

Related Idioms
Smart Pointer

References
[1] Execute Around Sequences - Kevlin Henney

Expression Template

Intent
• To create a domain-specific embedded language (DSEL) in C++
• To support lazy evaluation of C++ expressions (e.g., mathematical expressions), which can be executed much

later in the program from the point of their definition.
• To pass an expression -- not the result of the expression -- as a parameter to a function.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Smart_Pointer


More C++ Idioms/Print Version 60

Motivation
Domain-specific languages (DSLs) is a way of developing programs where the problem to be solved is expressed
using notation that is much closer to the domain of the problem rather than the usual notation (loops, conditionals,
etc.) provided by procedural languages. Domain-specific embedded languages (DSELs) is a special case of DSLs
where the notation is embedded in a host language (e.g., C++). Two prominent examples of DSELs based on C++
are the Boost Spirit Parser Framework (http:/ / spirit. sourceforge. net) and Blitz++ (http:/ / www. oonumerics. org/
blitz) scientific computing library. Spirit provides a notation to write EBNF grammar directly into a C++ program
whereas Blitz++ allows a notation to perform mathematical operations on matrices. Obviously, such notation is not
provided in C++ natively. The key benefit of using such notation is that the program captures the intention of the
programmer quite intuitively making the program much more readable. It reduces the development as well as
maintenance costs dramatically.
So, how do these libraries (Spirit and Blitz++) achieve such a leap in the abstraction-level? The answer is -- you
guessed it right -- Expression Templates.
The key idea behind expression templates is lazy evaluation of expressions. C++ does not support lazy evaluation of
expressions natively. For example, in the code snippet below, the addition expression (x+x+x) is executed before the
function foo is called.

int x;

foo(x + x + x); // The addition expression does not exist beyond this 

line.

Function foo never really knows how the parameter it receives is computed. The addition expression never really
exists after its first and the only evaluation. This default behavior of C++ is necessary and sufficient for an
overwhelmingly large number of real-world programs. However, some programs need the expression later on to
evaluate it again and again. For example, tripling every integer in an array.

int expression (int x)

{

  return x + x + x; // Note the same expression.

}

// .... Lot of other code here

const int N = 5;

double A[N] = { 1, 2, 3, 4, 5};

std::transform(A, A+N, A, std::ptr_fun(expression)); // Triples every 

integer.

This is the conventional way of supporting lazy evaluation of mathematical expressions in C/C++. The expression is
wrapped in a function and the function is passed around as a parameter. There is overhead of function calls and
creation of temporaries in this technique, and quite often, the location of the expression in the source code is quite far
from the call site, which adversely affects the readability and maintainability. Expression templates solve the
problem by inlining the expression, which eliminates the need for a function pointer and brings together the
expression and the call site.

http://spirit.sourceforge.net
http://www.oonumerics.org/blitz
http://www.oonumerics.org/blitz


More C++ Idioms/Print Version 61

Solution and Sample Code
Expression templates use the Recursive Type Composition idiom. Recursive type composition uses instances of class
templates that contain other instances of the same template as member variables. Multiple repetitive instantiation of
the same template gives rise to an abstract syntax tree (AST) of types. Recursive type composition has been used to
create linear Type lists as well as binary expression trees used in the following example.

#include <iostream>

#include <vector>

struct Var {

  double operator () (double v) { return v; }

};

struct Constant {

  double c;

  Constant (double d) : c (d) {}

  double operator () (double) { return c; }

};

template < class L, class H, class OP >

struct DBinaryExpression {

  L l_;

  H h_;

  DBinaryExpression (L l, H h) : l_ (l), h_ (h) {}

  double operator () (double d) { return OP::apply (l_ (d), h_(d)); }

};

struct Add {

  static double apply (double l, double h) { return l + h; }

};

template < class E >

struct DExpression {

  E expr_;

  DExpression (E e) : expr_ (e) {}

  double operator() (double d) { return expr_(d);  }

};

template < class Itr, class Func >

void evaluate (Itr begin, Itr end, Func func) 

{

  for (Itr i = begin; i != end; ++i)

    std::cout << func (*i) << std::endl;

}

int main (void)

{

  typedef DExpression <Var> Variable;

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Recursive_Type_Composition


More C++ Idioms/Print Version 62

  typedef DExpression <Constant> Literal;

  typedef DBinaryExpression <Variable , Literal, Add> VarLitAdder;

  typedef DExpression <VarLitAdder> MyAdder;

  Variable x ((Var()));

  Literal l (Constant (50.00));

  VarLitAdder vl_adder(x, l);

  MyAdder expr (vl_adder);

  std::vector <double> a;

  a.push_back (10);

  a.push_back (20);

  // It is (50.00 + x) but does not look like it.

  evaluate (a.begin(), a.end(), expr);

  return 0;

}

An analogy to the Composite design pattern is useful here. The template DExpression can be considered as the
abstract base class in the Composite pattern. It captures the commonality in the interface. In expression templates,
the common interface is the overloaded function call operator. DBinaryExpression is a real composite as well as an
adaptor, which adapts Add's interface to that of DExpression. Constant and Var are two different types of leaf nodes.
They also stick to the DExpression's interface. DExpression hides the complexity of DBinaryExpression, Constant
and Var behind a unified interface to make them work together. Any binary operator can take place of Add, for
example Divide, Multiply etc.
The above example does not show how recursive types are generated at compile-time. Also, expr does not look like a
mathematical expression at all, but it is indeed one. The code that follows show how types are recursively composed
using repetitive instantiation of the following overloaded + operator.

template< class A, class B >

DExpression<DBinaryExpression<DExpression<A>, DExpression<B>, Add> >

operator + (DExpression<A> a, DExpression<B> b)

{

  typedef DBinaryExpression <DExpression<A>, DExpression<B>, Add> ExprT;

  return DExpression<ExprT>(ExprT(a,b));

}

The above overloaded operator+ does two things - it adds syntactic sugar and enables recursive type composition,
bounded by the compiler's limits. It can therefore be used to replace the call to evaluate as follows:

evaluate (a.begin(), a.end(), x + l + x); 

/// It is (2*x + 50.00), which does look like a mathematical expression.



More C++ Idioms/Print Version 63

Known Uses
• Blitz++ Library (http:/ / www. oonumerics. org/ blitz)
• Boost Spirit Parser Framework (http:/ / spirit. sourceforge. net)
• Boost Basic Linear Algebra (http:/ / www. boost. org/ libs/ numeric/ ublas)
• LEESA: Language for Embedded Query and Traversal in C++ (http:/ / www. dre. vanderbilt. edu/ LEESA)

Related Idioms
• Recursive Type Composition

References
• Expression Templates (http:/ / www. angelikalanger. com/ Articles/ Cuj/ ExpressionTemplates/

ExpressionTemplates. htm) - Klaus Kreft & Angelika Langer
• Expression Templates (http:/ / ubiety. uwaterloo. ca/ ~tveldhui/ papers/ Expression-Templates/ exprtmpl. html) -

Todd Veldhuizen
• Faster Vector Math Using Templates (http:/ / www. flipcode. com/ articles/ article_fastervectormath. shtml) -

Tomas Arce

Solution and Sample Code

Intent
Increase performance of Handle Body idiom.

Solution and Sample Code

Related Idioms
• Handle Body (aka pimpl)

References
The Fast Pimpl Idiom (http:/ / www. gotw. ca/ gotw/ 028. htm)

Final Class

Intent
• Partially simulate the final class feature found in other languages.
• Partially prevent a class from further subclassing or inheritance.

Motivation
Class designers may want to enforce that a specific class can not be further extended or subclassed by the user of the 
class. Other object-oriented languages such as Java and C# provide this feature to the class designers. In Java the

http://www.oonumerics.org/blitz
http://spirit.sourceforge.net
http://www.boost.org/libs/numeric/ublas
http://www.dre.vanderbilt.edu/LEESA
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Recursive_Type_Composition
http://www.angelikalanger.com/Articles/Cuj/ExpressionTemplates/ExpressionTemplates.htm
http://www.angelikalanger.com/Articles/Cuj/ExpressionTemplates/ExpressionTemplates.htm
http://ubiety.uwaterloo.ca/~tveldhui/papers/Expression-Templates/exprtmpl.html
http://www.flipcode.com/articles/article_fastervectormath.shtml
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body
http://www.gotw.ca/gotw/028.htm


More C++ Idioms/Print Version 64

keyword is called final whereas in C#, it is called sealed. Final class idiom is a way of partially simulating this effect
in C++.

Solution and Sample Code
Final class idiom makes use of virtual inheritance and a friend class to create the effect of a final class. The idiom
depends on the following C++ rule: the constructor (and destructor) of a virtually inherited class is called directly by
the derived-most class. If access to the constructor or destructor of such a virtually inherited class is prevented, the
class can not be subclassed further.

class MakeFinal

{

  ~MakeFinal() {}  // private by default.

  friend class sealed;

};

class sealed : virtual MakeFinal

{ };

class test : public sealed

{ };

int main (void)

{

  test t; // Compilation error here.

}

In the above example, the test class inherits from the sealed class and the main function tries to instantiate an object
of type test. The instantiation fails because the test class can not access the private destructor of the MakeFinal class
because it is defined private and inherited virtually. However, friendship is not inheritable and therefore, objects of
type test can't be created.
Note that the said error occurs only when the test class is instantiated. This behavior is different from how final
classes behave in Java and C#. In fact, this idiom does not prevent inheritance of static methods defined in the sealed
class. As long as the test class is not instantiated and it accesses only the static members of the sealed class, compiler
does not complain.

References
As seen in boost::ptr_container
Motivation: allocators have serious problems, because they change the underlying type of the container.

struct user_allocator_nedmalloc

{

      typedef std::size_t size_type;

      typedef std::ptrdiff_t difference_type;

      

      static inline char* malloc(const size_type bytes) {

            return reinterpret_cast<char*>(nedmalloc(bytes));

      }

      



More C++ Idioms/Print Version 65

      static inline void free(char* const block) {

            nedfree(block);

      }

};

This idiom is wildly superior to the way that std::allocators work the whole idiom is outlined here:
http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2005/ n1850. pdf

Friendship and Attorney-Client

Intent
Control the granularity of access to the implementation details of a class

Motivation
A friend declaration in C++ gives complete access to the internals of a class. Friend declarations are, therefore,
frowned upon because they break carefully crafted encapsulations. Friendship feature of C++ does not provide any
way to selectively grant access to a subset of private members of a class. Friendship in C++ is an all-or-nothing
proposition. For instance, the following class Foo declares class Bar its friend. Class Bar therefore has access to
all the private members of class Foo. This may not be desirable because it increases coupling. Class Bar cannot be
distributed without class Foo.

class Foo 

{

private:

  void A(int a);

  void B(float b);

  void C(double c);

  friend class Bar;

};

class Bar {

// This class needs access to Foo::A and Foo::B only.

// C++ friendship rules, however, give access to all the private 

members of Foo.

};

Providing selective access to a subset of members is desirable because the remaining (private) members can change
interface if needed. It helps reduce coupling between classes. Attorney-Client idiom allows a class to precisely
control the amount of access they give to their friends.

Solution and Sample Code
Attorney-client idiom works by adding a level of indirection. A client class that wants to control access to its internal
details, appoints an attorney and makes it a friend --- a C++ friend! The Attorney class is crafted carefully to
serve as a proxy to the Client. Unlike a typical proxy class, Attorney class replicates only a subset of
Client’s private interface. For instance, consider class Foo wants to control access to its implementation details.
For better clarity we rename it as Client. Client wants its Attorney to provide access to Client::A and
Client::B only.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1850.pdf


More C++ Idioms/Print Version 66

class Client 

{

private:

  void A(int a);

  void B(float b);

  void C(double c);

  friend class Attorney;

};

class Attorney {

private:

  static void callA(Client & c, int a) {

    c.A(a);

  } 

  static void callB(Client & c, float b) {

    c.B(b);

  }

  friend class Bar;

};

class Bar {

// Bar now has access to only Client::A and Client::B through the 

Attorney.

};

The Attorney class restricts access to a cohesive set of functions. The Attorney class has all inline static
member functions, each taking a reference to an instance of the Client and forwarding the function calls to it.
Some things are idiomatic about the Attorney class. Its implementation is entirely private, which prevents other
unexpected classes gaining access to the internal of Client. The Attorney class determines which other classes,
member functions, or free functions get access to it. It declares them as friend to allow access to its
implementation and eventually the Client. Without the Attorney class, Client

class would have declared the same set of friends giving them unrestrained

access to the internals of Client.

It is possible to have multiple attorney classes providing cohesive access to different set of implantation details of the
client. For instance, class AttorneyC may provide access to Client::C member function
only. An interesting case emerges where an attorney class serves as a mediator

for several different classes and provides cohesive access to their

implementation details. Such a design is conceivable in case of inheritance

hierarchies because friendship in C++ is not inheritable. Private virtual

functions of derived classes can be called if base's private virtual functions

are accessible. There is no need to extend friendship to derived classes. In

the following example, the Attorney-Client idiom is applied to class Base and

the main function. The Derived::Func function gets called via polymorphism. To

access the implementation details of Derived class, however, the same idiom

may be applied.

#include <cstdio>



More C++ Idioms/Print Version 67

class Base {

private:

  virtual void Func(int x) = 0;

  friend class Attorney;

public:

  ~Base() {}

};

class Derived : public Base {

private:

  virtual void Func(int x)  {

    printf("Derived::Func\n"); // This is called even though main is 

not a friend of Derived.

  }

public:

  virtual ~Derived() {}

};

class Attorney {

private:

  static void callFunc(Base & b, int x) {

    return b.Func(x);

  }

  friend int main (void);

};

int main(void) {

  Derived d;

  Attorney::callFunc(d, 10);

}

References
Friendship and the Attorney-Client Idiom (Dr. Dobb's Journal) (http:/ / drdobbs. com/ 184402053)

Generic Container Idioms

Intent
To create generic container classes (vector, list, stack) that impose minimal requirements on their value types. The
requirements being only a copy-constructor and a non-throwing destructor.

Motivation
Developing generic containers in C++ can become complex if truly generic containers (like STL) are desired.
Relaxing the requirements on type T is the key behind developing truly generic containers. There are a few C++
idioms to actually achieve the "lowest denominator" possible with requirements on type T.

http://drdobbs.com/184402053


More C++ Idioms/Print Version 68

Lets take an example of a Stack.

template<class T>

class Stack

{

    int size_;

    T * array_;

    int top_;

  public:

    Stack (int size=10)

      : size_(size),

        array_ (new T [size]), // T must support default construction

        top_(0)

    { }

    void push (const T & value)

    {

      array_[top_++] = value; // T must support assignment operator.

    }

    T pop ()

    {

      return array_[--top_]; // T must support copy-construction. No 

destructor is called here

    }

    ~Stack () throw() { delete [] array_; } // T must support 

non-throwing destructor

};

Other than some array bounds problem, above implementation looks pretty obvious. But it is quite naive. It has more
requirements on type T than there needs to be. The above implementation requires following operations defined on
type T:
• A default constructor for T
• A copy constructor for T
• A non-throwing destructor for T
• A copy assignment operator for T
A stack ideally, should not construct more objects in it than number of push operations performed on it. Similarly,
after every pop operation, an object from stack should be popped out and destroyed. Above implementation does
none of that. One of the reasons is that it uses a default constructor of type T, which is totally unnecessary.
Actually, the requirements on type T can be reduced to the following using construct and destroy generic container
idioms.
• A copy constructor
• A non-throwing destructor.



More C++ Idioms/Print Version 69

Solution and Sample Code
To achieve this, a generic container should be able to allocate uninitialized memory and invoke constructor(s) only
once on each element while "initializing" them. This is possible using following three generic container idioms:

#include <algorithm>

// construct helper using placement new:

template <class T1, class T2>

void construct (T1 &p, const T2 &value)

{

  new (&p) T1(value); // T must support copy-constructor

}

// destroy helper to invoke destructor explicitly.

template <class T>

void destroy (T const &t)  throw ()

{

  t.~T(); // T must support non-throwing destructor

}

template<class T>

class Stack

{

    int size_;

    T * array_;

    int top_;

  public:

    Stack (int size=10)

      : size_(size),

        array_ (static_cast <T *>(::operator new (sizeof (T) * size))), // T

 need not support default construction

        top_(0)

    { }

    void push (const T & value)

    {

      construct (array_[top_++], value); // T need not support 

assignment operator.

    }

    T top ()

    {

       return array_[top_ - 1]; // T should support copy construction

    }

    void pop()

    {

      destroy (array_[--top_]);     // T destroyed

    }

    ~Stack () throw()

    {

      std::for_each(array_, array_ + top_, destroy<T>);



More C++ Idioms/Print Version 70

      ::operator delete(array_); // Global scope operator delete.

    }

};

class X

{

  public:

    X (int) {} // No default constructor for X.

  private:

    X & operator = (const X &); // assignment operator is private

};

int main (void)

{

  Stack <X> s; // X works with Stack!

  return 0;

}

operator new allocates uninitialized memory. It is a fancy way of calling malloc. The construct helper template
function invokes placement new and in turn invokes a copy constructor on the initialized memory. The pointer p is
supposed to be one of the uninitialized memory chunks allocated using operator new. If end is an iterator pointing at
an element one past the last initialized element of the container, then pointers in the range end to end_of_allocation
should not point to objects of type T, but to uninitialized memory. When an element is removed from the container,
destructor should be invoked on them. A destroy helper function can be helpful here as shown. Similarly, to delete a
range, another overloaded destroy function which takes two iterators could be useful. It essentially invokes first
destroy helper on each element in the sequence.

Known Uses
All STL containers employ similar techniques. They have minimal possible requirements on the template parameter
types. On the other hand, some popular C++ libraries have stricter requirements on parameterizable types than
necessary.

Related Idioms
There are several other generic container idioms.
• Non-throwing swap
• Copy-and-swap
• Iterator Pair
• Coercion by Member Template
• Making New Friends

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-throwing_swap
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-and-swap
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Iterator_Pair
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Coercion_by_Member_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Making_New_Friends


More C++ Idioms/Print Version 71

References
Designing Exception Safe Generic Containers (http:/ / portal. acm. org/ citation. cfm?id=331173) -- Herb Sutter

Include Guard Macro

Intent
To prevent inclusion of a header file multiple times.

Motivation
Including the same header file in same compilation unit is a problem because it violates a basic rule of C++: One
Definition Rule (ODR). A header may get included multiple times because of direct and indirect inclusion.

Solution and Sample Code
Include Guard macro idiom is an old idiom, which is also applicable in a C program. It used simple #define to
prevent inclusion of a header file multiple times in a compilation unit. Following macros are put at the very
beginning and at very end of a header file.

#ifndef MYHEADER_H_ // beginning

#define MYHEADER_H_ 

...

#endif // MYHEADER_H_ // end

Some compilers support

#pragma once 

as an efficient alternative to include guards. It does not require to open the header file more than once, unlike
traditional include guard macro in some compilers. On many modern compilers like GCC4 or MSC++2008 #pragma
once will not give better compile time performance as they recognize header guards.

Known Uses
Virtually all header files in the world!

Related Idioms
• Inline Guard Macro
• Export Guard Macro

References
#pragma once (http:/ / en. wikipedia. org/ wiki/ Pragma_once) in Wikipedia.

Inline Guard Macro

Intent
To conveniently control inline-ness of functions using a compiler command line macro definition switch.

http://portal.acm.org/citation.cfm?id=331173
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Inline_Guard_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Export_Guard_Macro
http://en.wikipedia.org/wiki/Pragma_once


More C++ Idioms/Print Version 72

Motivation
For debugging purpose, it is often necessary to turn off inlining of functions throughout the program. But for release
version, inline functions are desirable. This indicates a need of a quick way of turning inline-ness on/off as and when
desired. Moreover, such functions should be defined in header files when they are inlined and otherwise should be in
the source (.cpp) file. If non-inline functions are in header files, almost always it ends up creating multiple
definitions of the function. On the other hand, if inline functions are not in header files then compilation units can't
fine them. In both the cases linker throws errors.
Therefore, a flexible way of inlining is often desirable but C++ language does not support it without some macro
magic. The Inline Guard Macro idiom achieves this.

Solution and Sample Code
The solution is to put all the inline functions in a separate file called .ipp file and decorate each function with a
macro INLINE. Header file and the implementation file is create as usual and the .ipp file in selectively included in
one of the two files (header or implementation) depending upon whether inlining is desired. An example of a class
Test is given below.

// test.ipp file

INLINE void Test::func()

{}

// test.hpp file

#ifndef __TEST_H // Note include guards.

#define __TEST_H 

class Test

{

  public:

    void func();

};

#ifdef _INLINE_

#define INLINE inline // Define INLINE as inline (the keyword)

#include "test.ipp"   // It is included only when _INLINE_ is defined

#endif

#endif  // __TEST_H

//test.cpp file

#include "test.hpp" // Include header file as usual.

#ifndef _INLINE_

#define INLINE      // INLINE is defined as empty string

#include "test.ipp" // It is included only when _INLINE_ is NOT defined.

#endif

The effect of using Include Guard Macro is that depending upon whether _INLINE_ is defined or not, test.ipp gets 
merged with either test.cpp or test.hpp. When it gets merged with test.cpp, functions are not inlined because INLINE



More C++ Idioms/Print Version 73

is defined as an empty string. On the other hand when test.ipp is merged with test.hpp, INLINE is defined as inline
(the keyword). Now, what remains is to define _INLINE_ macro. Generally, all modern C/C++ compilers allow
defining macros at command line. For example to compile the above program on gcc using inlining, -D _INLINE_
option is used. If no such macro is defined, the functions are automatically treated as non-inline and program
compiles.

Known Uses
• ACE (Adaptive Communication Environment)
• TAO (The ACE ORB)

Related Idioms
• Include Guard Macro
• Export Guard Macro

Inner Class

Intent
• Implementing multiple interfaces without multiple inheritance and yet provide natural looking up-casting.
• Provide multiple implementations of the same interface in a single abstraction.

Motivation
Signature of a virtual function in two independent interfaces provided by two independent class libraries may collide.
It is a problem especially when a single class has to implement both the colliding functions in different ways
depending upon the interface you consider. For example,

class Base1 /// Provided by Moon

{

  public:

      virtual int open (int) = 0;

      /* virtual */ ~Base1() {}  // No polymorphic deletion allowed

};

class Base2 /// Provided by Jupitor

{

  public:

      virtual int open (int) = 0;

      /* virtual */ ~Base2() {}  // No polymorphic deletion allowed

};

class Derived : public Base1, public Base2

{

  public:

    virtual int open (int i)

    {

      // Call from which base class?

      return 0;

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Include_Guard_Macro
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Export_Guard_Macro


More C++ Idioms/Print Version 74

    }

    /* virtual */ ~Derived () {}

};

The inner class idiom can help solve this problem.

Solution and Sample Code
Leaving the interface classes, Base1 and Base2 unchanged we can implement the Derived class as follows.

class Derived // Note no inheritance

{

  class Base1_Impl;

  friend class Base1_Impl;

  class Base1_Impl: public Base1 // Note public inheritance

  {

     public:

       Base1_Impl (Derived * p) : parent_ (p) {}

       virtual int open (int) 

       {

          return parent_->base1_open ();

       }

     private:

       Derived * parent_;

  } base1_obj;   // Note member object here.

  class Base2_Impl;

  friend class Base2_Impl;

  class Base2_Impl: public Base2 // Note public inheritance

  {

     public:

       Base2_Impl (Derived * p) : parent_ (p) {}

       virtual int open (int) 

       {

          return parent_->base2_open ();

       }

     private:

       Derived * parent_;

  } base2_obj; // Note member object here

  int base1_open () {}

  int base2_open () {}

  public:

   

    Derived () : base1_obj (this), base2_obj(this) {}

    operator Base1 & () { return base1_obj; }

    operator Base2 & () { return base2_obj; }



More C++ Idioms/Print Version 75

};

int base1_open (Base1 & b1)

{

  return b1.open (1);

}

int base2_open (Base2 & b2)

{

  return b2.open (2);

}

int main (void)

{

  Derived d;

  base1_open (d);  // Like upcasting in inheritance.

  base2_open (d);  // Like upcasting in inheritance.

}

Note the use of conversion operators in class Derived. (Derived class is really not a derived class!) The conversion
operators allow conversion of Derived to Base1 even though they don't share inheritance relationship themselves!
Use of member objects base1_obj and base2_obj eliminates the concern of object lifetime. Lifetime of member
objects is same as that of the Derived object.

Related Idioms
• Interface Class
• Capability Query

References
Thinking in C++ Vol 2 - Practical Programming --- by Bruce Eckel.

Int-To-Type

Intent
• To treat an integral constant as a type at compile-time.
• To achieve static call dispatch based on constant integral values.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Interface_Class
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Capability_Query


More C++ Idioms/Print Version 76

Also Known As
Integral constant wrappers

Motivation
Function overloading in C++ is based on different types, which prevents compile-time integral constants taking part
into function overload resolution. There are at least two different mechanisms to perform static dispatching based on
integral constants. First is enable-if idiom and the other one is the int-to-type idiom described below.

Solution and Sample Code
A simple template, initially described in Dr. Dobb's Journal (http:/ / www. ddj. com/ cpp/ 184403750) by Andrei
Alexandrescu provides a solution to this idiom.

template <int I>

struct Int2Type

{

  enum { value = I };

};

The above template creates different types for different integer values used to instantiate the template. For example,
Int2Type<5> is a different type from Int2Type<10>. Moreover, the integral parameter is saved in the associated
constant value. As each integral constant results in a different type, this simple template can be used for static
dispatching based on integral constants as shown below.
Consider an Array class that encapsulates a fixed size array very similar to that of the standard array class from TR1.
In fact, our Array class is implemented as a derived class of the standard TR1 array class with the only difference of
a sort function.
We intend to dispatch sort function at compile-time based on the size of the array to achieve some performance
optimizations. For example, sorting an array of size zero or one should be a no-op. Similarly, arrays smaller than size
50 should be sorted using the insertion-sort algorithm whereas as larger arrays should be sorted using the quick-sort
algorithm because insertion-sort algorithm is often more efficient than quick-sort algorithm for small data size. Note
that, this selection of the sorting algorithm can be trivially done using run-time if condition. However, int-to-type
idiom is used to achieve the same effect at compile-time as shown below.

#include <iostream>

#include <tr1/array>

template <int I>

struct Int2Type

{

  enum { value = I };

};

template <class T, unsigned int N>

class Array : public std::tr1::array <T, N>

{

   enum AlgoType { NOOP, INSERTION_SORT, QUICK_SORT };

   static const int algo = (N==0) ? NOOP : 

                           (N==1) ? NOOP :

                     (N<50) ? INSERTION_SORT : QUICK_SORT;

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/enable-if
http://www.ddj.com/cpp/184403750


More C++ Idioms/Print Version 77

   void sort (Int2Type<NOOP>) { std::cout << "NOOP\n"; }

   void sort (Int2Type<INSERTION_SORT>) { std::cout << "INSERTION_SORT\n"; }

   void sort (Int2Type<QUICK_SORT>) { std::cout << "QUICK_SORT\n"; }

 public:

   void sort()

   {

     sort (Int2Type<algo>());

   }

}

int main(void)

{

  Array<int, 1> a;

  a.sort(); // No-op!

  Array<int, 400> b;

  b.sort(); // Quick sort  

}

Few more associated types and constants can be defined with Int2Type template to increase its usability. For
example, enumeration value is used to retrieve the integer constant associated with the type. Finally, other typedefs
such as, next and previous are used to find other types in order such that Int2Type<7>::next is the same type as
Int2Type<9>::previous.

template <int I>

struct Int2Type

{

  enum { value = I };

  typedef int value_type;

  typedef Int2Type<I> type;

  typedef Int2Type<I+1> next;

  typedef Int2Type<I-1> previous;

};

Known Uses
• Integral constant wrappers (bool_, int_, long_) (http:/ / www. boost. org/ doc/ libs/ 1_36_0/ libs/ mpl/ doc/

refmanual/ integral-constant. html) in Boost.MPL
• Dimensional Analysis (http:/ / www. boost. org/ doc/ libs/ 1_36_0/ libs/ mpl/ doc/ tutorial/

representing-dimensions. html)

Related Idioms
• enable-if
• Type Generator

http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/integral-constant.html
http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/refmanual/integral-constant.html
http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/tutorial/representing-dimensions.html
http://www.boost.org/doc/libs/1_36_0/libs/mpl/doc/tutorial/representing-dimensions.html
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/enable-if
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Generator


More C++ Idioms/Print Version 78

References
[1] Generic<Programming>: Mappings between Types and Values (http:/ / www. ddj. com/ cpp/ 184403750) --
Andrei Alexandrescu

Interface Class

Intent
• To separate an interface of a class from its implementation.
• Invoke implementation of an abstraction/class using runtime polymorphism.

Motivation
Separating an interface of a class from its implementation is fundamental to good quality object oriented software
design/programming. For object oriented programming, the principal mechanism of separation is the Interface Class.
However C++ (when compared to, say, Java) provides no exclusive mechanism for expressing such a separation. In
Java, interface keyword is used to specify only the public methods that are supported by an abstraction. C++ does
not have such a keyword but its functionality can be expressed closely using the Interface Class idiom. The idea is to
express only the public methods of an abstraction and provide no implementation of any of them. Also, lack of
implementation means no instances of the interface class should be allowed.

Solution and Sample Code
An interface class contains only a virtual destructor and pure virtual functions, thus providing a construct similar to
the interface constructs of other languages (e.g. Java). An interface class is a class that specifies the polymorphic
interface i.e. pure virtual function declarations into a base class. The programmer using a class hierarchy can then do
so via a base class that communicates only the interface of classes in the hierarchy.

class shape   // An interface class

{

  public:

    virtual ~shape();

    virtual void move_x(int x) = 0;

    virtual void move_y(int y) = 0;

    virtual void draw() = 0;

//...

};

class line : public shape

{

  public:

    virtual ~line();

    virtual void move_x(int x); // implements move_x

    virtual void move_y(int y); // implements move_y

    virtual void draw(); // implements draw

  private:

    point end_point_1, end_point_2;

//...

};

http://www.ddj.com/cpp/184403750


More C++ Idioms/Print Version 79

int main (void)

{

  std::vector<shape *> shapes;

  //  Fill up shapes vector somehow.

  for (vector<shape *>::iterator iter (shapes.begin());

       iter != shapes.end();

       ++iter)

  {

    (*iter)->draw();

  }

  //  Clean up shapes vector. (Normally we would use something like 

boost::shared_ptr to automate cleanup,

  //  this is for illustration only)

}

Every interface class should have a virtual destructor. Virtual destructor makes sure that when a shape is deleted
polymorphically, correct destructor of the derived class is invoked. Otherwise there is a good chance of resource
leak. Benefit of expressing design using interface classes are many:
• New shape abstractions can be added without changing the code that depends only on shape interface. For

example, Square can inherit from shape and implement the interface methods in its own way. The function main()
needs no changes at all.

• Separation of interface from implementation prevents recompilation of parts of the program that depend only on
the interface classes.

• Dependency Inversion Principle (DIP) states that implementation classes should not depend on each other.
Instead, they should depend on common abstraction represented using an interface class. DIP reduces coupling in
a object-oriented system.

Known Uses
Nearly all good object-oriented software in C++!

Related Idioms
• Capability Query
• Inner Class

References
C++ Interface Classes - An Introduction (http:/ / www. twonine. co. uk/ articles/ CPPInterfaceClassesIntro. pdf)

Iterator Pair

Intent
Specify a range of data values without worrying about the underlying data structure used by the data values.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Capability_Query
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Inner_Class
http://www.twonine.co.uk/articles/CPPInterfaceClassesIntro.pdf


More C++ Idioms/Print Version 80

Motivation
It is well understood that it is useful to create a vector<int> from another vector<int> using a copy constructor.
Similarly, it is useful to create a vector<double> from a vector<int> using Coercion by Member Template idiom
applied on a member template constructor. A code example is given below.

template <class T>

class vector

{

  public:

    vector (const vector<T> &); // copy constructor

    template <class U>

    vector (const vector<U> &); // constructor using Coercion by Member 

Template Idiom.

};

The vector interface is still not flexible enough for some needs. For example, A vector can't create itself from a list or
a set or a POD array.

template <class T>

class vector

{

  public:

    vector (const list<T> &); 

    // constructor must know the interface of list<T> (not necessarily 

std::list)

    vector (const set<T> &); 

    // constructor must know the interface of set<T> (not necessarily 

std::set)

    vector (const T * pod_array);

    // another constructor - does not know where pod_array ends - too 

inflexible!

};

Iterator-pair is an idiom that addresses this challenge. It is based on the Iterator design pattern (obviously!) Iterator
pattern intent: Provide an object which traverses some aggregate structure, abstracting away assumptions about the
implementation of that structure.

Solution and Sample Code
A pair of iterators is used to designate a beginning and an end of a range of values. By virtue of the iterator design
pattern whoever (in our example vector) uses iterator pair idiom can access the range without worrying about the
implementation of the aggregate data structure. The only requirement is that the iterators should expose a fixed,
minimal interface such as a pre-increment operator.

template <class T>

class vector

{

    T * mem;

  public:

    template <class InputIterator>



More C++ Idioms/Print Version 81

    vector (InputIterator begin, InputIterator end) // Iterator-pair 

constructor

    {

      // allocate enough memory and store in mem.

      for (int i = 0; begin != end; ++i)

      {

        mem[i] = *begin;

        ++begin;

      }

    }

};

int main (void)

{

  std::list<int> l(4);

  std::fill(l.begin(),l.end(), 10);    // fill up list using iterator 

pair technique.

  std::set<int> s(4);

  std::fill(s.begin(),s.end(), 20);    // fill up set using iterator 

pair technique.

  std::vector<int> v1(l.begin(), l.end());  // create vector using iterator 

pair technique.

  std::vector<int> v2(s.begin(), s.end());  // create another vector.

}

Iterator-pair idiom is often combined with member templates because the exact type of the iterators is not known
apriori. It could be set<T>::iterator or list<T>::iterator or a POD array. Irrespective of the type, any generic
algorithm written in terms of the iterator pairs works. It is often useful to indicate the concept that iterator types are
supposed to model. In the example above, the iterators are required to model at least the InputIterator concept. More
information about iterator categories (tags) and their uses are described in Tag Dispatching idiom.
Sometime iterator pair idiom is unavoidable. For example, to construct a std::string from a buffer of characters with
embedded null characters iterator-pair idiom is unavoidable.

char buf[] = { 'A', 'B', 0, 'C', 0, 'D'};

std::string str1 (buf); // only creates "AB"

std::string str2 (buf, buf + sizeof (buf)); // Using iterator pair. 

Creates "AB_C_D"

// buf is start of the range and buf + sizeof (buf) is the end of the 

range.

std::cout << str1 << " length = " << str1.length() << std::endl; // AB length = 2

std::cout << str2 << " length = " << str2.length() << std::endl; // AB_C_D length = 6



More C++ Idioms/Print Version 82

Known Uses
All standard containers

Related Idioms
• Coercion by Member Template
• Tag Dispatching

Making New Friends

Intent
To simplify creation of friend functions for a class template.

Motivation
Friend functions are often used to provide some auxiliary additional interfaces for a class. For example, insertion
(<<), extraction (>>) operators and overloaded arithmetic operators are often friends. Declaring friend functions of a
class template is a little more complicated compared to declaring a friend function for a non-template class. There
are four kinds of relationships between classes and their friends when templates are involved:
• One-to-many: A non-template function may be a friend to all template class instantiations.
• Many-to-one: All instantiations of a template function may be friends to a regular non-template class.
• One-to-one: A template function instantiated with one set of template arguments may be a friend to one template

class instantiated with the same set of template arguments. This is also the relationship between a regular
non-template class and a regular non-template friend function.

• Many-to-many: All instantiations of a template function may be a friend to all instantiations of the template class.
The one-to-one relationship is of interest here because setting that up in C++ requires additional syntax. An example
follows.

template<typename T>

class Foo {

   T value;

public:

   Foo(const T& t) { value = t; }

   friend ostream& operator<<(ostream&, const Foo<T>&);

};

template<typename T>

ostream& operator<<(ostream os, const Foo<T> b) {

   return os << b.value;

} 

The above example is no good for us because the inserter is not a template but it still uses a template argument (T).
This is a problem since it’s not a member function. The operator<<( ) must be a template so that distinct
specialization for each T can be created.
Solution here is to declare a insertion operator template outside the class before friend declaration and adorn the
friend declaration with <>. It indicates that a template declared earlier should be made friend.

// Forward declarations

template<class T> class Foo;

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Coercion_by_Member_Template
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Tag_Dispatching


More C++ Idioms/Print Version 83

template<class T> ostream& operator<<(ostream&,

                                      const Foo<T>&);

template<class T>

class Foo {

   T val;

public:

   Foo(const T& t) { val = t; }

   friend ostream& operator<< <>(ostream&, const Foo<T>&);

};

template<class T>

ostream& operator<<(ostream& os, const Foo<T>& b)

{

   return os << b.value;

} 

A disadvantage of the above solution is that it is quite verbose.

Solution and Sample Code
Dan Saks suggested another approach to overcome the verbosity of the above solution. His solution is known as
"Making New Friends" idiom. The idea is to define the friend function inside the class template as shown below.

template<typename T>

class Foo {

   T value;

public:

   Foo(const T& t) { value = t; }

   friend ostream& operator<<(ostream& os, const Foo<T>& b)

   {

      return os << b.value;

   }

}; 

Such a friend function is not a template but the template as a factory for "making" new friends. A new non-template
function is created for each specialization of Foo.

Metafunction

Intent
• To encapsulate a complex type computation algorithm
• To generate a type using compile-time type selection techniques

Motivation
Templates is a powerful feature of C++, which can be used to perform arbitrary computations at compile-time, which 
is known as template metaprogramming. Some of the basic examples of the computations performed at compile-time 
are: (1) selection of a type based on compile-time constants or (2) computing factorial of a number. As a matter of 
fact, C++ templates is a turing complete (http:/ / ubiety. uwaterloo. ca/ ~tveldhui/ papers/ 2003/ turing. pdf)

http://ubiety.uwaterloo.ca/~tveldhui/papers/2003/turing.pdf


More C++ Idioms/Print Version 84

sub-language of C++. Metafunction idiom is the principal way of writing compile-time algorithms in C++.
Algorithms -- compile-time or run-time -- should be encapsulated so that they are easier to use and reuse.
Conventionally, run-time algorithms are encapsulated in functions that are invoked, obviously, at run-time.
Metafunctions, on the other hand, are compile-time analogs of run-time functions. Traditional functions accept
values/objects as parameters and return values/objects. However, metafunctions accept types and compile-time
constants as parameters and return types/constants.

Solution and Sample Code
A metafunction, contrary to its name, is a class template. Implementation of metafunctions is often based on
template specializations. For example, consider the following IF metafunction, which is compile-time equivalent of
run-time if statement. Depending upon the value of the first parameter, IF metafunction yields either an int or a long
in the example below.

template <bool, class L, class R>

struct IF

{

  typedef R type; 

};

template <class L, class R>

struct IF<true, L, R>

{

  typedef L type; 

};

IF<false, int, long>::type i; // is equivalent to long i;

IF<true,  int, long>::type i; // is equivalent to int i;

Factorial metafunction below is another example showing how a recursive factorial computation algorithm can be
encapsulated using C++ templates. This metafunction yields an integral value rather than a type.

template <int N>

struct Factorial 

{

    enum { value = N * Factorial<N - 1>::value };

};

 

template <>

struct Factorial<0> 

{

    enum { value = 1 };

};

 

// Factorial<4>::value == 24

// Factorial<0>::value == 1

void foo()

{

    int x = Factorial<4>::value; // == 24



More C++ Idioms/Print Version 85

    int y = Factorial<0>::value; // == 1

}

Metafunction and Type Generator

Metafunction is a more general idiom than the type generator idiom. The intent of metafunction idiom is to
encapsulate compile-time computation where as, type generator simplifies specification of a type. Metafunctions that
produce type(s) as a result of a compile-time computation are all type generators, albeit more complex. However, not
every metafunction is a type generator. For example, the Factorial metafunction shown before produces an integral
value, not a type, at the end of the computation. Generally, metafunctions are implemented using compile-time
control structures or other metafunctions unlike type generators.
Libraries such as Boost.MPL (http:/ / www. boost. org/ doc/ libs/ release/ libs/ mpl) provide a large collection of
metafunctions and compile-time data structures to simplify C++ template metaprogramming.
Higher order metafunctions

These are metafunctions that accept other metafunctions as parameters and use them during computation. This is
conceptually is similar a function accepting a pointer to another function or a function object as a parameter at
run-time. Only difference is that metafunctions exist only at compile-time. boost::mpl::transform is an example of
such a higher order metafunction.

Known Uses
Boost.MPL (http:/ / www. boost. org/ doc/ libs/ release/ libs/ mpl)

Related Idioms
• Type Generator

References
A Deeper Look at Metafunctions (http:/ / www. artima. com/ cppsource/ metafunctions. html) -- David Abrahams
and Aleksey Gurtovoy

Move Constructor

Intent
To transfer the ownership of a resource held by an object to a new object

Also Known As
• Colvin-Gibbons trick
• Source and Sink Idiom

Motivation
Some objects in C++ exhibit so called move semantics. For example, std::auto_ptr. In the code that follows
auto_ptr b ceases to be useful after the creation of object a.

std::auto_ptr <int> b (new int (10));

std::auto_ptr <int> a (b);

The copy constructor of auto_ptr modifies its argument, and hence it does not take a const reference as a 
parameter. It poses no problem in the above code because object b is not a const object. But it creates a problem

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Generator
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Compile_Time_Control_Structures
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Compile_Time_Control_Structures
http://www.boost.org/doc/libs/release/libs/mpl
http://www.boost.org/doc/libs/release/libs/mpl
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Generator
http://www.artima.com/cppsource/metafunctions.html


More C++ Idioms/Print Version 86

when a temporary is involved.
When a function returns an object by value and that returned object is used as an argument to a function (for example
to construct another object of the same class), compilers create a temporary of the returned object. These temporaries
are short lived and as soon as the statement is executed, the destructor of the temporary is called. The temporary
therefore owns its resources for a very short time. The problem is that temporaries are quite like const objects (it
makes little sense to modify a temporary object). Therefore, they can not bind to a non-const reference and as a
result, can not be used to call the constructor taking a non-const reference. A move constructor can be used in
such cases.

Solution and Sample Code
template <class T>

class MoveResource

{

  private:

    struct proxy

    {

      T * resource_;

    };

    T * resource_;

  public:

    MoveResource (T * r = 0) : resource_(r) { }  

    MoveResource (MoveResource &m) throw () // Move constructor (note 

non-const parameter)

      : resource_ (m.resource_)

    {

      m.resource_ = 0;

    }

    MoveResource (proxy p) throw () // The proxy move constructor

      : resource_(p.resource_)

    {

    }

    MoveResource & operator = (MoveResource &m) throw () // 

Move-assignment operator (note non-const parameter)

    {

      // copy and swap idiom

      MoveResource temp (m);

      temp.swap (*this);

      return *this;

    }

    MoveResource & operator = (proxy p) throw ()

    {

      // copy and swap idiom

      MoveResource temp (p);

      temp.swap (*this);

      return *this;

    }

    void swap (MoveResource &m) throw ()



More C++ Idioms/Print Version 87

    {

      std::swap (this->resource_, m.resource_);

    }

    operator proxy () throw () // A helper conversion function. Note 

that it is non-const

    {

      proxy p;

      p.resource_ = this->resource_;

      this->resource_ = 0;

      return p;

    }

};

The move constructor/assignment idiom plays an important role in the code snippet below.

MoveResource<int> func()

{

  MoveResource<int> m(new int());

  return m;

}

int main()

{

  MoveResource<int> a(func()); // Assuming this call is not return value 

optimized (RVO'ed).

}

The function func shown above, returns the object by value i.e., a temporary object is returned. Though
MoveResource does not have any copy-constructor, the construction of local variable a in main succeeds,
while moving the ownership away from the temporary object. This is possible because of a combination of two
subtle (but standard) properties of C++.
• A sequence of conversions via the proxy object is identified automatically by the compiler.
• The conversion function operator proxy() is non-const. This member conversion operator is used to

modify the temporary object! (an important exception)
The compiler seeks a copy-constructor to initialize object a. However, there is no copy-constructor with a reference
to const parameter for the MoveResource class. The compiler identifies that a constructor that accepts a proxy
object parameter is provided. So it tries to identify a conversion operator that converts an object from
MoveResource to proxy. As a matter of fact, such a conversion operator is also provided (operator
proxy()). Upon invocation of this conversion function, the local MoveResource object (m) loses its resource
ownership. Only the proxy object knows the pointer to T for a very brief period of time. Subsequently, the
converting constructor (the one that takes proxy as a parameter) successfully obtains the ownership (object a in
main).
Let's look into the details of how temporary objects are created and used. In fact, the above steps are executed (g++ 
4.1.2) not once but twice in exactly the same way. First to create a temporary MoveResource object and later to 
create the final object a in main. The second exceptional rule of C++ comes into play when a is being created 
from the temporary MoveResource object. The conversion function (operator proxy()) is called on the 
temporary MoveResource object. However, it is non-const. Commonly held belief is that temporaries are 
const objects. Well, almost! A non-const member function can be called on a temporary object unlike real const 
objects. Section 3.10.10 in C++ ISO/IEC 14882:1998 standard clearly mentions this exception. More information on



More C++ Idioms/Print Version 88

this exception can be found here (http:/ / cpptruths. blogspot. com/ 2009/ 08/ modifying-temporaries. html). The
conversion operator happens to be a non-const member function. Therefore, the temporary MoveResource object
also looses its ownership as described above. A number of temporary proxy objects also are created and destroyed
when the compiler figures out the right sequence of conversion functions. It is possible that the compiler might
eliminate certain temporaries using return value optimization (RVO).
It is also important that these functions be non-throwing to guarantee at least basic exception guarantee. No
exceptions should be thrown in the meanwhile, otherwise there will be resource leaks.
The upcoming feature of C++0x language standard, Rvalue references (http:/ / www. artima. com/ cppsource/ rvalue.
html), will eliminate the need for the Move Constructor idiom.
Alternatives

A possible (but inferior) alternative is to use a mutable member to keep track of ownership to sneak past the
const-correctness checks of the compiler. The following code shows how the MoveResource may be
implemented alternatively.

template<class T>

class MoveResource

{

  mutable bool owner;

  T* px;

public:

  explicit MoveResource(T* p=0)

       : owner(p), px(p) {}

  MoveResource(const MoveResource& r)

       : owner(r.owner), px(r.release()) {}

  MoveResource & operator = (const MoveResource &r)

  {

    if ((void*)&r != (void*)this)

    {

      if (owner)

        delete px;

      owner = r.owner;

      px = r.release();

    }

    return *this;

  }

  ~MoveResource() { if (owner) delete px; }

  T& operator*() const { return *px; }

  T* operator->() const { return px; }

  T* get()    const { return px; }

  T* release()  const { owner = false; return px; } // mutable 

'ownership' changed here.

};

This technique, however, has several disadvantages.

http://cpptruths.blogspot.com/2009/08/modifying-temporaries.html
http://www.artima.com/cppsource/rvalue.html
http://www.artima.com/cppsource/rvalue.html


More C++ Idioms/Print Version 89

• The copy constructor and copy-assignment operators do not make logical copies. On the contrary, they transfer
the ownership from right hand side object to *this. This fact is not reflected in the interface of the second
implementation of MoveResource. The first MoveResource class accepts a MoveResource object by
non-const reference, which prevents the use of the object in contexts where a copy is expected.

• The Const auto_ptr idiom, which is C++03's way of preventing transfer of ownership is simply not possible with
the second implementation of the MoveResource class. This idiom depends on the fact that const auto_ptr
objects cannot bind to the non-const reference parameters of the move-constructor and move-assignment
operators. Making the parameters const references defeats the purpose.

• The boolean flag 'owner' increases the size of the structure. The increase in size is substantial (essentially
double) for classes like std::auto_ptr, which otherwise contain just a pointer. Doubling of the size is due to
compiler-enforced alignment of data.

Known Uses
std::auto_ptr

Related Idioms
• Resource Acquisition Is Initialization (RAII)
• Scope Guard
• Resource Return
• Const auto_ptr

References
• Move Constructors - by M. D. Wilson (http:/ / www. synesis. com. au/ resources/ articles/ cpp/ movectors. pdf)
• auto_ptr and auto_ptr_ref - by Nicolai Josuttis (http:/ / www. josuttis. com/ libbook/ auto_ptr. html)
• Change Of Authority and Thread Safe Interface goes synchronized - by Philipp Bachmann (http:/ / hillside. net/

plop/ 2005/ proceedings/ PLoP2005_pbachmann1_0. pdf)
• A Brief Introduction to Rvalue References (http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2006/

n2027. html)

Multi-statement Macro

Intent
To write a multi-statement (multi-line) macro.

Motivation
Sometimes it is useful to group two or more statements into a macro and call them like a function call. Usually, an
inline function should be the first preference but things such as debug macros are almost invariably macros rather
than function calls. Grouping multiple statments into one macro in a naive way could lead to compilation errors,
which are not obvious at first look. For example,

#define MACRO(X,Y) { statement1; statement2; }

would fail in an if statement if a semi-colon is appended at the end.

if (cond)

   MACRO(10,20); // Compiler error here because of the semi-colon.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Const_auto_ptr
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Resource_Acquisition_Is_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Scope_Guard
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Resource_Return
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Const_auto_ptr
http://www.synesis.com.au/resources/articles/cpp/movectors.pdf
http://www.josuttis.com/libbook/auto_ptr.html
http://hillside.net/plop/2005/proceedings/PLoP2005_pbachmann1_0.pdf
http://hillside.net/plop/2005/proceedings/PLoP2005_pbachmann1_0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2027.html


More C++ Idioms/Print Version 90

else

   statement3;

The above statement expands to

if (cond)

   { statement1; statement2; }; // Compiler error here because of the 

semi-colon.

else

   statement3;

giving a compiler error. Therefore, people came up with a widely used idiom for multi-statement macros, which is
based on a do-while loop.

Solution and Sample Code
Here is an example of the multi-statement macro idiom.

#define MACRO(arg1, arg2) do {  \

  /* declarations, if any */    \

  statement1;                   \

  statement2;                   \

  /* ... */                     \

  } while(0)      /* (no trailing ; ) */

When the caller appends a semicolon, this expansion becomes a single statement regardless of the context.
Optimizing compilers usually remove any dead tests, such as while(0). This idiom is not useful when macro is used
as a parameter to a function call. Moreover, this idiom allows return statement.

func(MACRO(10,20)); // Syntax error here.

Known Uses
ACE_NEW_RETURN, ACE_NEW_NORETURN macros in Adaptive Communication Environement (ACE).

#define ACE_NEW_RETURN(POINTER,CONSTRUCTOR,RET_VAL) \

      do { POINTER = new (ACE_nothrow) CONSTRUCTOR; \

      if (POINTER == 0) { errno = ENOMEM; return RET_VAL; } \

    } while (0)

References
• What's the best way to write a multi-statement macro? (http:/ / c-faq. com/ cpp/ multistmt. html)

Member Detector

Intent
To detect the presence of a specific data member in a class.

Motivation

http://c-faq.com/cpp/multistmt.html


More C++ Idioms/Print Version 91

Compile-time reflection capabilities are the cornerstone of C++ template meta-programming. Type traits libraries
such as Boost.TypeTraits and TR1 <type_traits> header provide powerful ways of extracting information about types
and their relationships. Detecting the presence of a data member in a class is also an example of compile-time
reflection.

Solution and Sample Code
Member detector idiom is implemented using the Substitution Failure Is Not An Error (SFINAE) idiom. The
following class template DetectX<T> is a meta-function that determines whether type T has a data member named X
in it or not. Note that the type of the data member X does not matter.

template<typename T>

class DetectX

{

    struct Fallback { int X; }; // add member name "X"

    struct Derived : T, Fallback { };

    template<typename U, U> struct Check;

    typedef char ArrayOfOne[1];  // typedef for an array of size one.

    typedef char ArrayOfTwo[2];  // typedef for an array of size two.

    template<typename U> 

    static ArrayOfOne & func(Check<int Fallback::*, &U::X> *);

    

    template<typename U> 

    static ArrayOfTwo & func(...);

  public:

    typedef DetectX type;

    enum { value = sizeof(func<Derived>(0)) == 2 };

};

This idiom works by creating a controlled ambiguity during compilation and recovering from that using the SFINAE
idiom. First proxy class, Fallback, has a data member of the same name that we want to detect the presence of. Class
Derived inherits from both T and Fallback. As a result, Derived class will have at least one data member named X.
Potentially, Derived class may have two X data members if T also has one.
The Check template is used to create controlled ambiguity. Check template takes two parameters. First is a type
parameter and the second is an instance of that type. For example, Check<int, 5> is be a valid instantiation. Two
overloaded functions named func create an overload-set as often done in the SFINAE idiom. The first func function
can be instantiated only if the address of data member U::X can be taken unambiguously. Address of U::X can be
taken if there is exactly one X data member in the Derived class; i.e., T does not have data member X. If T has X in it,
the address of U::X can't be taken without further disambiguation and therefore the instantiation of the first func fails
and the other function is chosen, all without an error. Note the difference between the return types of the two func
functions. The first function returns a reference to array of size one whereas the second one returns a reference to an
array of size two. This difference in the sizes allows us to identify which function was instantiated.
Finally, a boolean value is exposed, which is true only if the sizeof the return type of the function is two. That is,
when the second func is instantiated only because T has X data member.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/SFINAE


More C++ Idioms/Print Version 92

For every different member that is to be detected, the above class template needs to change. A macro would be
preferable in such cases. The following sample code demonstrates the use of a macro.

#define CREATE_MEMBER_DETECTOR(X)

                                                   \

template<typename T> class Detect_##X {

                                             \

    struct Fallback { int X; };

                                                     \

    struct Derived : T, Fallback { };

                                               \

                                                                                    

\

    template<typename U, U> struct Check;                                           \

                                                                                    

\

    typedef char ArrayOfOne[1];

                                                     \

    typedef char ArrayOfTwo[2];

                                                     \

                                                                                    

\

    template<typename U> static ArrayOfOne & func(Check<int Fallback::*, &U::X> *); \

    template<typename U> static ArrayOfTwo & func(...);

                             \

  public:

                                                                           

\

    typedef Detect_##X type;

                                                        \

    enum { value = sizeof(func<Derived>(0)) == 2 };

                                 \

};

CREATE_MEMBER_DETECTOR(first);

CREATE_MEMBER_DETECTOR(second);

int main(void)

{

  typedef std::pair<int, double> Pair;

  std::cout << ((Detect_first<Pair>::value && Detect_second<Pair>::value)? "Pair" : "Not Pair");

}

Detecting overloaded member functions



More C++ Idioms/Print Version 93

A variation of the member detector idiom can be used to detect existence of a specific member function in a class
even if it is overloaded.

template<typename T, typename RESULT, typename ARG1, typename ARG2>

class HasPolicy

{

    template <typename U, RESULT (U::*)(ARG1, ARG2)> struct Check;

    template <typename U> static char func(Check<U, &U::policy> *);

    template <typename U> static int func(...);

  public:

    typedef HasMember type;

    enum { value = sizeof(func<T>(0)) == sizeof(char) };

};

The HasPolicy template above checks if T has a member function called policy that takes two parameters ARG1,
ARG2 and returns RESULT. Instantiation of Check template succeeds only if U has a U::policy member function that
takes two parameters and returns RESULT. Note that the first type parameter of Check template is a type whereas the
second parameter is a pointer to a member function in the same type. If Check template cannot be instantiated, the
only remaining func that returns an int is instantiated. The size of the return value of func eventually determines the
answer of the type-trait: true or false.

Related Idioms
• Substitution Failure Is Not An Error (SFINAE)

References
• Substitution failure is not an error, part II (http:/ / cplusplus. co. il/ 2009/ 09/ 12/

substitution-failure-is-not-an-error-2), Roman Kecher

Named Constructor

Intent
• To have a readable and intuitive way of creating objects of a class
• To impose certain constraints while creating objects of a class

Motivation
In C++, constructors are distinguished from each other only based on the type, the order and the number of
parameters. Of course when a class has multiple constructors, each constructor has a different purpose. However, in
C++ it is hard to capture that "semantic" difference in the interface of the class because all the constructors have the
same name and only parameters can distinguish between them. Reading code with lots of constructor calls only
differing in the type/order/number of parameters is quite unintuitive except for the original developer of the class.
Named constructor idiom addresses the problem.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/SFINAE
http://cplusplus.co.il/2009/09/12/substitution-failure-is-not-an-error-2
http://cplusplus.co.il/2009/09/12/substitution-failure-is-not-an-error-2


More C++ Idioms/Print Version 94

Solution and Sample Code
The named constructor idiom uses a set of static member functions with meaningful names to create objects instead
of constructors. Constructors are either private or protected and clients have access only to the public static
functions. The static functions are called "named constructors" as each unique way of creating an object has a
different intuitive name. Consider the example below:

class Game

{

  public:

    static Game createSinglePlayerGame() { return Game(0); } // named 

constructor

    static Game createMultiPlayerGame() { return Game(1); }  // named 

constructor

  protected:

    Game (int game_type);

};

int main(void)

{

   Game g1 = Game::createSinglePlayerGame(); // Using named constructor

   Game g2 = Game(1); // multiplayer game; without named constructor 

(does not compile)

}

Without using the named constructor idiom in the class above, it is difficult to convey the meaning of what Game(1)
and Game(0) means. The idiom makes it loud and clear! Additionally, it is possible to put certain constraints on the
object creation process using this idiom. For example, named constructors could always create an object dynamically
using new. In such a case, Resource Return idiom could be helpful.

Related Idioms
Resource Return

References
http:/ / www. parashift. com/ c+ + -faq-lite/ ctors. html#faq-10. 8

Named Loop

Intent
To partially simulate the labeled loop feature found in other languages.

Also Known As
Labeled loop

Motivation
Some languages, such as Java and Perl, support labeled looping constructs. In these languages, break and continue 
keywords can optionally specify a previously-defined loop label to control the flow of the program. A labeled break 
brings the control-flow out of the specified loop and similarly, a labeled continue starts with the next iteration.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Return
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Return
http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.8


More C++ Idioms/Print Version 95

Labels allow breaking and continuing not just the innermost loop, but any outer loop that is labeled. Labeled break
and continue can improve the readability and flexibility of complex code which uses nested loops. Named loop
idiom in C++ provides partial support for this feature.

Solution and Sample Code
The named loop idiom is implemented using gotos. Macros are used to hide the explicit use of gotos, which is often
frowned upon. Only labeled break statements can be simulated using the following two parameterized macros.

#define named(blockname) goto blockname; \

                         blockname##_skip: if (0) \

                         blockname:

#define break(blockname) goto blockname##_skip;

The named(X) macro defines two goto labels X and X_skip. The break macro is a simple goto to the X_skip label. An
example follows.

struct test

{

  std::string str;

  test (std::string s) : str(s) { 

    std::cout << "test::test()::" << str << "\n"; 

  }

  ~test () { 

    std::cout << "~test::" << str << "\n"; 

  }

};

int main(void)

{

  named (outer) 

  for (int i = 0; i < 10; i++)

  {

    test t1("t1");

    int j = 0;

    named(inner)

    for (test t2("t2"); j < 5; j++)

    {

      test t3("t3");

      if (j == 1) break(outer);

      if (j == 3) break(inner);

      test t4("t4");

    }

    std::cout << "after inner\n";

  }

  return 0;

}



More C++ Idioms/Print Version 96

The gotos do not interfere with the proper construction and destruction of objects as confirmed by the output of the
above program.
test::test()::t1
test::test()::t2
test::test()::t3
test::test()::t4
~test::t4
~test::t3
test::test()::t3
~test::t3
~test::t2
~test::t1

Named Parameter

Intent
Simulate named (key-value pair) parameter passing style found in other languages instead of position-based
parameters.

Motivation
When a function takes many parameters, the programmer has to remember the types and the order in which to pass
them. Also, default values can only be given to the last parameters, so it is not possible to specify one of the later
parameters and use the default value for former ones. Named parameters let the programmer pass the parameters to a
function in any order and they are distinguished by a name. So the programmer can explicitly pass all the needed
parameters and default values without worrying about the order used in the function declaration.

Solution and Sample Code
Named parameter idiom uses a proxy object for passing the parameters. The parameters of the function are captured
as data members of the proxy class. The class exposes set methods for each parameter. The set methods return the
*this object by reference so that other set methods can be chained together to set remaining parameters.

class X

{

  public:

    int a;

    char b;

    

    X() : a(-999), b('C') {}  // Initialize with default values, if any.

    X & setA(int i) { a = i; return *this; } // non-const function

    X & setB(char c) { b = c; return *this; } // non-const function

      

    static X create() {

      return X();

    }

};



More C++ Idioms/Print Version 97

std::ostream & operator << (std::ostream & o, X const & x)

{

      o << x.a << " " << x.b;

      return o;

}

int main (void)

{

  // The following code uses the named parameter idiom.

  std::cout << X::create().setA(10).setB('Z') << std::endl;

} 

Known Uses
• bgl_named_params template in the Boost Graph Library (BGL) (http:/ / beta. boost. org/ doc/ libs/ 1_33_1/ libs/

graph/ doc/ bgl_named_params. html)
• boost::parameter (http:/ / boost. org/ libs/ parameter/ doc/ html/ index. html)

Related Idioms
• Named Template Parameters

References
• Named Parameter Idiom (http:/ / www. parashift. com/ c+ + -faq-lite/ ctors. html#faq-10. 20), Marshal Cline

Nifty Counter

Intent
Ensure a non-local static object is initialized before its first use and destroyed only after last use of the object.

Also Known As
Schwarz Counter

Motivation
When static objects use other static objects, the initialization problem becomes more complex. Static object must be
initialized before its use if it has non-trivial initialization. Initialization order of static objects across compilation
units is not well-defined. More than one static objects, spread across multiple compilation units, might be using a
single static object. For example, std::cout. std::cout can be used in the number of other static objects. Therefore, it
must be initialized before use.

http://beta.boost.org/doc/libs/1_33_1/libs/graph/doc/bgl_named_params.html
http://beta.boost.org/doc/libs/1_33_1/libs/graph/doc/bgl_named_params.html
http://boost.org/libs/parameter/doc/html/index.html
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Named_Template_Parameters
http://www.parashift.com/c++-faq-lite/ctors.html#faq-10.20
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Nifty_Counter


More C++ Idioms/Print Version 98

Solution and Sample Code
Nifty counter idiom is an example of reference counting idiom applied to the initialization of static objects.

//Stream.hpp

class StreamInitializer;

class Stream {

   friend class StreamInitializer;

 public:

   Stream () {

   // Constructor must be called before use.

   }

};

static class StreamInitializer {

  public:

    StreamInitializer ();

    ~StreamInitializer ();

} initializer; //Note object here in the header.

//Stream.cpp

static int nifty_counter = 0; 

// The counter is initialized at load-time i.e., before any of the 

static objects are initialized.

StreamInitializer::StreamInitializer ()

{

  if (0 == nifty_counter++)

  {

    // Initialize Stream object's static members.

  }

}

StreamInitializer::~StreamInitializer ()

{

  if (0 == --nifty_counter)

  {

    // Clean-up.

  }

}

The header file of Stream class has to be included before any member function can be called on the Stream object.
An instance of class StreamInitializer (called initializer) is included in each compilation unit. Any use of the Stream
object follows after the inclusion of header, which ensures that the constructor of the initializer object is called
before the Stream object is used.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idiom/Reference_Counting


More C++ Idioms/Print Version 99

Known Uses
Standard C++ iostream library std::cout, std::cin, std::cerr, std::clog.

Related Idioms
• Reference Counting

Non-copyable Mixin

Intent
To prevent objects of a class from being copy-constructed or assigned to each other.

Motivation
Many times it makes sense to prevent copying of objects of a class. For example, class that encapsulates network
connections. Copying can't be meaningfully defined for such classes. So it should be explicitly prevented without
relying on guidelines or discipline on programmer's part. The intent should also be easily identifiable just by looking
at the declaration of a class to improve readability.

Solution and Sample Code
A class called non-copyable is defined which has a private copy constructor and copy assignment operator.

class NonCopyable

{

  protected:

    NonCopyable () {}

    ~NonCopyable () {} /// Protected non-virtual destructor

  private: 

    NonCopyable (const NonCopyable &);

    NonCopyable & operator = (const NonCopyable &);

};

class CantCopy : private NonCopyable

{};

CantCopy objects can't be copied because the copy constructor and copy assignment operators of the private base
class NonCopyable are not accessible to the derived class. The traditional way to deal with these is to declare a
private copy constructor and copy assignment, and then document why this is done. But deriving from noncopyable
is simpler and clearer, and doesn't require additional documentation. private members of NonCopyable need not be
defined. NonCopyable can also be categorized as a mixin-from-above because it defines a reusable module that
"mixes-in" the feature of "non-copyability" into the derived class from "above". A CRTP based solution is given
below.

template <class T>

class NonCopyable

{

  protected:

    NonCopyable () {}

    ~NonCopyable () {} /// Protected non-virtual destructor

  private: 

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Reference_Counting


More C++ Idioms/Print Version 100

    NonCopyable (const NonCopyable &);

    T & operator = (const T &);

};

class CantCopy : private NonCopyable <CantCopy>

{};

Explicit copy-constructor

It is worthwhile to note that C++ allows one more way to control copy-construction. An explicit copy-constructor
will prevent the compiler from calling a copy-constructor implicitly. I.e., passing an object by value and returning an
object by value will be disabled for the class having an explicit copy-constructor. However, making explicit copies is
allowed.

struct NoImplicitCopy

{

  NoImplicitCopy () {}

  explicit NoImplicitCopy (const NoImplicitCopy &) {}

};

NoImplicitCopy foo()   // Compiler error because copy-constructor must 

be invoked implicitly to return by value.  

{

  NoImplicitCopy n;

  return n;

}

void bar(NoImplicitCopy n)   // Compiler error because copy-constructor

 must be invoked implicitly to pass by value.

{

}

int main(void)

{

  NoImplicitCopy n;

  NoImplicitCopy x(n);       // This is fine. explicit copy.

  n = foo();

  bar(n);

}



More C++ Idioms/Print Version 101

Known Uses
boost::noncopyable (http:/ / www. boost. org/ libs/ utility/ utility. htm#Class_noncopyable)

Related Idioms
Mixin-from-above

Non-throwing swap

Intent
• To implement an exception safe and efficient swap operation.
• To provide uniform interface to it to facilitate generic programming.

Also Known As
• Exception safe swap

Motivation
A typical implementation of swap could be given as follows:

template<class T>

void swap (T &a, T &b)

{

  T temp (a);

  a = b;

  b = temp;

}

This can be problematic for two reasons:
Performance

Swapping of two large, complex objects of the same type is inefficient due to acquisition and release of
resources for the intermediate temporary object.

Exception-safety
This generic swap implementation may throw if resources are not available. (Such a behavior does not make
sense where in fact no new resources should have been requested in the first place.) Therefore, this
implementation cannot be used for the Copy-and-swap idiom.

Solution and Sample Code
Non-throwing swap idiom uses Handle Body idiom to achieve the desired effect. The abstraction under
consideration is split between two implementation classes. One is handle and other one is body. The handle holds a
pointer to a body object. The swap is implemented as a simple swap of pointers, which are guaranted to not throw
exceptions and it is very efficient as no new resources are acquired or released.

namespace Orange {

class String 

{

    char * str;

  public:

http://www.boost.org/libs/utility/utility.htm#Class_noncopyable
http://en.wikibooks.org/w/index.php?title=Mixin-from-above
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-and-swap
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body


More C++ Idioms/Print Version 102

    void swap (String &s) // throw ()

    {

      std::swap (this->str, s.str);

    }

};

}

Although an efficient and exception-safe swap function can be implemented (as shown above) as a member function,
non-throwing swap idiom goes further than that for simplicity, consistency, and to facilitate generic programming.
An explicit specialization of std::swap should be added in the std namespace as well as the namespace of the class
itself.

namespace Orange { // namespace of String

  void swap (String & s1, String & s2) // throw ()

  {

    s1.swap (s2);

  }

}

namespace std {

  template <>

  void swap (Orange::String & s1, Orange::String & s2) // throw ()

  {

    s1.swap (s2);

  }

}

Adding it in two places takes care of two different common usage styles of swap (1) unqualified swap (2) fully
qualified swap (e.g., std::swap). When unqualified swap is used, right swap is looked up using Koenig lookup
(provided one is already defined). If fully qualified swap is used, Koenig lookup is suppressed and one in the std
namespace is used instead. It is a very common practice. Remaining discussion here uses fully qualified swap only.
It gives a uniform look and feel because C++ programmers often use swap function in an idiomatic way by fully
qualifying it with std:: as shown below.

template <class T>

void zoo (T t1, T t2) {

//...

int i1, i2;

std::swap(i1,i2); // note uniformity

std::swap(t1,t2); // Ditto here

}

In such a case, the right, efficient implementation of swap is chosen when zoo is instantiated with String class
defined earlier. Otherwise, the default std::swap function template would be instantiated -- completely defeating the
purpose of defining the member swap and namespace scope swap function. This idiom of defining explicit
specialization of swap in std namespace is particularly useful in generic programming.
Such uniformity in using non-throwing swap idiom leads to its cascading use as given in the example below.

class UserDefined 

{

    String str;



More C++ Idioms/Print Version 103

  public:

    void swap (UserDefined & u) // throw () 

    { 

      std::swap (str, u.str); 

    }

};

namespace std

{

  // Full specializations of the templates in std namespace can be 

added in std namespace.

  template <>

  void swap (UserDefined & u1, UserDefined & u2) // throw ()

  {

    u1.swap (u2);

  }

}

class Myclass

{

    UserDefined u;

    char * name;

  public:

    void swap (Myclass & m) // throw ()

    {

      std::swap (u, m.u);       // cascading use of the idiom due to 

uniformity

      std::swap (name, m.name); // Ditto here

    }   

}

namespace std

{

   // Full specializations of the templates in std namespace can be 

added in std namespace.

   template <> 

   void swap (Myclass & m1, Myclass & m2) // throw ()

   {

     m1.swap (m2);

   }

};

Therefore, it is a good idea to define a specialization of std::swap for the types that are amenable to an exception
safe, efficient swap implementation. The C++ standard does not currently allow us to add new templates to the std
namespace, but it does allow us to specialize templates (e.g. std::swap) from that namespace and add them back in it.



More C++ Idioms/Print Version 104

Caveats
Using non-throwing swap idiom for template classes (e.g., Matrix<T>) can be a subtle issue. As per the C++98
standard, only the full specialization of std::swap is allowed to be defined inside std namespace for the user-defined
types. Partial specializations or function overloading is not allowed by the language. Trying to achieve the similar
effect for template classes (e.g., Matrix<T>) results into overloading of std::swap in std namepspace, which is
technically undefined behavior. This is not necessarily the ideal state of affairs as indicated by some people in a
spectacularly long discussion thread on comp.lang.c++.moderated newsgroup.[1] There are two possible solutions,
both imperfect, to this issue:
1. Standard-compliant solution. Leveraging on Koenig lookup, define an overloaded swap function template in the

same namespace as that of the class being swapped. Not all compilers may support this correctly, but this solution
is compliant to the standard.[2]

2. Fingers-crossed solution. Partially specialize std::swap and ignore the fact that this is technically undefined
behavior, hoping that nothing will happen and wait for a fix in the next language standard.

Known Uses
All boost smart pointers (e.g., boost::shared_ptr)

Related Idioms
• Copy-and-swap

References
[1] "Namespace issues with specialized swap" (http:/ / groups. google. ca/ group/ comp. lang. c+ + . moderated/ browse_thread/ thread/

b396fedad7dcdc81). comp.lang.c++.moderated (Usenet newsgroup). 12 March 2000. .
[2] [[w:Herb Sutter Sutter, Herb; [[w:Andrei Alexandrescu Alexandrescu, Andrei (25 October 2004). C++ Coding Standards: 101 Rules,

Guidelines, and Best Practices. C++ In-Depth. Addison Wesley Professional. ISBN 0-321-11358-6. Item 66: Don't specialize function
templates.

Non-Virtual Interface

Intent
• To modularize/refactor common before and after code fragments (e.g., invariant checking, acquiring/releasing

locks) for an entire class hierarchy at one location.

Also Known As
• Template Method - a more generic pattern, from the Gang of Four's Design Patterns book.

Motivation
Pre- and post-condition checking is known to be a useful object-oriented programming technique particularly at
development time. Pre- and post-conditions ensure that invariants of a class hierarchy (and in general an abstraction)
are not violated at designated points during execution of a program. Using them at development time or during
debug builds helps in catching violations earlier. To maintain consistency and ease of maintenance of such pre- and
post-conditions, they should be ideally modularized at one location. In a class hierarchy, where its invariants must be
held before and after every method in the subclasses, modularization becomes important.
Similarly, acquiring and releasing locks on a data structure common to a class hierarchy can be considered as a pre-
and post-condition, which must be ensured even at production time. It is useful to separate the responsibility of lock

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Copy-and-swap
http://groups.google.ca/group/comp.lang.c++.moderated/browse_thread/thread/b396fedad7dcdc81
http://groups.google.ca/group/comp.lang.c++.moderated/browse_thread/thread/b396fedad7dcdc81
http://en.wikibooks.org/w/index.php?title=Herb_Sutter
http://en.wikibooks.org/w/index.php?title=Sutter%2C_Herb
http://en.wikibooks.org/w/index.php?title=Andrei_Alexandrescu
http://en.wikibooks.org/w/index.php?title=Alexandrescu%2C_Andrei


More C++ Idioms/Print Version 105

acquiring and releasing from subclasses and put it at one place - potentially in the base class.

Solution and Sample Code
Non-Virtual Interface (NVI) idiom allows us to refactor before and after code fragments at one convenient location -
the base class. NVI idiom is based on 4 guidelines outlined by Herb Sutter in his article named "Virtuality"[2].
Quoting Herb:
• Guideline #1: Prefer to make interfaces nonvirtual, using Template Method design pattern.
• Guideline #2: Prefer to make virtual functions private.
• Guideline #3: Only if derived classes need to invoke the base implementation of a virtual function, make the

virtual function protected.
• Guideline #4: A base class destructor should be either public and virtual, or protected and nonvirtual. - Quote

complete.
Here is some code that implements NVI idiom following the above 4 guidelines.

class Base {

private:

    ReaderWriterLock lock_;

    SomeComplexDataType data_;

public:

    void read_from( std::istream & i)  { // Note non-virtual

      lock_.acquire();

      assert(data_.check_invariants() == true); // must be true

      read_from_impl(i);

      assert(data_.check_invariants() == true); // must be true

      lock_.release();

    }

    void write_to( std::ostream & o) const { // Note non-virtual

      lock_.acquire();

      write_to_impl(o);

      lock_.release();

    }

    virtual ~Base() {}  // Virtual because Base is a polymorphic base 

class.

private:

    virtual void read_from_impl( std::istream & ) = 0;

    virtual void write_to_impl( std::ostream & ) const = 0;

};

class XMLReaderWriter : public Base {

private:

    virtual void read_from_impl (std::istream &) {

      // Read XML.

    }

    virtual void write_to_impl (std::ostream &) const {

      // Write XML.

    }



More C++ Idioms/Print Version 106

};

class TextReaderWriter : public Base {

private:

    virtual void read_from_impl (std::istream &) {}

    virtual void write_to_impl (std::ostream &) const {}

};

The above implementation of the base class captures several design intents that are central to achieving the benefits
of NVI idiom. This class intends to be used as a base class and therefore, it has a virtual destructor and some pure
virtual functions (read_from_impl, write_to_impl), which must be implemented by all the concrete derived classes.
The interface for clients (i.e., read_from and write_to) is separate from the interface for the subclasses (i.e.
read_from_impl and write_to_impl). Although the read_from_impl and write_to_impl are two private functions, the
base class can invoke the corresponding derived class functions using dynamic dispatch. These two functions give
the necessary extension points to a family of derived classes. However, they are prevented from extending the client
interface (read_from and write_to). Note that, it is possible to call interface for clients from the derived classes,
however, it will lead to recursion. Finally, NVI idiom suggests use of exactly one private virtual extension point per
public non-virtual function.
Clients invoke only the public interface, which in turn invokes virtual *_impl functions as in the Template Method
design pattern. Before and after invoking the *_impl functions, lock operations and invariant checking operations are
performed by the base class. In this way, hierarchy wide before and after code fragments can be put together at one
place, simplifying maintenance. Clients of the Base hierarchy still get polymorphic behavior even though they don't
invoke virtual functions directly. Derived classes should ensure that direct access to the implementation functions
(*_impl) is disallowed to the clients by making them private in the derived class as well.

Consequences
Using NVI idiom may lead to fragile class hierarchies if proper care is not exercised. As described in [1], in Fragile
Base Class (FBC) interface problem, subclass's virtual functions may get accidentally invoked when base class
implementation changes without notice. For example, the following code snippet (inspired by [1]) uses NVI idiom to
implement CountingSet, which has Set as a base class.

class Set {

    std::set<int> s_;

  public:

    void add (int i) {

      s_.insert (i);

      add_impl (i); // Note virtual call.

    }

    void addAll (int * begin, int * end) {

      s_.insert (begin, end);   //  --------- (1)

      addAll_impl (begin, end); // Note virtual call.

    }

  private:

    virtual void add_impl (int i) = 0;

    virtual void addAll_impl (int * begin, int * end) = 0;

};

class CountingSet : public Set {

  private:

    int count_;



More C++ Idioms/Print Version 107

    virtual void add_impl (int i) {

      count_++;

    }

    virtual void addAll_impl (int * begin, int * end) {

      count_ += std::distance(begin,end);

    }

};

The above class hierarchy is fragile in the sense that during maintenance, if the implementation of the addAll
function (indicated by (1)) is changed to call public non-virtual add function for every integer from begin to end,
then the derived class, CountingSet, breaks. As addAll calls add, the derived class's extension point add_impl is
called for every integer and finally addAll_impl is also called couting the range of integers twice, which silently
introduces a bug in the derived class! The solution is to observe a strict coding discipline of invoking exactly one
private virtual extension point in any public non-virtual interface of the base class. However, the solution depends on
programmer discipline and hence difficult to follow in practice.
Note how NVI idiom treats each class hierarchy as a tiny (some may like to call trivial) object-oriented framework,
where inversion of control (IoC) flow is commonly observed. Frameworks control the flow of the program as
opposed to the functions and classes written by the client, which is why it is known as inversion of control. In NVI,
the base class controls the program flow. In the example above, the Set class does the required common job of
insertion before calling the *_impl virtual functions (the extension points). The Set class must not invoke any of its
own public interface to prevent the FBC problem.
Finally, NVI idiom leads to a moderate degree of code bloat in the class hierarchy as the number of functions double
when NVI is applied. Size of the refactored code in the base class should be substantial to justify the use of NVI.

Related Idioms
• Interface Class
• Thread-Safe Interface, from Pattern-Oriented Software Architecture (volume 2) by Douglas Schmidt et al.
• Public Overloaded Non-Virtuals Call Protected Non-Overloaded Virtuals (http:/ / www. parashift. com/ c+ +

-faq-lite/ strange-inheritance. html#faq-23. 3)

References
[1] Selective Open Recursion: Modular Reasoning about Components and Inheritance - Jonathan Aldrich, Kevin
Donnelly.
[2] Virtuality! (http:/ / www. gotw. ca/ publications/ mill18. htm) -- Herb Sutter
[3] Conversations: Virtually Yours (http:/ / www. ddj. com/ cpp/ 184403760) -- Jim Hyslop and Herb Sutter
[4] Should I use protected virtuals instead of public virtuals? (http:/ / www. parashift. com/ c+ + -faq-lite/
strange-inheritance. html#faq-23. 3) -- Marshall Cline

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Interface_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Public_Overloaded_Non-Virtuals_Call_Protected_Non-Overloaded_Virtuals
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.3
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.3
http://www.gotw.ca/publications/mill18.htm
http://www.ddj.com/cpp/184403760
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.3
http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.3


More C++ Idioms/Print Version 108

nullptr

Intent
To distinguish between an integer 0 and a null pointer.

Motivation
For many years C++ had an embarrassment of not having a keyword to designate a null pointer. The upcoming C++
standard, C++0x, promises to eliminate the embarrassment. C++'s strong type checking makes C's NULL macro
almost useless in expressions, e.g.:

#define NULL ((void *)0) 

std::string * str = NULL; // Can't automatically cast void * to 

std::string *

void (C::*pmf) () = &C::func;

if (pmf == NULL) {} // Can't automatically cast from void * to pointer 

to member function.

So C++ uses literal integer 0 to designate so called null pointer. It works in overwhelmingly large number of cases
but sometimes can be confusing in the presence of overloaded functions. For example, the func(int) overload below
takes the precedence because the type of literal 0 is int.

void func(int);

void func(double *);

int main()

{

  func (static_cast <double *>(0)); // calls func(double *) as expected

  func (0); // calls func(int) but double * may be desired because 0 IS

 also a null pointer

}

More confusion arises when NULL macro is used. C++ requires that macro NULL be defined as an integral constant
expression having the value of 0. So unlike in C, NULL cannot be defined as (void *)0 in the C++ standard library.
Furthermore, the exact form of definition is left to the particular implementation, which means that e.g. both 0 and
0L are viable options, among some others. This is a trouble as it can cause confusion in overload resolution. Worse,
the way confusing overload resolution manifests itself will vary depending on the compiler and its settings used. An
illustrative case is shown in this slight modification of the example above:

#include <cstddef>

void func(int);

void func(double *);

int main()

{

  func (static_cast <double *>(0)); // calls func(double *) as expected

  func (0); // calls func(int) but double * may be desired because 0 IS

 also a null pointer

  func (NULL) // calls func(int) if NULL is defined as 0 (confusion, 



More C++ Idioms/Print Version 109

func(double *) was intended!) - logic error at runtime,

              // but the call is ambiguous if NULL is defined as 0L 

(yet more confusion to the unwary!) - compilation error

}

Solution and Sample Code
nullptr idiom solves some of the above problems in a library of null pointer. A recent draft proposal (N2431) (http:/ /
www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2007/ n2431. pdf) by Herb Sutter and Bjarne Stroustrup
recommends that a new keyword nullptr be added to C++. nullptr idiom is the closest match possible today using
existing C++ features. The following nullptr implementation is a variant of the library based approach suggested by
Scott Meyer in his book More Effective C++.

#include <typeinfo>

const // It is a const object...

class nullptr_t 

{

  public:

    template<class T>

    inline operator T*() const // convertible to any type of null 

non-member pointer...

    { return 0; }

    template<class C, class T>

    inline operator T C::*() const   // or any type of null member 

pointer...

    { return 0; }

  private:

    void operator&() const;  // Can't take address of nullptr

} nullptr = {};

struct C

{

  void func();

};

template<typename T> 

void g( T* t ) {}

template<typename T> 

void h( T t ) {}

void func (double *) {}

void func (int) {}

int main(void)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf


More C++ Idioms/Print Version 110

{

  char * ch = nullptr;        // ok

  func (nullptr);             // Calls func(double *)

  func (0);                   // Calls func(int)

  void (C::*pmf2)() = 0;      // ok

  void (C::*pmf)() = nullptr; // ok

  nullptr_t n1, n2;

  n1 = n2;

  //nullptr_t *null = &n1;    // Address can't be taken.

  if (nullptr == ch) {}       // ok

  if (nullptr == pmf) {}      // Valid statement; but fails on g++ 

4.1.1-4.5 due to bug #33990

// for GCC 4: if ((typeof(pmf))nullptr == pmf) {}

  const int n = 0;

  if (nullptr == n) {}        // Should not compile; but only Comeau 

shows an error.

  //int p = 0;

  //if (nullptr == p) {}      // not ok

  //g (nullptr);              // Can't deduce T

  int expr = 0;

  char* ch3 = expr ? nullptr : nullptr; // ch1 is the null pointer 

value

  //char* ch4 = expr ? 0 : nullptr;     // error, types are not 

compatible

  //int n3 = expr ? nullptr : nullptr;  // error, nullptr can’t be 
converted to int

  //int n4 = expr ? 0 : nullptr;        // error, types are not 

compatible

  h( 0 );                // deduces T = int

  h( nullptr );          // deduces T = nullptr_t

  h( (float*) nullptr ); // deduces T = float*

  sizeof( nullptr );     // ok

  typeid( nullptr );     // ok

  throw nullptr;         // ok

}

Unfortunately, there seems to be a bug (http:/ / gcc. gnu. org/ bugzilla/ show_bug. cgi?id=33990) in gcc 4.1.1
compiler that does not recognize the comparison of nullptr with point to member function (pmf). The above code
compiles on VC++ 8.0 and Comeau 4.3.10.1 beta.
Note that nullptr idioms makes use of the Return Type Resolver idiom to automatically deduce a null pointer of the
correct type depending upon the type of the instance it is assigning to. For example, if nullptr is being assigned to a
character pointer, a char type instantiation of the templatized conversion function is created.

http://gcc.gnu.org/bugzilla/show_bug.cgi?id=33990
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Return_Type_Resolver


More C++ Idioms/Print Version 111

Consequences
There are some disadvantages of this technique and are discussed in the N2431 proposal (http:/ / www. open-std.
org/ jtc1/ sc22/ wg21/ docs/ papers/ 2007/ n2431. pdf) draft. In summary, the disadvantages are
• A header must be included to use nullptr_t idiom (which is very rarely needed). In C++0x, the nullptr name itself

is a keyword and requires no headers.

Related Idioms
• Return Type Resolver

References
• N2431: nullptr proposal (http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2007/ n2431. pdf)

Object Generator

Intent
• To simplify creation of objects without explicitly specifying their types. (This is not the factory method pattern)

Motivation
In C++ template programming, types of objects can get really large and incomprehensible even in small programs.
For example, following type (Wrapper) is a standard unary function object that wraps the member function read_line
in class File.

struct File

{

  int read_line (std::string);

};

typedef std::mem_fun1_t<int, File, std::string> Wrapper;

Reading a collection of files using for_each STL algorithm, looks like below without object generators.

void read_lines(std::vector<File *> files)

{

   typedef std::mem_fun1_t<int, File, std::string> Wrapper;  

   std::string arg;

   for_each(files.begin(), files.end(),

      std::binder2nd<Wrapper>(Wrapper(&File::read_line), arg));

}

The above code is pretty much unreadable and more bloated than necessary. Even typedefs don't improve readability
as placeholder typedefs like Wrapper are distracting. The object generator idiom alleviates the situation.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Return_Type_Resolver
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf


More C++ Idioms/Print Version 112

Solution and Sample Code
In object generator idiom, a template function is created whose only job is to construct a new object from its
parameters. It is based on a useful property that only function templates have but class templates don't: The type
parameters of a function template are deduced automatically from its actual parameters. For example, consider a
simple object generator defined in STL: make_pair.

template <class T, class U>

std::pair <T, U> 

make_pair(T t, U u)

{

  return std::pair <T, U> (t,u);

}

make_pair returns an instance of the pair template depending on the actual parameters of the make_pair function.
For example, make_pair(1,1.0) creates an object of type: std::pair<int, double> by automatically deducing the types
of the objects being passed to the object generator function. make_pair comes particularly handy when generated
pair object need not be stored in a local variable.

map <int, double> m;

m.insert (make_pair(1,1.0)); // No need to know how pair template is 

instantiated.

C++ standard library defines several object generators to avoid code bloat. std::bind2nd and std::mem_fun are two
such standard object generators that can be used to avoid code bloat in the example shown in the motivation section
above.

void read_lines(std::vector<File *> files)

{

   std::string arg;

   for_each(files.begin(), files.end(), 

bind2nd(mem_fun(&File::read_line), arg));

}

Known Uses
C++ standard library (mem_fun, make_pair, bind1st, bind2nd etc.)

Related Idioms
Type Generator

References
Object Generator (http:/ / www. boost. org/ community/ generic_programming. html#object_generator)

Solution and Sample Code

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Type_Generator
http://www.boost.org/community/generic_programming.html#object_generator


More C++ Idioms/Print Version 113

Solution and Sample Code

Parameterized Base Class

Intent
To abstract out an aspect in a reusable module and combine it in a given type when required.

Also Known As
• Mixin-from-below
• Parameterized Inheritance

Motivation
A certain aspect can be abstracted out from requirements and be developed as templates (e.g., object serialization).
Serialization is a cross-cutting concern that many classes/POD types in an application may have. Such a concern can
be abstracted out in a manageable reusable module. By addition of an aspect, substitutability with the original type is
not broken so another motivation is to have a IS-A (public inheritance) or WAS-A (private inheritance) relationship
with the type parameter.

Solution and Sample Code
template <class T>

class Serializable : public T,   /// Parameterized Base Class Idiom

                     public ISerializable

{

  public:

    Serializable (const T &t = T()) : T(t) {}

    virtual int serialize (char *& buffer, size_t & buf_size) const

    {

        const size_t size = sizeof (T);

        if (size > buf_size)

          throw std::runtime_error("Insufficient memory!");

        memcpy (buffer, static_cast<const T *>(this), size);

        buffer += size;

        buf_size -= size;

        return size;

    }

};

Serializable <T> can be used polymorphically as a T as well as a ISerializable. Above example works best when T is
a user-defined POD type.



More C++ Idioms/Print Version 114

Related Idioms
• Curiously Recurring Template Pattern

Policy Clone

Intent
Instantiate a policy class with many different possible types without ad-hoc limitations on type of the policy classes.

Also Known As
• Meta-function wrapper idiom

Motivation
Highly reusable, flexible and extensible classes can be built using policy based class design techniques. Sometimes,
the host class of the policies needs to make an exact replica of one of its policies which is instantiated with a
different type parameter. Unfortunately, the writer of the host class template does not know the template name to
instantiate beforehand. Moreover, the policy class may or may not be a template in the first place. If it is a template,
then the host class may not know how many minimum type parameters are required to instantiate the parameterized
policy class. If the policy class is not a template, it may not be able to participate as a policy class. This situation is
quite analogous to the situation in the Factory Method (GoF) pattern where type of the object to be created is not
known a priori.

template <class Apolicy>

class Host

{

  Apolicy direct_policy_use;

  Apolicy <SomeInternalType> InternalClone;  // Problem 1: Can't do this

};

template <class T, template <class T> class Apolicy>

class Host2

{

  Apolicy <T> common_use;  

  Apolicy <SomeInternalType> InternalClone;  

  // Can do this now but 

  // Problem 2: policies that require more than one type parameter 

can't participate.

};

Solution and Sample Code
A member template struct (called rebind) is used to pass a different type parameter to the policy class template. For
example,

template <typename T>

class NiftyAlloc

{

  public:

    template <typename Other>

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Curiously_Recurring_Template_Pattern
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Policy_Clone
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor


More C++ Idioms/Print Version 115

    struct rebind // The Policy Clone idiom

    { 

       typedef NiftyAlloc <Other> other;

    };

    //...

};

template <typename T, class Alloc = NiftyAlloc <T> >

class Vector 

{

  public:

    typedef typename Alloc::template rebind<long>::other ClonePolicy;

    // Here, Alloc may not be a template class or a parametrized 

instantiation of

    // a class that takes unknown number of type parameters.

};

Here, the Container template needs a replica of the allocation policy it is instantiated with. Therefore, it uses the
rebind mechanism exposed by the NiftyAlloc policy. The type Alloc::template rebind<long>::other is same as
NiftyAlloc<long>. Essentially, it says, "I don't know what kind of allocator this type is, and I don't know what it
allocates, but I want an allocator just like it that allocates longs." Using concepts（it has been removed from
C++0x), the Vector class can write type concept that checks whether the Alloc policy type supports rebind concept.
To keep the compiler happy, we have to use both the keywords typename and template in the ClonePolicy typedef.
The rule is as follows: If the name of a member template specialization appears after a ., ->, or :: operator, and that
name has explicitly qualified template parameters, prefix the member template name with the keyword template. The
Keyword typename is also necessary in the typedef because "other" is a type, not a variable.

Known Uses
• Standard Template Library
• Compilers that do not support template template parameters

Related Idioms
Meta-function wrapper idiom is a more powerful idiom than policy Clone. Policy Clone idiom indicates its purpose
in a more abstract fashion than meta-function wrapper. The rebind template is essentially the meta-function wrapper.

References
• Modern C++ Design - by Andrei Alexandrescu.
• C++ Understand rebind (http:/ / meditation-art. blogspot. com/ 2007/ 11/ c-understand-rebind. html)

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Policy_Clone
http://meditation-art.blogspot.com/2007/11/c-understand-rebind.html


More C++ Idioms/Print Version 116

Polymorphic Exception

Intent
• To create an exception object polymorphically
• To decouple a module from the concrete details of the exceptions it may throw

Motivation
Dependency Inversion Principle (DIP) (http:/ / en. wikipedia. org/ wiki/ Dependency_inversion_principle), a popular
object-oriented software design guideline states that higher level modules should not depend directly on lower level
modules. Instead, both should depend on common abstractions (captured in the form of well-defined interfaces). For
example, an object of type Person (say John) should not create and use an object of type HondaCivic but instead
John should simply commit to a Car interface, which is an abstract base class of HondaCivic. This allows John to
upgrade to a Corvette easily in future without any changes to the class Person. John can be "configured" with a
concrete instance of a car (any car) using dependency injection (http:/ / en. wikipedia. org/ wiki/
Dependency_injection) technique. Use of DIP leads to flexible and extensible modules that are easy to unit test. Unit
testing is simplified by DIP because real objects can be easily replaced with mock objects using dependency
injection.
However, there are several occasions when DIP is violated: (1) while using the Singleton pattern and (2) while
throwing exceptions! Singleton pattern breaks DIP because it forces the use of the concrete class name while
accessing the static instance() function. A singleton should be passed as a parameter while calling a function or a
constructor. A similar situation arises while dealing with exceptions in C++. The throw clause in C++ requires a
concrete type name (class) to raise an exception. For example,

throw MyConcreteException("Big Bang!");

Any module that throws exceptions like this immediately results into a violation of DIP. Naturally, it is harder to unit
test such a module because real exception objects cannot easily be replaced with mock exception objects. A solution
like the one below fails miserably as throw in C++ uses static typing and knows nothing about polymorphism.

struct ExceptionBase { };

struct ExceptionDerived : ExceptionBase { };

 

void foo(ExceptionBase& e)

{

   throw e; // Uses static type of e while rasing an exception.

}

int main (void)

{

  ExceptionDerived e;

  try {

    foo(e);

  }

  catch (ExceptionDerived& e) {

    // Exception raised in foo does not match this catch.

  }

  catch (...) {

    // Exception raised in foo is caught here.

  }

http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Dependency_injection
http://en.wikipedia.org/wiki/Dependency_injection


More C++ Idioms/Print Version 117

} 

Polymorphic exception idiom addresses the issue.

Solution and Sample Code
Polymorphic exception idiom simply delegates the job of raising the exception back to the derived class using a
virtual function raise()

struct ExceptionBase 

{ 

  virtual void raise() { throw *this; }

  virtual ~ExceptionBase() {} 

};

struct ExceptionDerived : ExceptionBase 

{ 

  virtual void raise() { throw *this; }

};

 

void foo(ExceptionBase& e)

{

   e.raise(); // Uses dynamic type of e while raising an exception.

}

int main (void)

{

  ExceptionDerived e;

  try {

    foo(e);

  }

  catch (ExceptionDerived& e) {

    // Exception raised in foo now matches this catch.

  }

  catch (...) {

    // not here anymore!

  }

} 

The throw statement has been moved into virtual functions. The raise function invoked in function foo is
polymorphic and selects the implementation in either ExceptionBase or ExceptionDerived class depending upon
what is passed as a parameter (dependency injection). Type of *this is obviously known at compile-time, which
results into raising a polymorphic exception. The structure of this idiom is very similar to that of Virtual Constructor
idiom.
Propagating a polymorphic exception

Quite often an exception is handled in multiple catch statements to treat it differently in different layers of the
program/library. In such cases, the earlier catch blocks need to rethrow the exception so that the outer catch blocks,
if any, may take the necessary actions. When a polymorphic exception is involved, inner catch block(s) may modify
the exception object before passing it on to the catch blocks up in the stack. In such cases, care must be taken to
ensure that the original exception object is propagated. Consider a seemingly innocuous looking program below,
which fails to do that.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor


More C++ Idioms/Print Version 118

try {

    foo(e); // throws an instance of ExceptionDerived as before.

  }

  catch (ExceptionBase& e) // Note the base class. Exception is caught 

polymorphically.

  {

    // Handle the exception. May modify the original exception object.

    throw e; // Warning! Object slicing is underway.

  }

The throw e statement does not throw the original exception object. Instead, it throws a sliced copy (only
ExceptionBase part) of the original object because it considers the static type of the expression in front of it. Silently,
the derived exception object was not only lost but also translated into the base type exception object. The catch
blocks up in the stack do not have access to the same information this catch had. There are two ways to address the
problem.
• Simply use throw; (without any expression following it). It will rethrow the original exception object.
• Use polymorphic exception idiom again. It will throw a copy of the original exception object because the raise()

virtual function uses throw *this.

try {

    foo(e); // throws an instance of ExceptionDerived as before.

  }

  catch (ExceptionBase& e) // Note the base class. Exception is caught 

polymorphically.

  {

    // Handle the exception. May modify the original exception object.

    // Use only one of the following two.

    throw;      // Option 1:  Original derived exception is thrown.

    e.raise();  // Option 2:  A copy of the original derived exception 

object is thrown.

  }

Related Idioms
Virtual Constructor

References
• How do I throw polymorphically? (parashift) (http:/ / www. parashift. com/ c+ + -faq-lite/ exceptions.

html#faq-17. 10)
• How do I throw polymorphically? (NCTU) (http:/ / www. cis. nctu. edu. tw/ chinese/ doc/ research/ c+ + / C+ +

FAQ-English/ exceptions. html#faq-17. 10)

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Virtual_Constructor
http://www.parashift.com/c++-faq-lite/exceptions.html#faq-17.10
http://www.parashift.com/c++-faq-lite/exceptions.html#faq-17.10
http://www.cis.nctu.edu.tw/chinese/doc/research/c++/C++FAQ-English/exceptions.html#faq-17.10
http://www.cis.nctu.edu.tw/chinese/doc/research/c++/C++FAQ-English/exceptions.html#faq-17.10


More C++ Idioms/Print Version 119

Recursive Type Composition

Solution and Sample Code

References
Compile Time Recursive Objects in C++ (http:/ / portal. acm. org/ citation. cfm?id=832912) - Jaakko Jarvi

Resource Acquisition Is Initialization

Intent
• To guarantee release of resource(s) at the end of a scope
• To provide basic exception safety guarantee

Also Known As
• Execute-Around Object
• Resource Release Is Finalization
• Scope-Bound Resource Management

Motivation
Resources acquired in a function scope should be released before leaving the scope unless the ownership is being
transferred to another scope or object. Quite often it means a pair of function calls - one to acquire a resource and
another one to release it. For example, new/delete, malloc/free, acquire/release, file-open/file-close,
nested_count++/nested_count--, etc. It is quite easy to forget to write the "release" part of the resource management
"contract". Sometimes the resource release function is never invoked: this can happen when the control flow leaves
the scope because of return or an exception. It is too dangerous to trust the programmer that he or she will invoke
resource release operation in all possible cases in the present and in the future. Some examples are given below.

void foo ()

{

  char * ch = new char [100];

  if (...)

     if (...)

        return;

     else if (...)

            if (...)

  else

     throw "ERROR";

  delete [] ch; // This may not be invoked... memory leak!

}

void bar ()

{

  lock.acquire();

  if (...)

http://portal.acm.org/citation.cfm?id=832912


More C++ Idioms/Print Version 120

     if (...)

        return;

  else

     throw "ERROR";

  lock.release(); // This may not be invoked... deadlock!

}

This is in general control flow abstraction problem. Resource Acquisition is Initialization (RAII) is an extremely
popular idiom in C++ that releaves the burden of calling "resource release" operation in a clever way.

Solution and Sample Code
The idea is to wrap the resource release operation in a destructor of an object in the scope. Language guarantees that
the destructor will always be invoked (of a successfully constructed object) when control flow leaves the scope
because of a return statement or an exception.

//  Private copy constructor and copy assignment ensure classes derived

 

//  from class NonCopyable cannot be copied.

class NonCopyable 

{

   NonCopyable (NonCopyable const &); // private copy constructor

   NonCopyable & operator = (NonCopyable const &); // private 

assignment operator

};

template <class T>

class AutoDelete : NonCopyable

{

  public:

    AutoDelete (T * p = 0) : ptr_(p) {}

    ~AutoDelete () throw() { delete ptr_; } 

  private:

    T *ptr_;

};

class ScopedLock : NonCopyable// Scoped Lock idiom

{

  public:

    ScopedLock (Lock & l) : lock_(l) { lock_.acquire(); }

    ~ScopedLock () throw () { lock_.release(); } 

  private:

    Lock& lock_;

};

void foo ()

{

  X * p = new X;

  AutoDelete<X> safe_del(p); // Memory will not leak



More C++ Idioms/Print Version 121

  if (...)

    if (...)

      return; 

 

  // No need to call delete here.

  // Destructor of safe_del will delete memory

}

void X::bar()

{

  ScopedLock safe_lock(l); // Lock will be released certainly

  if (...)

    if (...)

      throw "ERROR"; 

  // No need to call release here.

  // Destructor of safe_lock will release the lock

}

Acquiring resource(s) in constructor is not mandatory in RAII idiom but releasing resources in the destructor is the
key. Therefore, it is also known (rarely though) as Resource Release is Finalization idiom. It is important in this
idiom that the destructor should not throw exceptions. Therefore, the destructors have no-throw specification but it is
optional. std::auto_ptr and boost::scoped_ptr are ways of quickly using RAII idiom for memory resources. RAII is
also used to ensure exception safety. RAII makes it possible to avoid resource leaks without extensive use of
try/catch blocks and is widely used in the software industry.
Many classes that manage resources using RAII, do not have legitimate copy semantics (e.g., network connections,
database cursors, mutex). The NonCopyable class shown before prevents copying of objects that implement RAII. It
simply prevents access to the copy-constructor and the copy-assignment operator by making them private.
boost::scoped_ptr is an example of one such class that prevents copying while holding memory resources. The
NonCopyable class states this intention explicitly and prevents compilation if used incorrectly. Such classes should
not be used in STL containers. However, every resource management class that implements RAII does not have to
be non-copyable like the above two examples. If copy semantics are desired, boost::shared_ptr can be used to
manage memory resources. In general, non-intrusive reference counting is used to provide copy semantics as well as
RAII.

Consequences
RAII is not without its limitations. The resources which are not memory and must be released deterministically and
may throw exceptions usually aren't handled very well by C++ destructors. That's because a C++ destructor can't
propagate errors to the enclosing scope (which is potentially winding up). It has no return value and it should not
propagate exceptions outside itself. If exceptions are possible, then the destructor must handle the exceptional case
within itself somehow. Nevertheless, RAII remains the most widely used resource management idiom in C++.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Detached_Counted_Body


More C++ Idioms/Print Version 122

Known Uses
• Virtually all non-trivial C++ software
• std::auto_ptr
• boost::scoped_ptr
• boost::mutex::scoped_lock

Related Idioms
• Scope Guard
• Reference Counting
• Non copyable
• Scoped Locking (http:/ / www. cs. wustl. edu/ ~schmidt/ PDF/ ScopedLocking. pdf) idiom is a special case of

RAII applied to operating system synchronization primitives such as mutex and semaphores.

References
• Resource Acquisition Is Initialization on Wikipedia
• Exception Safety: Concepts and Techniques (http:/ / www. research. att. com/ ~bs/ except. pdf), Bjarne Stroustrup
• The RAII Programming Idiom (http:/ / www. hackcraft. net/ raii)
• Sutter, Herb (1999). Exceptional C++. Addison-Wesley. ISBN 0-201-61562-2.
• C++ Patterns: Execute Around Sequences (http:/ / www. two-sdg. demon. co. uk/ curbralan/ papers/ europlop/

ExecutingAroundSequences. pdf), Kevlin Henney

Resource Return

Intent
To convey ownership transfer (of a resource) explicitly in the return type of a factory function.

Motivation
Factory functions are often used to create new resources and return them to the caller. A new resource could be raw
memory, dynamically allocated object, database cursors/connections, locks and so on. An important question about
resources is who owns the resource and who releases it? Many times, interfaces are developed where the caller is
implicitly responsible for resource release. If the caller is not aware of this fact or simply forgets to take correct
steps, it gives rise to an easy-to-use-incorrectly kind of interface. Following code snippet shows an example.

struct X

{

  void foo() {}

};

X * Xfactory() // Resource ownership implicitly transferred to the 

caller.

{

  return new X; // Dynamically allocated instance

}

int main (void)

{

  Xfactory()->foo(); // Dynamically allocated instance of X leaks here

}

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Scope_Guard
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Counted_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-copyable_Mixin
http://www.cs.wustl.edu/~schmidt/PDF/ScopedLocking.pdf
http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization
http://www.research.att.com/~bs/except.pdf
http://www.hackcraft.net/raii
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/ExecutingAroundSequences.pdf
http://www.two-sdg.demon.co.uk/curbralan/papers/europlop/ExecutingAroundSequences.pdf


More C++ Idioms/Print Version 123

Resource Return Idiom provides different alternatives to rectify the situation and results into (somewhat)
hard-to-use-incorrectly interfaces.

Solution and Sample Code
The solution is to wrap the resource in a resource-management smart pointer and return the smart pointer instead of
the raw pointers. Simplest form of Resource Return Idiom is shown in the code snippet below.

struct X

{

  void foo() {}

};

std::auto_ptr<X> Xfactory() // Resource ownership explicitly transferred 

to the caller.

{

  return std::auto_ptr<X> (new X); // Dynamically allocated instance

}

int main (void)

{

  Xfactory()->foo(); // Dynamically allocated instance of X does not 

leak here

}

There are several issues to be considered while determining the type of resource-management smart pointer to use to
return a resource. Possible options are:
• std::auto_ptr
• boost::shared_ptr
• std::unique_ptr in C++0x
• User defined Handle/Body idiom
An excellent discussion of pros and cons of choosing one over the other are discussed at length by Scott Meyer in his
article The Resource Return Problem (http:/ / www. aristeia. com/ Papers/ resourceReturnProblem. txt). As long as
custom deletion functionality (other than plain old delete) is not required, auto_ptrs are a quick way to use the
Resource Return idiom as shown above. auto_ptrs give exclusive but transferable ownership of resources which
becomes very clear just by looking at the interface. For dynamically allocated pointer-returning factory functions,
boost::shared_ptr is a also good choice because it offers normal copy-semantics (e.g., it can be stored in STL
containers). It also allows changes to resource release policy from normal delete operation to custom deletion
without disturbing clients.
When exclusive ownership is involved in case of Resource Return idiom, Move Constructor idiom is often useful
while transferring ownership of resources.

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Handle_Body
http://www.aristeia.com/Papers/resourceReturnProblem.txt
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Move_Constructor


More C++ Idioms/Print Version 124

Related Idioms
• Resource Acquisition Is Initialization (RAII)
• Move Constructor

References
• The Resource Return Problem (http:/ / www. aristeia. com/ Papers/ resourceReturnProblem. txt)

Return Type Resolver

Intent
Deduce the type of the variable being initialized or assigned to.

Motivation
The type of the variable being initialized can be a useful information to have in certain contexts. Consider, for
instance, we want to initialize STL containers with random numbers. However, we don't know the exact type of the
container expected by the user. It could be std::list, std::vector or something custom that behaves like STL container.
A straight-forward approach to write and use such a function would be as follows.

template <class Container>

Container getRandomN(size_t n) 

{

  Container c;

  for(size_t i = 0;i < n; ++i)

    c.insert(c.end(), rand());

  return c;

}

int main (void)

{

   std::list<int> l = getRandomN<std::list<int> > (10);

   std::vector<long> v = getRandomN<std::vector<long> > (100);

}

Note that the type of the container must be passed to the function because that is the desired return type of the
function. Clearly, the type must be repeated at-least twice. Return type resolver idiom can be used to address this
issue.

Solution and Sample Code
Return type resolver idiom makes use of a proxy class and templatized conversion operator functions in the class.
getRandomN function above can be implemented with a class and a member conversion function as follows.

class getRandomN 

{

  size_t count;

public:

  getRandomN(int n = 5) : count(n) {}

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Resource_Acquisition_Is_Initialization
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Move_Constructor
http://www.aristeia.com/Papers/resourceReturnProblem.txt


More C++ Idioms/Print Version 125

  template <class Container>

  operator Container () {

    Container c;

    for(size_t i = 0;i < count; ++i)

      c.insert(c.end(), rand());

    return c;

  }

};

int main()

{

  std::set<int> random_s = getRandomN(10);

  std::vector<int> random_v = getRandomN(10);

  std::list<int> random_l = getRandomN(10);

}

getRandomN class has a constructor and a templatized conversion operator function. For initialization, a temporary
object of getRandomN class is created and assigned to the desired container class. C++ compiler attempts to convert
the temporary object into the container class object. The only way to do that is via the conversion operator. The
conversion operator is instantiated with the type of the container that is being populated. Due to automatic resolution
of the return type, the user does not have to spell it out again.

Known Uses
The nullptr idiom makes use of the return type resolver idiom to automatically deduce a null pointer of the correct
type depending upon the pointer variable it is assigning to.

Related Idioms
• nullptr

Runtime Static Initialization Order Idioms

Intent
Control the order of initialization and destruction of non-local static objects across compilation units that are
otherwise ordered in an implementation dependent manner.

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/nullptr
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/nullptr


More C++ Idioms/Print Version 126

Motivation
• Order of initialization of static objects spread across different compilation units is not well defined. Order of

destruction is the reverse of initialization order but initialization order itself is implementation defined. Bring
order to this chaos.

• The destructor of static objects are non-trivial and have important side-effects that have to happen

Solution and Sample Code
The following idioms are commonly used to control the order of initialization of static objects.
• Construct On First Use
• Nifty Counter Idiom (a.k.a. Schwarz Counter Idiom)

Safe Bool

Intent
To provide boolean tests for a class but restricting it from taking participation in unwanted expressions.

Motivation
User provided boolean conversion functions can cause more harm than benefit because it allows them to participate
in expressions you would not ideally want them to. If a simple conversion operator is defined then two or more
objects of unrelated classes can be compared. Type safety is compromised. For example,

struct Testable

{

    operator bool() const {

          return false;

    }

};

struct AnotherTestable

{

    operator bool() const {

          return true;

    }

};

int main (void)

{

  Testable a;

  AnotherTestable b;

  if (a == b) { /* blah blah blah*/ }

  if (a < 0) { /* blah blah blah*/ }

  // The above comparisons are accidental and are not intended but the 

compiler happily compiles them.

  return 0;

}

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Construct_On_First_Use
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Nifty_Counter


More C++ Idioms/Print Version 127

Solution and Sample Code
Safe bool idiom allows syntactical convenience of testing using an intuitive if statement but at the same time
prevents unintended statements unknowingly getting compiled in. Here is the code for the safe bool idiom.

class Testable {

    bool ok_;

    typedef void (Testable::*bool_type)() const;

    void this_type_does_not_support_comparisons() const {}

  public:

    explicit Testable(bool b=true):ok_(b) {}

    operator bool_type() const {

      return ok_==true ? 

        &Testable::this_type_does_not_support_comparisons : 0;

    }

  };

class AnotherTestable ... // Identical to Testable.

{};

int main (void)

{

  Testable t1;

  AnotherTestable t2;

  if (t1) {} // Works as expected

  if (t2 == t1) {} // Fails to compile

  if (t1 < 0) {} // Fails to compile

  return 0;

}

Reusable Solution

There are two plausible solutions: Using a base class with a virtual function for the actual logic, or a base class that
knows which function to call on the derived class. As virtual functions come at a cost (especially if the class you're
augmenting with Boolean tests doesn't contain any other virtual functions). See both versions below:

class safe_bool_base {

  public:

    typedef void (safe_bool_base::*bool_type)() const;

    void this_type_does_not_support_comparisons() const {}

  protected:

 

    safe_bool_base() {}

    safe_bool_base(const safe_bool_base&) {}

    safe_bool_base& operator=(const safe_bool_base&) {return *this;}

    ~safe_bool_base() {}

};

// For testability without virtual function.

template <typename T=void> 



More C++ Idioms/Print Version 128

class safe_bool : private safe_bool_base {

  // private or protected inheritance is very important here as it 

triggers the

  // access control violation in main.

  public:

    operator bool_type() const {

      return (static_cast<const T*>(this))->boolean_test()

        ? &safe_bool_base::this_type_does_not_support_comparisons : 0;

    }

  protected:

    ~safe_bool() {}

};

 

// For testability with a virtual function.

template<> 

class safe_bool<void> : private safe_bool_base {

  // private or protected inheritance is very important here as it 

triggers the

  // access control violation in main.

  public:

    operator bool_type() const {

      return boolean_test() 

        ? &safe_bool_base::this_type_does_not_support_comparisons : 0;

        

      safe_bool_base::this_type_does_not_support_comparisons();

    }

  protected:

    virtual bool boolean_test() const=0;

    virtual ~safe_bool() {}

};

 

template <typename T> 

   bool operator==(const safe_bool<T>& lhs, bool b) {

      if (b)

      {

          if (lhs) return true;

          else return false;

      }

      else

      {

          if (lhs) return false;

          else return true;

      }

  }

 

template <typename T> 



More C++ Idioms/Print Version 129

   bool operator==(bool b, const safe_bool<T>& rhs) {

      if (b)

      {

          if (rhs) return true;

          else return false;

      }

      else

      {

          if (rhs) return false;

          else return true;

      }

  }

 

 

template <typename T, typename U> 

  void operator==(const safe_bool<T>& lhs,const safe_bool<U>& rhs) {

      lhs.this_type_does_not_support_comparisons();  

  }

 

template <typename T,typename U> 

  void operator!=(const safe_bool<T>& lhs,const safe_bool<U>& rhs) {

    lhs.this_type_does_not_support_comparisons();

  }

Here's how to use safe_bool:

#include <iostream>

class Testable_with_virtual : public safe_bool<> {

  public:

    virtual ~Testable_with_virtual () {}

  protected:

    virtual bool boolean_test() const {

      // Perform Boolean logic here

      return true;

    }

  };

 

 class Testable_without_virtual : 

    public safe_bool <Testable_without_virtual> // CRTP idiom

 {

  public:

    /* NOT virtual */ bool boolean_test() const {

      // Perform Boolean logic here

      return false;

    }

  };



More C++ Idioms/Print Version 130

int main (void)

{

  Testable_with_virtual t1, t2;

  Testable_without_virtual p1, p2;

  if (t1) {}

  if (p1 == false) 

  {

    std::cout << "p1 == false\n";

  }

  if (p1 == p2) {} // Does not compile, as expected

  if (t1 != t2) {} // Does not compile, as expected

  return 0;

}

In C++, address of protected members functions can't be taken in a derived class. Derived class could be a standard
class, a class template or a specialization of a class template. Some implementations of safe bool idiom declare
safe_bool_base::this_type_does_not_support_comparisons as protected, address of which can't be taken in the
derived class - a requirement in reusable safe bool idiom.
An insightful discussion on the boost mailing list (http:/ / lists. boost. org/ Archives/ boost/ 2011/ 05/ 182157. php)
initiated by Krzysztof Czainski resulted in an implementation (http:/ / codepaste. net/ c83uuj) of safe bool idiom
using CRTP as well as another using macros.

Solution in C++0x
The upcoming C++0x standard provides explicit conversion operators as a parallel to explicit constructors. See
N2437: Explicit Conversion Operator Draft Working Paper (http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/
papers/ 2007/ n2437. pdf). Explicit conversion operators solve the problem in a clean way.

Known Uses
• boost::scoped_ptr
• boost::shared_ptr
• boost::optional

References
http:/ / www. artima. com/ cppsource/ safebool. html

Scope Guard

Intent
• To ensure that resources are always released in face of an exception but not while returning normally
• To provide basic exception safety guarantee

Motivation
Resource Acquisition is Initialization (RAII) idiom allows us to acquire resources in the constructor and release them 
in the destructor when scope ends successfully or due to an exception. It will always release resources. This is not 
very flexible. Sometime we don't want to release resources if no exception is thrown but we do want to release them

http://lists.boost.org/Archives/boost/2011/05/182157.php
http://codepaste.net/c83uuj
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
http://www.artima.com/cppsource/safebool.html
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Acquisition_Is_Initialization


More C++ Idioms/Print Version 131

if exception is thrown.

Solution and Sample Code
Enhance the typical implementation of Resource Acquisition is Initialization (RAII) idiom with a conditional check.

class ScopeGuard

{

public:

  ScopeGuard () 

   : engaged_ (true) 

  { /* Acquire resources here. */ }

  

  ~ScopeGuard ()  

  { 

    if (engaged_) 

     { /* Release resources here. */} 

  }

  void release () 

  { 

     engaged_ = false; 

     /* Resources no longer be released */ 

  }

private:

  bool engaged_;

};

void some_init_function ()

{

  ScopeGuard guard;

  // ...... Something may throw here. If it does we release resources.

  guard.release (); // Resources will not be released in normal 

execution.

}

Known Uses
• boost::mutex::scoped_lock
• boost::scoped_ptr
• std::auto_ptr
• ACE_Guard
• ACE_Read_Guard
• ACE_Write_Guard
• ACE_Auto_Ptr
• ACE_Auto_Array_Ptr

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Acquisition_Is_Initialization


More C++ Idioms/Print Version 132

Related Idioms
• Resource Acquisition Is Initialization (RAII)

References
• Generic: Change the Way You Write Exception-Safe Code — Forever (http:/ / www. ddj. com/ cpp/ 184403758)
• Enhanced ScopeGuard (http:/ / www. zete. org/ people/ jlehrer/ scopeguard. html)

Intent
To allow overload resolution of function templates using type traits rather than the type itself.

Also Known As
Substitution Failure Is Not An Error

Known Uses
• Member Detector

References
• SFINAE Sono Buoni (http:/ / www. semantics. org/ once_weakly/ w02_SFINAE. pdf)
• Function Overloading Based on Arbitrary Properties of Types (http:/ / www. ddj. com/ cpp/ 184401659)
• SFINAE article on Wikipedia (http:/ / en. wikipedia. org/ wiki/ SFINAE)

Shrink-to-fit

Intent
Minimize the capacity of a container just enough to hold existing range.

Motivation
Standard library containers often allocate more memory than the actual number of elements in them. Such a policy
results in an optimization of saving some allocations when a container grows in size. On the other hand, when size of
the container reduces, there is often leftover capacity in the container. The leftover capacity of the container can be
unnecessary wastage of memory resources. Shrink-to-fit idiom has been developed to reduce the extra capacity to a
minimum required capacity and thereby saving memory resources.

Solution and Sample Code
Shrink-to-fit idiom is as simple as the one given below.

std::vector<int> v;

//v is swapped with its temporary copy, which is capacity optimal

std::vector<int>(v).swap(v);

The first half of the statement, std::vector<int>(v), creates a temporary vector of integers and it is 
guaranteed[1] to allocate memory just enough to hold all the elements in the parameter, v. The second half of the 
statement swaps the temporary vector with v using the non-throwing swap member function. swap() is very 
efficient, amounting to little more than swapping pointers between the vectors. After swapping, the temporary goes

http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Resource_Acquisition_Is_Initialization
http://www.ddj.com/cpp/184403758
http://www.zete.org/people/jlehrer/scopeguard.html
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Member_Detector
http://www.semantics.org/once_weakly/w02_SFINAE.pdf
http://www.ddj.com/cpp/184401659
http://en.wikipedia.org/wiki/SFINAE


More C++ Idioms/Print Version 133

out of scope and deletes the memory originally held by v, whereas v retains the memory allocated by the
temporary, so it has just enough to hold the original elements in v.
[1] ISO/IEC 14882:1998 does not appear to document this behavior of the copy constructor. Where is this behavior guaranteed?

Solution in C++0x
In C++0x some containers declare such idiom as function shrink_to_fit(), e.g. vector, deque, basic_string.
shrink_to_fit() is a non-binding request to reduce capacity() to size().

Related Idioms
• Clear-and-minimize
• Non-throwing swap

References
• Programming Languages — C++ (http:/ / open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2008/ n2800. pdf) draft

standard.
As seen in boost::function to implement type erasure but a magnitude faster than the heap allocated holder object

Smart Pointer

Intent
To relieve the burden of duplicating changes to the signature of the body class in its handle class when Handle Body
idiom or Envelope Letter idiom is in use.

Also Known As
• En Masse (whole) Delegation

Motivation
When Handle/body idiom is used, it may become necessary to duplicate the interface of the body class in the handle
class because handles are used by the user code. This duplication is often tedious and error prone. Smart Pointer
idiom is used to relieve this burden. Smart Pointer idiom is often used along with some sort of "smartness" in the
handle class such as reference counting, automatic ownership management and so on.

Solution and Sample Code
There are at least two overlapping ways of implementing the smart pointer idiom depending upon the intended use.
• Completely pointer like semantics
• Less pointer like semantics
Both of the above variations define an overloaded arrow operator in the so called "handle" class. Lets begin with the
completely pointer like semantics.

class Body;

class Handle // Completely pointer like semantics

{

  public:

    void set (Body *b) { body_ = b; }

    Body * operator -> () const throw()

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Clear-and-minimize
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-throwing_swap
http://open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2800.pdf
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Envelope_Letter


More C++ Idioms/Print Version 134

    {

      return body_;

    }

    Body & operator * () const throw ()

    {

      return *body_;

    }

  private:

    mutable Body *body_;

};

int main (void)

{

   Handle h;

   h.set(new Body());

   h->foo();    // A way of invoking Body::foo()

   (*h).foo();  // Another way of invoking Body::foo()

}

Using the -> operator alone mitigates the problem of duplicating interface of body class in the handle class. An
alternative is to overload deference (*) operator as show in the code snippet above but it is not as natural as the
earlier one. If the Handle abstraction is a some sort of pointer abstraction then both the overloaded operators should
be provided (e.g., std::auto_ptr, boost::shared_ptr). If the Handle abstraction is not a pointer like abstraction then *
operator need not be provided. Instead, it could useful to provide const overloaded set of arrow operators because
client always interacts with the hanlde class objects. For the client code, handle is the object and hence const-ness of
the handle should be propagated to corresponding body whenever it's appropriate. In general, the obscure behavior of
being able to modify a non-const body object from within a constant handle should be avoided. Unlike pure pointer
semantics, in some cases, automatic type conversion from Handle class to Body class is also desirable.

class Body;

class Handle // Less pointer like semantics

{

  public:

    void set (Body *b) { body_ = b; }

    Body * operator -> () throw()

    {

      return body_;

    }

    Body const * operator -> () const throw()

    {

      return body_;

    }

    operator const Body & () const // type conversion

    {

      return *body_;

    }

    operator Body & ()  // type conversion

    {

      return *body_;



More C++ Idioms/Print Version 135

    }

    // No operator *()

  private:

    mutable Body *body_;

};

int main (void)

{

   Handle const h;

   h.set(new Body());

   h->foo();    // compiles only if Body::foo() is a const function.

}

An alternative to using member conversion functions is to use the Non-member get idiom as shown below. The
overloaded non-member get() functions must be in the same namespace as the Handle class according to the
Interface Principle (http:/ / www. gotw. ca/ publications/ mill02. htm).

namespace H {

class Body;

class Handle { ... }; // As per above.

Body const & get (Handle const &h)

{

  return *h.body_;

}

Body & get (Handle &h)

{

  return *h.body_;

}

} // end namespace H.

int main (void)

{

  H::Handle const h;

  h.set(new Body());

  get(h).foo(); // compiles only if Body::foo() is a const function.

}

Known Uses
• std::auto_ptr (Completely pointer like semantics)
• boost::shared_ptr (Completely pointer like semantics)
• CORBA Var types in C++ (TAO_Seq_Var_Base_T< T > Class in TAO (The ACE ORB) - less pointer like

semantics)

Related Idioms
• Handle Body
• Envelope Letter
• Reference Counting

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Non-member_get
http://www.gotw.ca/publications/mill02.htm
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Handle_Body
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Envelope_Letter
http://en.wikibooks.org/w/index.php?title=More_C%252B%252B_Idioms/Counted_Body


More C++ Idioms/Print Version 136

Solution and Sample Code

Reference
Tag Dispatching (http:/ / www. generic-programming. org/ languages/ cpp/ techniques. php#tag_dispatching)

Solution and Sample Code

Thin Template

Intent
To reduce object code duplication when a class template is instantiated for many types.

Motivation
Templates are a way of reusing source code, not object code. A template can be defined for a whole family of
classes. Each member of that family that is instantiated requires its own object code. Whenever a class or function
template is instantiated, object code is generated specifically for that type. More the number of parameterized types,
more is the generated object code. Compilers only generate object code for functions for class templates that are used
in the program, but duplicate object code could still pose a problem in environments where memory is not really
abundant. Reusing the same object code could also improve instruction cache performance and thereby application
performance. Therefore, it is desirable to reduce duplicate object code.

Solution and Sample Code
Thin template idiom is used to reduce duplicate object code. Object code level reusable code is written only once,
generally in a base class, and is compiled in a separately deployable .dll or .so file. This base class is not type safe
but type safe "thin template" wrapper adds the missing type safety, without causing much (or any) object code
duplication.

// Not a template

class VectorBase {

  void insert (void *); 

  void *at (int index);

};

template <class T>

class Vector<T*> // Thin template 

   : VectorBase 

{

  inline void insert (T *t) {

     VectorBase::insert (t);

  }

  inline T *at (int index) {

http://www.generic-programming.org/languages/cpp/techniques.php#tag_dispatching


More C++ Idioms/Print Version 137

     return VectorBase::at (index);

  }

};

The base class may be fat: it may contain an arbitrary amount of code. Because this class uses only inline functions,
it generates no extra code. But because the casting is encapsulated in the inline function, the class is typesafe to its
users. The templated class is thin

Known Uses
Symbian OS relies on this idiom a lot. For example,

template <class T> class CArrayFix : public CArrayFixBase 

where CArrayFixBase does all the work

References
Symbian Essential Idioms: Thin Templates (http:/ / developer. symbian. org/ main/ documentation/ reference/ s^3/
doc_source/ guide/ EssentialIdioms/ ThinTemplates. guide. html)

Reference
• Traits (http:/ / www. generic-programming. org/ languages/ cpp/ techniques. php#traits)
• Introduction to Traits (http:/ / accu. org/ index. php/ journals/ 442)
• GENERIC<PROGRAMMING> Traits: The else-if-then of Types (http:/ / erdani. org/ publications/ traits. html)

Type Generator

Intent
• To simplify creation of complex template-based types
• To synthesize a new type or types based on template argument(s)
• To localize default policies when policy-based class design is used

Also Known As
Templated Typedef Idiom

Motivation
Class templates designed using policy-based class design technique, often result into very flexible templates with
multiple type parameters. One downside of such class templates is that, too many type parameters must be provided
when their instances are created. Default template parameters come handy in such cases. However, all the
intermediate template parameters need to be specified anyways when the last template parameter (policy class) is
different from the default.
For example, consider a case where special purpose allocators are used with standard C++ containers. GNU C++
compiler provides many special purpose allocators in namespace __gnu_cxx as extensions of the standard C++
library. Consider the following standard map template instantiation with malloc allocator.

std::map <std::string, int, less<std::string>, __gnu_cxx::malloc_allocator<std::string> >

http://developer.symbian.org/main/documentation/reference/s^3/doc_source/guide/EssentialIdioms/ThinTemplates.guide.html
http://developer.symbian.org/main/documentation/reference/s^3/doc_source/guide/EssentialIdioms/ThinTemplates.guide.html
http://www.generic-programming.org/languages/cpp/techniques.php#traits
http://accu.org/index.php/journals/442
http://erdani.org/publications/traits.html


More C++ Idioms/Print Version 138

A variation of the above map using float instead of an int requires all the unrelated type parameters to be mentioned
again.

std::map <std::string, float, less<std::string>, __gnu_cxx::malloc_allocator<std::string> >

Type generator idiom is used to reduce code bloat in such cases.

Solution and Sample Code
In type generator idiom, common (invariant) parts of a family of type definitions are collected together in a structure,
whose sole purpose is to generate another type. For example, consider the Directory template shown below.

template <class Value>

struct Directory

{

  typedef std::map <std::string, Value, std::less<std::string>, 

                    __gnu_cxx::malloc_allocator<std::string> > type;

};

Directory<int>::type    // gives a map of string to integers.

Directory<float>::type  // gives a map of string to floats.

An extra level of indirection (struct Directory) is used to capture the invariant part and one or two template
parameters are left open for customization. A type generator usually consolidates a complicated type expression into
a simple one. A type generator can be used to generate more than one type by simply adding more typedefs.
For example, consider how standard STL algorithms are applied to maps.

Directory<int>::type age; // This is a map.

transform(age.begin(), age.end(),

          std::ostream_iterator<string>(std::cout, "\n"),

          _Select1st<std::map<std::string, int>::value_type> ());

An adapter that transforms map's value_type, which is a pair, into the first element of the pair. _Select1st does the
job of adapter in the example above. Its type is needlessly complex with ample opportunity of typing it wrong when
repeated multiple times. Instead, type generator idiom simplifies type specification of the adapter considerably.

template <class Value>

struct Directory

{

  typedef map <string, Value, less<string>, __gnu_cxx::malloc_allocator<std::string> > type;

  typedef _Select1st<typename type::value_type> KeySelector;

  typedef _Select2nd<typename type::value_type> ValueSelector;

};

Directory<int>::type age;    // This is a map.

transform(age.begin(), age.end(),

          std::ostream_iterator<string>(std::cout, "\n"),

          Directory<int>::KeySelector());

Finally, type generator can be used to conveniently change the invariant type parameters, if needed. For example,
changing malloc_allocator to debug_allocator throughout the program. The main reason why you might sometimes
want to change it is to get more useful information from bounds-checking or leak-detection tools while debugging.
Using type generators such a program-wide effect can be achieved by simply changing it at one place.



More C++ Idioms/Print Version 139

Known Uses
• Boost.Iterator library

Related Idioms
• Policy-based Class Design
• Meta-function wrapper
• Object Generator

References
[1] Type Generator (http:/ / www. boost. org/ community/ generic_programming. html#type_generator)
[2] Policy Adaptors and the Boost Iterator Adaptor Library (http:/ / www. oonumerics. org/ tmpw01/ abrahams. pdf)
-- David Abrahams and Jeremy Siek
[3] Template Typedef (http:/ / www. gotw. ca/ gotw/ 079. htm) -- Herb Sutter
[4] The New C++: Typedef Templates (http:/ / www. ddj. com/ cpp/ 184403850) -- Herb Sutter

Type Safe Enum

Intent
Improve type-safety of native enum data type in C++.

Also Known As
Typed enums

Motivation
Enumerations in C++03 are not sufficiently type-safe and may lead to unintended errors. In spite of being a
language-supported feature, enums also have code portability issues due to different ways in which different
compilers handle the corner cases of enumerations. The problems surrounding enumerations can be categorized in 3
ways[1] :
• Implicit conversion to an integer
• Inability to specify the underlying type
• Scoping issues
C++03 enumerations are not devoid of type safety, however. Particular, direct assignment of one enumeration type to
another is not permitted. Moreover, there is no implicit conversion from an integer value to an enumeration type.
However, most unintended enumeration errors can be attributed to its ability to get automatically promoted to
integers. For instance, consider the following valid C++03 program. Only a few compilers such as GNU g++ issue a
warning to prevent unintended errors like below.

enum color { red, green, blue };

enum shape { circle, square, triangle };

color c = red;

bool flag = (c >= triangle); // Unintended!

Other problems with C++03 enums are their inability to specify the underlying representation type to hold the values
of enumerators. A side effect of this underspecification is that the sizes and the signedness of the underlying type

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Policy-based_Class_Design
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Meta-function_wrapper
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Object_Generator
http://www.boost.org/community/generic_programming.html#type_generator
http://www.oonumerics.org/tmpw01/abrahams.pdf
http://www.gotw.ca/gotw/079.htm
http://www.ddj.com/cpp/184403850


More C++ Idioms/Print Version 140

vary from compiler to compiler, which leads to non-portable code. Finally, the scoping rules of C++03 may cause
inconvinience. For instance, two enumerations in the same scope can not have enumerators with the same name.
Type safe enum idiom is a way to address these issues concerning C++03 enumerations. Note that strongly-typed
enum support in C++0x will eliminate the need of this idiom.

Solution and Sample Code
Type safe enum idiom wraps the actual enumerations in a class or a struct to provide strong type-safety.

template<typename def, typename inner = typename def::type>

class safe_enum : public def

{

  typedef typename def::type type;

  inner val;

public:

  safe_enum(type v) : val(v) {}

  inner underlying() const { return val; }

  bool operator == (const safe_enum & s) const { return this->val == 

s.val; }

  bool operator != (const safe_enum & s) const { return this->val != 

s.val; }

  bool operator <  (const safe_enum & s) const { return this->val <  s.val; }

  bool operator <= (const safe_enum & s) const { return this->val <= s.val; }

  bool operator >  (const safe_enum & s) const { return this->val >  

s.val; }

  bool operator >= (const safe_enum & s) const { return this->val >= 

s.val; }

};

struct color_def {

  enum type { red, green, blue };

};

typedef safe_enum<color_def> color;

struct shape_def {

  enum type { circle, square, triangle };

};

typedef safe_enum<shape_def, unsigned char> shape; // unsigned char representation

int main(void)

{

  color c = color::red;

  bool flag = (c >= shape::triangle); // Compiler error.

}



More C++ Idioms/Print Version 141

In the above solution, the actual enumerations are wrapped inside color_def and shape_def structures. To obtain a
safe enumeration type from the definitions, safe_enum template is used. safe_enum template makes use of the
Parameterized Base Class idiom i.e., it inherits publicly from the def parameter inself. As a result, the enumerations
defined in the definitions are available in the safe_enum instantiation.
safe_enum template also supports a way to specify the underlying type (inner) used to hold values of the
enumerators. By default it is the same as the enumeration type in its definition. Using explicit underlying
representation type as the second type parameter, the size of the safe_enum template instantiation can be controlled
in a portable way.
safe_enum template prevents automatic promotion to integers because there is no conversion operator in it. Instead,
it provides underlying() function, which can be used to retrieve the value of the enumerator. Overloaded operators
are also provided by the template to allow simple comparisons and total ordering of the type-safe enumerators.

Related Idioms
• Parameterized Base Class

References
• Strongly Typed Enums (revision 3) (http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2007/ n2347.

pdf), David E. Miller, Herb Sutter, and Bjarne Stroustrup

Type Selection

Intent
Select a type at compile-time based on a compile-time boolean value or a predicate.

Motivation
Ability to take decisions based on the information known at compile-time is a powerful meta-programming tool. One
of the possible decisions to be made at compile-time is deciding a type i.e., the choice of the type may vary
depending upon the result of a predicate.
For example, consider a Queue abstract data-type (ADT) implemented as a class template that holds a static array of
Ts and the maximum capacity of the Queue is passed as a template parameter. The Queue class also needs to store
the number of elements present in it, starting from zero. A possible optimization for such a queue class could be to
use different types to store the size. For instance, when Queue's maximum capacity is less than 256, unsigned char
can be used and if the capacity is less than 65,536, unsigned short can be used to store the size. For larger queues,
unsigned integer is used. Type selection idiom can be used to implement such compile-time decision making.

Solution and Sample Code
A simple way of implementing the type selection idiom is the IF template. IF template takes three parameters. The
first parameter is a compile-time boolean condition. If the boolean condition evaluates to true the 2nd type passed to
the IF template is chosen otherwise third. Type selection idiom consists of a primary template and a partial
specialization as shown below.

template <bool, class L, class R>

struct IF  // primary template

{

  typedef R type; 

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Parameterized_Base_Class
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Parameterized_Base_Class
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf


More C++ Idioms/Print Version 142

};

 

template <class L, class R>

struct IF<true, L, R> // partial specialization

{

  typedef L type; 

};

 

IF<false, int, long>::type i; // is equivalent to long i;

IF<true,  int, long>::type i; // is equivalent to int i;

We now use the type selection idiom to implement the Queue size optimization mentioned above.

template <class T, unsigned int CAPACITY>

class Queue 

{

  T array[CAPACITY];

  IF<(CAPACITY <= 256), 

      unsigned char, 

      typename IF<(CAPACITY <= 65536), 

                  unsigned short, 

                  unsigned int

                 >::type

    >::type size;

  // ...

};

The Queue class template declares an array or Ts. The type of the size data member depends on the result of two
comparisons performed using the IF template. Note that these comparisons are not performed at run-time but at
compile-time.

Known Uses
• Boost.MPL Library

Related Idioms
• Tag Dispatching

Virtual Constructor

Intent
To create a copy of an object or a new object without knowing its concrete type.

Also Known As
Factory Method of initialization

Motivation

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Tag_Dispatching


More C++ Idioms/Print Version 143

Uses of calling member functions in a class hierarchy polymorphically are well known in the object-oriented
programming community. It is a way of implementing the is-a (or more practically, behaves-as-a) relationship.
Sometimes it is useful to call life-cycle management (creation, copy, and destruction) functions of a class hierarchy
polymorphically.
C++ natively supports polymorphic destruction of objects using a virtual destructor. An equivalent support for
creation and copying of objects is missing. In C++, creation of object(s) always requires its type to be known at
compile-time. The Virtual Constructor idiom allows polymorphic creation of and copying of objects in C++.

Solution and Sample Code
The effect of a virtual constructor by a create() member function for creation and a clone() member function for copy
construction as shown below.

class Employee 

{

  public:

    virtual ~Employee () {}                 // Native support for 

polymorphic destruction.

    virtual Employee * create () const = 0; // Virtual constructor 

(creation) 

    virtual Employee * clone () const = 0;  // Virtual constructor 

(copying) 

};

class Manager : public Employee     // "is-a" relationship

{

  public:

    Manager ();                     // Default constructor

    Manager (Manager const &);      // Copy constructor

    ~Manager () {}                  // Destructor

    Manager * create () const       // Virtual constructor (creation) 

    {

      return new Manager();

    }

    Manager * clone () const        // Virtual constructor (copying) 

    {

      return new Manager (*this);

    }

};

class Programmer : public Employee { /* Very similar to the Manager 

class */ };

Employee * duplicate (Employee const & e)

{

   return e.clone();  // Using virtual constructor idiom.

}

The Manager class implements the two pure virtual functions and uses the type name (Manager) to create them. The
function duplicate shows how virtual constructor idiom is used. It does not really know what it is duplicating. It only
knows that it is cloning an Employee. The responsibility of creating the right instance is delegated to the derived
classes. The duplicate function is therefore closed for modifications even though the class hierarchy rooted at



More C++ Idioms/Print Version 144

Employee gets more sub-classes added in the future.
The return type of the clone and create member functions of the Manager class is not Employee but the class itself.
C++ allows this flexibility in types where the return type of the over-ridden function can be a derived type of that of
the function in the base class. This language feature is known as co-variant return types.

To handle resource ownership properly, the Resource Return idiom should be employed for the return types of
clone() and create() functions as they are factory functions. If used, the return types (shared_ptr<Employee> and
shared_ptr<Manager>) are no longer covariant return types and program should fail to compile. In such a case, the
virtual constructor functions in the derived class should return the exact type as in the parent class.

#include <tr1/memory>

class Employee

{

  public:

    typedef std::tr1::shared_ptr<Employee> Ptr;

    virtual ~Employee () {}                    // Native support for 

polymorphic destruction.

    virtual Ptr create () const = 0; // Virtual constructor (creation)

    virtual Ptr clone () const = 0;  // Virtual constructor (copying)

};

class Manager : public Employee     // "is-a" relationship

{

  public:

    Manager () {}                     // Default constructor

    Manager (Manager const &) {}      // Copy constructor

    ~Manager () {}

    Ptr create () const       // Virtual constructor (creation)

    {

      return Ptr(new Manager());

    }

    Ptr clone () const        // Virtual constructor (copying)

    {

      return Ptr(new Manager (*this));

    }

};

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Return


More C++ Idioms/Print Version 145

Related Idioms
• Resource Return
• Polymorphic Exception

References
• Virtual Constructor (http:/ / www. parashift. com/ c+ + -faq-lite/ virtual-functions. html#faq-20. 8)

Virtual Friend Function

Intent
Simulate a virtual friend function.

Motivation
Friend functions are often needed in C++. A canonical example is that of types that can be printed to output streams
(e.g., std::cout). An overloaded left-shift operator function, which is often a friend, is needed to achieve seamless
streaming capabilities. Friend functions are really an extension of the class's interface. However, friend functions in
C++ can not be declared virtual and therefore no dynamic binding of friend functions is possible. Applying a friend
function to an entire hierarchy of classes becomes awkward if an overloaded friend function is needed for every class
in the hierarchy. This lack of support for dynamic binding makes it hard to justify that are in fact an extension of the
class's interface. Virtual friend function idiom addresses this concern elegantly.

Solution and Sample Code
Virtual friend function idiom makes use of an extra indirection to achieve the desired effect of dynamic binding for
friend functions. In this idiom, usually there is only one function that is a friend of the base class of the hierarchy and
the friend function simply delegates the work to a helper member function that is virtual. The helper function is
overridden in every derived class, which does the real job and the friend function just serves as a facade.

class Base {

  public:

    friend ostream& operator << (ostream& o, const Base& b);

    // ...

  protected:

    virtual void print(ostream& o) const

    { ... }

};

inline std::ostream& operator<< (std::ostream& o, const Base& b)

{

  b.print(o); // delegate the work to a polymorphic member function.

  return o;

}

class Derived : public Base {

  protected:

    virtual void print(ostream& o) const

    { ... }

http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Resource_Return
http://en.wikibooks.org/w/index.php?title=More_C%2B%2B_Idioms/Polymorphic_Exception
http://www.parashift.com/c++-faq-lite/virtual-functions.html#faq-20.8


More C++ Idioms/Print Version 146

};

References
• Virtual friend function idiom (http:/ / www. parashift. com/ c+ + -faq-lite/ friends. html#faq-14. 3), Marshall

Cline

GNU Free Documentation License
Version 1.3, 3 November 2008 Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
<http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the
sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in
the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.
We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license
if you copy, modify or distribute the work in a way requiring permission under copyright law.
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

http://www.parashift.com/c++-faq-lite/friends.html#faq-14.3


More C++ Idioms/Print Version 147

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors
or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been
arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not
Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any title
page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.
The "publisher" means any person or entity that distributes copies of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.
The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as
regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that
this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.



More C++ Idioms/Print Version 148

3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering
more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as
fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity,
to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the
last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,
provided that you release the Modified Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of

previous versions (which should, if there were any, be listed in the History section of the Document). You may
use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the

Modified Version under the terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the

Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new

authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title
Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the Document for previous versions it was based on.



More C++ Idioms/Print Version 149

These may be placed in the "History" section. You may omit a network location for a work that was published at
least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified version.
N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These
titles must be distinct from any other section titles.
You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties—for example, statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of
Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its
license notice, and that you preserve all their Warranty Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections
Entitled "Dedications". You must delete all sections Entitled "Endorsements".



More C++ Idioms/Print Version 150

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided
you insert a copy of this License into the extracted document, and follow this License in all other respects regarding
verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on
a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less
than one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms
of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders,
but you may include translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section
4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your
rights under this License.
However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated
(a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.
Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of
the notice.



More C++ Idioms/Print Version 151

Termination of your rights under this section does not terminate the licenses of parties who have received copies or
rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http:/ / www. gnu. org/ copyleft/ .
Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any
version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can
decide which future versions of this License can be used, that proxy's public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes
copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that
anybody can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in
the site means any set of copyrightable works thus published on the MMC site.
"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.
"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published
under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the
MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.
The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any
time before August 1, 2009, provided the MMC is eligible for relicensing.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the
following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:

http://www.gnu.org/copyleft/.


More C++ Idioms/Print Version 152

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two
alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU General Public License, to permit their use in free
software.

References
[1] http:/ / www. open-std. org/ jtc1/ sc22/ wg21/ docs/ papers/ 2007/ n2347. pdf

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf


Article Sources and Contributors 153

Article Sources and Contributors
More C++ Idioms/Print Version  Source: http://en.wikibooks.org/w/index.php?oldid=1792620  Contributors: Mike.lifeguard, Sutambe

Image Sources, Licenses and Contributors
Image:More_CPP_Idioms.jpg  Source: http://en.wikibooks.org/w/index.php?title=File:More_CPP_Idioms.jpg  License: Public Domain  Contributors: Sumant Tambe

License
Creative Commons Attribution-Share Alike 3.0 Unported
//creativecommons.org/licenses/by-sa/3.0/


	More C++ Idioms/Print Version
	Preface 
	Authors 
	Praise of the Book 
	Table of Contents 

	Address Of
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 


	Algebraic Hierarchy
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 

	Solution and Sample Code 

	Barton-Nackman trick
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Base-from-Member
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	Boost mutant
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	References 


	Calling Virtuals During Initialization
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	References 


	Capability Query
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Checked delete
	Intent 
	Motivation and Sample Code 
	Solution and Sample Code 
	References 


	Clear-and-minimize
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Solution in C++0x 
	Related Idioms 
	References 


	Coercion by Member Template
	Intent 
	Motivation 
	Solution and Sample Code 
	Caveats 
	Known Uses 
	Related Idioms 
	References 

	Solution and Sample Code 

	Computational Constructor
	Intent 
	Motivation 
	Solution and Sample Code 
	Consequences 
	References 


	Concrete Data Type
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	Const auto_ptr
	Intent 
	Motivation 
	Solution and Sample Code 
	Consequences 
	Related Idioms 
	References 


	Construct On First Use
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Construction Tracker
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	Copy-and-swap
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 


	Copy-on-write
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	References 


	Counted Body/Reference Counting (intrusive)
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Consequences 
	Known Uses 
	Related Idioms 
	References 


	Curiously Recurring Template Pattern
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Empty Base Optimization
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	References 

	Intent 
	Also Known As 
	Motivation 
	Solution 
	Sample code 
	Known Uses 
	Related Idioms 
	References 

	Envelope Letter
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 
	Copyright 
	Extended Example 


	Erase-Remove
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	References 


	Execute-Around Pointer
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Expression Template
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 

	Solution and Sample Code 
	Intent 
	Solution and Sample Code 
	Related Idioms 
	References 

	Final Class
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	Friendship and Attorney-Client
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	Generic Container Idioms
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Include Guard Macro
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Inline Guard Macro
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Inner Class
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Int-To-Type
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Interface Class
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Iterator Pair
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Making New Friends
	Intent 
	Motivation 
	Solution and Sample Code 


	Metafunction
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Move Constructor
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Multi-statement Macro
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	References 


	Member Detector
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Named Constructor
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Named Loop
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 


	Named Parameter
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Nifty Counter
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Non-copyable Mixin
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Non-throwing swap
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Caveats 
	Known Uses 
	Related Idioms 
	References 


	Non-Virtual Interface
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Consequences 
	Related Idioms 
	References 


	nullptr
	Intent 
	Motivation 
	Solution and Sample Code 
	Consequences 
	Related Idioms 
	References 


	Object Generator
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 

	Solution and Sample Code 
	Solution and Sample Code 

	Parameterized Base Class
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 


	Policy Clone
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Polymorphic Exception
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Recursive Type Composition
	Solution and Sample Code 
	References 


	Resource Acquisition Is Initialization
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Consequences 
	Known Uses 
	Related Idioms 
	References 


	Resource Return
	Intent 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Return Type Resolver
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Runtime Static Initialization Order Idioms
	Intent 
	Motivation 
	Solution and Sample Code 


	Safe Bool
	Intent 
	Motivation 
	Solution and Sample Code 
	Solution in C++0x 
	Known Uses 
	References 


	Scope Guard
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 

	Intent 
	Also Known As 
	Known Uses 
	References 

	Shrink-to-fit
	Intent 
	Motivation 
	Solution and Sample Code 
	Solution in C++0x 
	Related Idioms 
	References 


	Smart Pointer
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 

	Solution and Sample Code 
	Reference 
	Solution and Sample Code 

	Thin Template
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	References 

	Reference 

	Type Generator
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 
	References 


	Type Safe Enum
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Type Selection
	Intent 
	Motivation 
	Solution and Sample Code 
	Known Uses 
	Related Idioms 


	Virtual Constructor
	Intent 
	Also Known As 
	Motivation 
	Solution and Sample Code 
	Related Idioms 
	References 


	Virtual Friend Function
	Intent 
	Motivation 
	Solution and Sample Code 
	References 


	GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING

	How to use this License for your documents 
	License

