

The C++ Standard
Template Library

Student Manual

Introduction Page 2

 Module Table
of Contents

Unit One Basic Concepts Page
 1.1 .. Origin and History of the Standard Template Library 10
 1.2 .. Why use the STL? 12
 1.3 .. What is the Standard Template Library? 14
 1.4 ... Foundational C++ Concepts 20

Unit Two Generic Programming with Templates Page
 2.1 .. Why Templates? 27
 2.2 .. Function Templates 29
 2.3 .. Class Templates 44
 2.4 ... Template Specialization 50
 2.5 ...Default Template Parameters 55
 2.6 .. Non-Type Template Parameters 56
 2.7 ... Template Template Parameters 61
 2.8 .. Other Template Related Topics 63
 2.9 .. Using Templates 68
 2.10 ... Components of the STL 73

Unit Three Sequential Containers Page
 3.1 .. Containers 76
 3.2 .. Sequential Containers 81
 3.3 .. The vector Container 82
 3.4 ... ….The deque Container 95
 3.5 ... The list Container 104

Introduction Page 3

 3.6 .. The string class 110
 3.7 ... The bitset Container 116
 3.8 ... The valarray Container 119

Unit Four Iterators Page
 4.1 .. What is an Iterator? 124
 4.2 ... Iterators in the STL 127
 4.3 ... Input Iterators 137
 4.4 .. Output Iterators 139
 4.5 .. Forward Iterators 135
 4.6 ... Bidirectional Iterators 137
 4.7 ... Random Access Iterators 140
 4.8 ... Summary of Iterator Operations 151

Unit Five Associative Containers Page
 5.1 ... What is an Ordered Associative Container? 153
 5.2 ... The pair Container 156
 5.3 ... The set Container 159
 5.4 ... The multiset Container 166
 5.5 .. The map Container 170
 5.6 ... The multimap Container 173
 5.7 .. The Unordered Associative Containers 177
 5.8 ... The Unordered Map Container 177

Unit Six Adapted Iterators Page
 6.1 ... What are Iterator Adaptors? 183
 6.2 .. The inserter Iterator Adaptor 185

Introduction Page 4

 6.3 .. The reverse Iterator Adaptor 193
 6.4 ... The stream Iterator Adaptor 195

Unit Seven Adapted Containers Page
 7.1 ... What are Container Adaptors? 203
 7.2 .. The stack Container Adaptor 205
 7.3 .. The queue Container Adaptor 207
 7.4 .. The priority_queue Container Adaptor 209

Unit Eight Functors Page
 8.1 ... What is a Functor? 213
 8.2 ... Classifying Functors 224
 8.3 ... Function Pointers Review 231
 8.4 .. Arithmetic Functors 237
 8.5 .. Relational Functors 239
 8.6 ... Logical Functors 241

Unit Nine Function Adaptors Page
 9.1 ... What are Function Adaptors? 243
 9.2 .. The Binder Function Adaptors 244
 9.3 ... The Negator Function Adaptors 247
 9.4 .. Member Function Adaptors 251
 9.5 ... Pointers to Functions 255
 9.6 ... User Defined Functors 259

Introduction Page 5

Unit Ten Non-mutating Algorithms Page
 10.1 .. Algorithms 262
 10.2 .. Non-Mutating Algorithms 265
 10.3 ... Searching 267
 10.4 ... Counting 275
 10.5 .. Max and Min 277
 10.6 .. Comparing ranges 280

Unit Eleven Mutating Algorithms Page
 11.1 ... Mutating Algorithms 283
 11.2 .. Filling and Generating 285
 11.3 .. Manipulating Sequences 290
 11.4 .. Remove 294
 11.5 .. Replace 302
 11.6 .. Sort and Merge 304

Unit Twelve Other Algorithms Page
 12.1 ... set algorithms 319
 12.2 .. heap algorithms 328
 12.3 ... numeric algorithms 331

Unit Thirteen Utilities Page
 13.1 ... Memory Allocators 336
 13.2 .. The smart pointer: auto_ptr 338
 13.3 ... The raw storage iterator 340
 13.4 .. Some relational operators 341

Introduction Page 6

Appendix Resources .. Page
 A ... Optimization 344
 B ... Extensions 349
 C ... Books 354
 D .. Websites 355
 E ... Exercises 356

Introduction Page 7

 Introduction

About this course

This material is designed to teach experienced C and C++ programmers
about the Standard Template Library.

Typographical syntax

Examples in this text of commands will appear in bold text and the output
of the commands will appear in italic text. The commands and the output
of the commands will be placed in a box to separate them from other text.
Example:

[student@linux1 student]$ pwd
/home/student

Note: "[student@linux1 student]$" is a prompt, a method the shell uses to
say “I’m ready for a new command”.

Bold text within a sentence will indicate an important term or a command.
Files and directories are highlighted by being placed in courier font.

Introduction Page 8

Using this manual while in class

In many ways, typename manuals are different from textbooks.
Textbooks are often filled with lengthy paragraphs that explain a topic in
detail. Unfortunately, this style doesn’t work well in a classroom
environment.

Class manuals often are much more concise than textbooks. It's difficult
to follow the instructor’s example and read lengthy paragraphs in a book
at the same time. For this purpose, typename manuals are often more
terse, similar to a presentation.

Lab Exercises

The lab exercises provided in this class are intended to provide practical,
hands on experience with programming in C++ using the STL. Students
are strongly encouraged to perform the labs provided at the end of each
Unit to reinforce the knowledge provided in class.

1 – Concepts of the STL Page 9

 Unit One

Basic Concepts

Unit topics: Page
 1.1 .. Origin and History of the Standard Template Library 10
 1.2 .. Why use the STL? 12
 1.3 .. What is the Standard Template Library? 14
 1.4 ... Foundational C++ Concepts 20

 Notes:

1 – Concepts of the STL Page 10

1.1 Origin and History of the Standard Template Library

Alexander Stepanov is the person whose ideas initiated what has become
the Standard Template Library. He was educated in math but liked real
world applications of math and so became a programmer. He also likes to
think abstractly and so always tried to make abstract concepts work in a
program. One of his first jobs was to program a minicomputer to be used
to control large hydroelectric power stations. He started thinking about
general algorithms and data structures even at that time.

Abstract data types (templates) and generic programming are both results
of his desire to use math and abstract concepts in the real world.

http://en.wikipedia.org/wiki/Alexander_Stepanov

 Notes:

1 – Concepts of the STL Page 11

The following is a brief a timeline of the STL's development:

 1971: David Musser created some generic algorithms for computer

algebra
 1979: Stepanov began working on generic programming with Dave

Musser and Deepak Kapur at GE Research and Development.
 1985: Stepanov and Musser developed a generic library for the Ada

language using generic programming, however C looked more like a
language that everyone would use so they started exploring C/C++
programming shortly before joining Hewlett-Packard (HP)

 1992: Meng Lee joined Stepanov's project at HP
 1993: Andrew Koenig at Bell Labs found out about this work and asked

them to present their ideas at the Nov. meeting of the ANSI/ISO
committee for C++ standardization.

 1994: HP made STL implementation available free on the Internet and it
was adopted into the draft standard at the July ANSI/ISO C++ Standards
Committee meeting.

 1995: Stepanov went Silicon Graphics to further develop STL

http://en.wikipedia.org/wiki/1979
http://en.wikipedia.org/w/index.php?title=Deepak_Kapur&action=edit
http://en.wikipedia.org/wiki/1992
http://en.wikipedia.org/wiki/Meng_Lee
http://en.wikipedia.org/wiki/Internet

 Notes:

1 – Concepts of the STL Page 12

1.2 Why use the STL?

 Efficiency. No inheritance or virtual functions. Runs quickly.

 Reusability. Creating templates once or using the predefined

templates means programmers can focus on the unique aspects of
their programs rather than reinventing the standards algorithms and
containers that the STL provides.

 Type safety. Extensive use of C++ templates makes STL type safe.

 Consistency. STL container classes, functors and algorithms all use

iterators which ties the parts of the STL together well while allowing
each part to be used on its own if desired.

 Extensibility.

1. STL’s iterators are powerful extensions of regular pointers into
pointer objects; thus they not only keep a value like regular
pointers but can also keep several types of data and perform
defined functions.

2. STL algorithms are standalone functions that use iterators to

operate on data. This data can be in STL containers or functors (or
even in a programmer’s own defined data structures and functors).

 Notes:

1 – Concepts of the STL Page 13

3. Like regular functions, STL’s functors allow calculations, but also
allow a function to be ‘smart’, that is to hold data along with the
function. They can be used with a user defined data structures or
custom own algorithms.

4. STL memory management does not directly use the new and

delete operators, but uses special allocator objects to allocate and
de-allocate storage. These are classes that a programmer can use
in order to maximize memory usage and pointer cleanup.

 Notes:

1 – Concepts of the STL Page 14

1.3 What is the Standard Template Library?

In general, the Standard Template Library is a subset of the C++ Standard
Library header files, consisting of headers that define container, function
and iterator classes along with algorithms and other utilities that work with
these classes.

These classes, implemented as C++ structs, provide public access to their
data members and functions, and all are written in a generic way to support
both specific C++ built-in datatypes as well as user defined objects.

A few of the STL classes are related by inheritance; however in general,
the STL is not object oriented. There are no virtual functions, and few
related classes. The classes provide limited thread handling support, nor
do most of them have any exception or error checking.

Standard C++ data structures and pointers can be used with the STL
components.

 Notes:

1 – Concepts of the STL Page 15

 Notes:

1 – Concepts of the STL Page 16

The Standard C++ Library consists of many headers, but not all of them are
considered to be the Standard Template Library. We think of the following
headers as constituting the Standard Template Library:

Header Definition
<algorithm> Defines templates that implement useful algorithms
<bitset> Defines a template class that administers sets of bits
<deque> Defines a template class that implements a deque
<functional> Defines several functor templates for predicates used with

the templates defined in <algorithm> and <numeric>
<iterator> Defines templates that help define and manipulate iterators
<list> Defines a template class that implements a doubly linked list
<map> Defines template classes that implement associative

containers that map keys to values using a red-black tree. It
contains both map and multimap.

<memory> Defines templates that allocate and free storage
<numeric> Defines functor templates that implement numeric functions
<queue> Defines a template class that implements a queue container.

It contains both queue and priority_queue.
<set> Defines template classes that implement associative

containers in a red-black tree. It contains both set and
multiset.

<stack> Defines a template class that implements a stack container
<utility> Defines several templates of general utility
<vector> Defines a template class that implements a vector container

 Notes:

1 – Concepts of the STL Page 17

Conceptual Picture of STL components at work

To use these components:

1. #include the necessary headers
2. Declare an object of a container class, providing a data type.
3. Declare an object of the container’s Iterator class, with same datatype.
4. Add some elements to the container.
5. Perform some actions on those elements using algorithms and iterators,
optionally guiding or limiting the algorithms’ actions based on functors.

Container class:
Holds elements and
iterators (smart
pointers)

Functor class: result
used to guide
algorithm

Algorithm function:
performs action
indirectly on
container’s elements,
using iterators,
optionally guided by a
functor

function
guides action iterators

provide access
to elements

 Notes:

1 – Concepts of the STL Page 18

 Notes:

1 – Concepts of the STL Page 19

The STL was created to support these goals:

1. Generic programming, which lets data types to be defined
generically without needing to specify the exact type of data an
algorithm, functor, or container will use until a program is
compiled/linked/running. The type of data being passed when the
STL template container, function or algorithm is invoked defines
how it will work and ensures it will work correctly with the type of
data being processed.

2. Abstractness without loss of efficiency due to generalized

parameters, but done in a standard manner.

3. Use of the Von Neumann computation model, which means a

running program is dynamically invoking these STL objects as it
runs (i.e., everything is data to the computer, even the program).

4. Value semantics, where the values of parameters are copied to

functions; not pointers – runs faster, but cannot use polymorphism
with these containers without using object-oriented design
patterns, such as Bridge.

http://en.wikipedia.org/wiki/Von_Neumann_architecture

 Notes:

1 – Concepts of the STL Page 20

1.4 Foundational C++ Concepts

Namespace std

Using large numbers of modules and libraries in C and C++ sometimes
creates class or function name clashes. The C++ standard solved this by
introducing the concept of namespaces. A namespace is a scope that can
go across many classes and even many files. It is open for extensions,
unlike a class. All identifiers in the C++ Standard Library are defined to be
part of namespace std.

There are 3 options when using a component of the std namespace:

1. Qualify the identifier directly as in

#include <iostream>

std::cout << “Hello World” << std::endl;

2. Use a ‘using declaration’ - as in:

#include <iostream>
using std::cout;
using std::endl;

cout << “Hello World” << endl;

 Notes:

1 – Concepts of the STL Page 21

3. Using a ‘using directive’ - as in placing the phrase using namespace
std; at the top of the program.

#include <iostream>
using namespace std;

cout << “Hello World” << endl;

Error and Exception Handling

The C++ Standard Library is made up of files from various sources. Some
support detailed exception handling, such as the string class. Other parts of
the Library have functions and classes that rarely check for logic errors and
throw exceptions only if runtime errors occur. When using the template
classes and functions that comprise the STL, therefore, a program must
add code to handle possible logical exceptions that may occur. To assist
with this, here is a brief discussion of C++ Exception classes.

Standard Exception Classes

All C++ exceptions are derived from the base class, exception.
See diagram on the next page.

 Notes:

1 – Concepts of the STL Page 22

Standard C++ Exception Hierarchy

Exception

bad_alloc

bad_cast

bad_typeid

bad_exception

iosbase::failure

runtime_error

logic_error

domain_error

invalid_argument

length_error

out_of_range

range_error

overflow_error

underflow_error

 Notes:

1 – Concepts of the STL Page 23

Exceptions for Language Support

In the chart above, several exceptions are thrown by C++ when core
language features fail. They are the following exception classes:

1. An exception of class bad_alloc is thrown when the operator new fails.

2. An exception of class bad_cast is thrown when dynamic_cast is used
and a datatype conversion fails during runtime.

3. An exception of class bad_typeid is thrown when the typeid operator is
used with a null pointer or zero.

4. An exception of class bad_exception is thrown when an unexpected
exception occurs and there is no code to handle it. This results in a call to
unexpected(). Any function with an exception specifier list that happens to
throw an unlisted exception will cause C++ to call unexpected(), and this
calls terminate(), which ends the program quickly.

Exceptions for the Standard Library

These exceptions are derived from class logic_error. They are thought of
as errors that a program could avoid by adding logic to handle them or
better testing.

They are the following classes:

 Notes:

1 – Concepts of the STL Page 24

1. An exception of class invalid_argument is thrown when any function is
provided with an invalid argument.

2. An exception of class length_error is thrown when program statements
attempt to do anything that exceeds a maximum allowable size such as
appending too many characters to a string.

3. An exception of class out_of_range is thrown when an argument value
is not in the expected range, such as when a bad index value is used for an
array or collection class.

4. An exception of class domain_error is thrown to report domain errors.

5. An exception of class ios_base::failure is thrown when a stream
changes state due to an error or reaching EOF.

Errors Outside a Program

Sometimes errors occur that a program cannot either anticipate or control.
These are:

1. An exception of class range_error is thrown to report range errors in
internal computations of C++.

2. Exception of classes overflow_error and underflow_error are used by
C++ to report situations of arithmetic overflow or underflow.

 Notes:

1 – Concepts of the STL Page 25

Header files for C++ Exception classes

<exception> Contains exception and bad_exception.
<new> Contains bad_alloc
<typeinfo> Contains bad_typeid and bad_cast.
<ios> Contains ios_base::failure.
<stdexcept> Contains all other exceptions.

Memory Allocators

C++ uses special objects to allocate and deallocate memory. The STL
template classes assume that a standard allocator object, Allocator, is
available, although a program can optionally define a custom allocator
class to be used with the STL containers. Apparently allocators were once
needed to resolve the issues of near, far, and huge pointers in the past.
However today, with most implementations providing pointers of the same
size, allocators are useful to support objects that provide shared memory
space, garbage collection algorithms, and object oriented databases.

 Notes:

2 – Generic Programming Page 26

 Unit Two

Generic Programming with Templates

Unit Topics Page
 2.1 .. Why Templates? 27
 2.2 .. Function Templates 29
 2.3 .. Class Templates 44
 2.4 ... Template Specialization 50
 2.5 ...Default Template Parameters 55
 2.6 .. Non-Type Template Parameters 56
 2.7 ... Template Template Parameters 61
 2.8 .. Other Template Related Topics 63
 2.9 .. Using Templates 68
 2.10 ... Components of the STL 73

 Notes:

2 – Generic Programming Page 27

2.1 Why Templates?

C++ is a strongly typed language, meaning that a program must declare all
variables with their datatypes before they are used. This is great for
ensuring that the correct amount of storage is used for each variable and
that only the correct operations can be performed on its data. In addition
data type checking for each variable prevents memory leaks and illegal
operations that might causes exceptions in a running program.

However one drawback of this paradigm comes when a program needs to
perform the same or a similar action on many types of variables. Without
having classes or OO technology, a language such as C, used #define
preprocessor directives to define variables and even small functions
without datatypes. Another way to perform such actions in C was to use
void pointers, since no datatype is explicitly involved. This ‘gets around’ the
problem but doesn’t solve it in a datatype safe manner – it just avoids the
type checking that C or C++ provides.

Furthermore, neither of these options uses the power of modern OO
thinking. Other techniques such as making all such functions or classes
refer to Object or an Object reference, again don’t solve the problem
entirely; they are objected oriented, but still the problem remains that the
data type checking part of C++ is bypassed.

To preserve the power of C++’s datatype checking, another way is to use
many overloaded functions in a class, each having a different type of data
as input. The problem with this comes later when the program needs to be

 Notes:

2 – Generic Programming Page 28

enhanced, maintained, fixed, etc. Then the job of keeping all of these
functions in synch is a difficult one. Why not have ONE function that takes
one parameter of any datatype? That is what a function template is.

 Notes:

2 – Generic Programming Page 29

2.2 Function Templates

Defining a function template
Function templates are special functions that can operate on different data
types without separate code for each of them. For a similar operation on
several kinds of data types, therefore, it isn’t always as efficient to write
several different versions by overloading a function; writing one template
function will take care of many cases where overloaded functions might be
written. C++ provides for both function templates and class templates. We
will discuss function templates first.

The keyword typename was introduced to specify that the identifier
following it is a type and need not be a class. Also, any identifier of a
template is considered to be a value except if it is qualified by typename.
Thus declaring a function to be a template can be done either way and they
mean the same thing to C++:

template <class T> class xyz { };
template <typename T> class xyz { };

In general, we’ll use “typename T” instead of “class T” to make it clear that
any data type can be used, including built-in types.

Suppose an algorithm needs an add function but the programmer doesn’t
know right now if all calling programs will invoke this function using two
integers, floats, chars etc.
So the programmer starts by creating two overloaded functions like this:

 Notes:

2 – Generic Programming Page 30

int Add(int a, int b) { return a+b;}
float Add(float a, float b) { return a+b;}

Later the program might need to add two chars, two bytes or two doubles.
Of course one can cast the chars to integers but the doubles pose a
problem. Maybe a better plan would have used a generic datatype that
could later be determined when the function is used in a running program.

Maybe later requirements could mean that 2 class objects will be passed to
an Add function. How can a programmer think generally and create an
addition function that could handle all types of data, even those not
invented yet?

The template function concept solves this. Think generically about the type
of data that the function could take. Then create the following template.
Note that the template statement must be present right before the function
it goes with, to make the function a ‘template’. In addition, it is standard,
but not required, to represent the generic datatype as ‘T’.

A template function can create a family of functions. The Add template
function represents a family of ‘Add’ functions that take two parameters of
the same datatype, adds them together, and return the sum.

Let’s try an example where a program can call this function with any type of
data that supports the + operator, and it will work.

 Notes:

2 – Generic Programming Page 31

Using a Function Template

For example, a program can call the Add function with two integers and it
will return an integer. Call it with two chars, and it will return a char that
represents their sum. To use it successfully with a user defined class, be
sure the class overloads the + operator.

template <typename T>
T Add(T a, T b) {
 return a+b;
}

Here we have created a template function with T as its template parameter.
This template parameter represents a type that has not yet been specified,
but that can be used in the template function as if it were a regular type.

To use this function template use the following syntax for the function call:

function_name <type> (parameters);

For example, to call the Add() template function to sum two integer values:

int x = 5,y = 6, z;
z = Add <int> (x, y);
When the compiler encounters a call to a template function, it uses the
template to automatically generate a function replacing each appearance of
template parameter T by the type passed as the actual template parameter

 Notes:

2 – Generic Programming Page 32

(int in this case) and then calls it. This process is automatically performed
by the compiler and is invisible to the programmer.

Here is a small program using explicit instantiation with integers and longs.

#include <iostream>
using namespace std;

template <typename T>
T Add(T a, T b) {
 return a+b;
}

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k = Add<int> (i, j);
 n = Add<long> (l, m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

Template Arguments and Argument Deduction

 Notes:

2 – Generic Programming Page 33

In this specific case where only one generic type T, is used as a parameter
for Add, the compiler can automatically determine which data type to
instantiate the function for without having to explicitly specify the datatype
within angle brackets (like we have done before specifying <int> and
<long>). This is called argument deduction.

Thus, in the sample program, the statements could have been written using
implicit instantiation:

 #include <iostream>
using namespace std;

int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 k = Add (i, j);
 n = Add (l, m);
 cout << k << endl;
 cout << n << endl;
 return 0;
}

Since both i and j are of type int in the first call to Add(), the compiler can
automatically determine the template parameter is int and it can instantiate
the function. The same is true when both parameters are of type long or
any other built-in datatype.

 Notes:

2 – Generic Programming Page 34

Because our template function includes only one template parameter (T)
and the function template itself accepts two parameters, both of this T type,
we cannot call our function template with two objects of different types as
arguments:

int i;
long l;
k = Add (i, l); //invalid template function call

Function templates that accept more than one type parameter can also be
defined, simply by specifying more template parameters between the angle
brackets. For example:

template <typename T, typename U>
T GetMin (T a, U b) {
 return a < b ? a : b;
}

In this case, the function template GetMin() accepts two parameters of
different types and returns an object of the same type as the first parameter
(T) that is passed.

For example, we could call GetMin() with:

long I = 10,j = 20;
int l = 30;

 Notes:

2 – Generic Programming Page 35

i = GetMin<long, int> (j,l); // OR we can use i = GetMin (j,l);

Template and Function call Parameters
The example above, where two different datatypes are used in the function
template, illustrates the two types of parameter lists that template functions
have. The first list, called the template parameters lies within the angle
brackets on the template statement:

template <typename T, typename U>

The second parameter list for function templates lie within the parentheses
of the function call itself:

T GetMin (T a, U b)

As seen in this example, usually all the template parameters are related to
the function call parameters so that invoking the function allows C++ to
deduce the datatypes of all the template parameters.

However, it is possible to add template parameters that aren’t in the
function call list. If that is done, these parameters must be placed before
any parameters that are in both lists, and a program invoking the function
must specify all the arguments up to the last argument datatype that
cannot be determined from the function call parameters. For example in
this template function the datatypes T and U can be determined when the
function is called. But the return datatype, R, cannot. Any program using

 Notes:

2 – Generic Programming Page 36

this function must provide the return datatype and optionally can provide all
datatypes.

template <typename R, typename T, typename U>
R max(T a, U b) {
 return a<b ? b: a;
}
double d = max<double>(5.5D, 2); <- must provide return datatype
int i = max<int, char, char>(‘a’, ’b’); <- can provide all datatypes

Like other functions, template functions can be inline or external and even
static. They can be combined in a program with regular functions of the
same name. When this occurs, the regular function is invoked if it fits,
otherwise the template is used.

Templates are processed twice by a C++ compiler:
1. The template code declaration can be checked for correct syntax during

compilation.
2. When the template is instantiated during program link-time, the template

code is checked to ensure that all calls are valid based on the type and
number of arguments specified.

A consequence of this two phase processing is that some errors don’t show
up until a template is actually instantiated!

Function Template Overloading

 Notes:

2 – Generic Programming Page 37

One can overload a function template either by a non-template function or
by another function template.

If a program invokes an overloaded function template, the compiler will try
to deduce its template arguments and check its explicitly declared template
arguments. If successful, it will instantiate a function template
specialization, then add this specialization to the set of candidate functions
used in overload resolution.

The compiler proceeds with overload resolution, choosing the most
appropriate function from the set of candidate functions. Non-template
functions take precedence over template functions (which forms the basis
for so-called “template specialization,” as we’ll discuss later. Here is an
example:

#include <iostream>
 using namespace std;
template<typename T> void f(T x, T y) { cout << "Template" << endl; }
void f(int w, int z) { cout << "Non-template" << endl; }

int main() {
 f(1 , 2);
 f('a', 'b');
 f(1 , 'b');
}
The following is the output of the above example:

 Notes:

2 – Generic Programming Page 38

Non-template
Template
Non-template

The function call f(1, 2) could match the argument types of both the
template function and the non-template function. The non-template function
is called because a non-template function takes precedence in overload
resolution.

The function call f('a', 'b') can only match the argument types of the
template function. The template function is called.

Argument deduction fails for the function call f(1, 'b'); the compiler does not
generate any template function specialization and overload resolution does
not take place. The non-template function resolves this function call after
using the standard conversion from char to int for the function argument 'b'.

Here is an example using two function templates, one that has two
parameters of a given datatype and the other that has three of a given
datatype.

 Notes:

2 – Generic Programming Page 39

// in a file called min.h
template <typename T>
T min (T p1, T p2) {
 if (p1 < p2)
 return p1;
 else
 return p2;
}

template <typename T>
T min (T p1, T p2, T p3) {
 if (min (p1, p2) < p3) <- notice this calls the function
 return min (p1, p2) ; <- so does this line
 else
 return p3;
}

Here is the example program using these two function templates. Notice
that the program must supply either two or three arguments when calling
the function template or it doesn’t work at all. If it were a regular function
and it were invoked with an integer and a double, C++ could handle it by
implicit casting. But template functions refuse to accept implicit casting. The
program must explicitly cast arguments in order to get it to work.

#include “min.h”
#include <iostream>
using namespace std;

 Notes:

2 – Generic Programming Page 40

int main() {
 int i = min<>(9,6);
 cout <<"Minimum of integers: "<< i << endl;

 double d= min(10.5,11.3);
 cout <<"Minimum of Doubles: "<< d << endl;

 // Returns error since implicit cast not acceptable for templates
 d = min(10,11.3);
 cout << "Minimum of Double: "<< d <<endl;

 // function template will accept an explicit cast though
 d= min<double>(10,11.3);
 cout << "Minimum of Double: " << d <<endl;
 // 3 arguments work to call the overloaded function template

 i = min(3,6,4);
 cout << "Minimum int 3 Parameters: " << i << endl;
}

Here is another example using a function template:

template <typename T>
T max (T a, T b) {
 T result = (a>b)? a : b; //data member of type T
 // actual stuff the function does

 Notes:

2 – Generic Programming Page 41

 return result; // return statement
}

#include <iostream> //more examples using functions
using namespace std;
int main () {
 int i=5, j=6, k;
 long l=10, m=5, n;
 double q;

 k=max<int>(i, j); //invoke template explicitly as int
 cout << k << endl;

 k=max(i, j); //invoke template with integers
 cout << k << endl;

 k=max<int>(5,9); // again invoke with literal integers
 cout << k << endl;

 n=max<long>(l, m); //invoke explicitly with longs
 cout << n << endl;

 n=max(l, m); //invoke with longs not explicitly
 cout << n << endl;

 q=max(23.2,45.4); //invoke template with doubles
 cout << q << endl;

 Notes:

2 – Generic Programming Page 42

}

 Notes:

2 – Generic Programming Page 43

Function Template Basics

 C++ function templates define a family of functions for different

datatypes.

 When a program invokes a function template the arguments passed to

the function direct C++ to instantiate only the function for those
datatypes from the template.

 A program can invoke a function template either by explicitly telling C++

the datatypes to use, or it can simply pass arguments to the function,
leaving it up to C++ to deduce the right datatypes.

 Function templates can be overloaded, but this is best done carefully.

 When using function templates, be sure that the type of arguments used

to invoke the function will work with the given set of function templates.

 Know that if an ordinary function has the same name as a function

template, any call that fits this ordinary function, will use the ordinary
function instead of the template, even if a template would also fit.

 We’ll discuss this later when we cover “template specialization”

 Notes:

2 – Generic Programming Page 44

2.3 Class Templates

Why use a class template?

If a set of functions or classes have the same functionality for different data
types, this becomes a good class template. The class can also hold a
‘state’ or data about itself. A class template can be implemented in C++ as
either a class or a struct. Note that structs behave much like classes do,
except that their data/methods are public by default while data/methods for
a class are private by default.

Advantages:

 One C++ class template can handle different types and numbers of

parameters since it has several functions that can have the same
name. So the two min function templates above can go together in
one class along with any other add functions needed.

 The C++ compiler generates code for only for datatypes used. If the

template is instantiated for int type, compiler generates only an int
version for the C++ class template.

 Templates reduce the effort of coding, testing, and documenting code

for different data types.

 Testing and debugging efforts are consistent and efficient.

 Notes:

2 – Generic Programming Page 45

How to create a class template
 The declaration of C++ class templates must begin with the keyword

template.
 A parameter must be included inside angle brackets using either the

keyword class or typename. Additional parameters can be included
within the angle brackets, including non-typed parameters and other
templates as parameters.

 Finally, just like any class, the class body declaration with its member
data and member functions follows.

Here is a template class that stores two elements of any valid datatype.

template <typename T>
class aPair {
public:
 aPair (const T &f, const T &s): first (f), second (s) { } //  defined inline
 T max(); //  defined outside class
private:
 T first; T second;
};

For example, if we wanted to declare an object of this class to store two
integer values of type int with the values 115 and 36 we would write:

aPair<int> myInts (115, 36);

 Notes:

2 – Generic Programming Page 46

And this class can also create an object storing two doubles:

aPair<double> myDbl(3.0, 2.18);

Any template functions defined outside the class template body, must
always use the full template definition statement, and generally must be in
the same logical source file as the template class declaration. Here is the
function implemented along with a small program using this class template.

template <typename T>
class aPair {
public:
 aPair (const T &f, const T &s): first (f), second (s) { }
 T max();
private :
 T first; T second;
};

template <typename T>
T aPair<T>::max () // <- notice the <T> after the class name
{ return first >second ? first : second; }

int main () {
 aPair <int> myInts (34, 56);
 cout << myInts.max() << endl;
}

 Notes:

2 – Generic Programming Page 47

Here is another example of a template class. This class has one template
parameter, T. This datatype will be applied when its constructor and
increase() function are called.

#include <iostream>
using namespace std;

template <typename T> // class template
class aContainer {
public:
 aContainer (const T &arg): element (arg) {}
 T increase () {return ++element;}
private:
 T element;
};

int main () {
 aContainer<int> myint (7);
 cout << myint.increase() << endl;
 return 0;
}

Implementing template class member functions

 Notes:

2 – Generic Programming Page 48

Templates declared inside classes are called member templates, and they
can be either member function templates or member class templates
(nested classes).

Member function templates are template functions that are members of any
class or class template. Notice that member templates are not the same as
template members. For example:

A template member is a member declared inside a class template.

template <typename T>
struct aClass {
 T * p; // a template (data) member
 void f(T *) const; // another template member (function)
};

On the other hand, a ‘member function template’ is a template with its
template parameters declared inside any class.

Example of a member function template in a non-template class:

struct aClass {

template <typename T> //  member function template
void mf(T* t) ;

};

int main() {

 Notes:

2 – Generic Programming Page 49

int i;
double d;
aClass* x = new aClass();
x->mf(&i);
x->mf(&d);

}

Here’s an example of declaring a member function template in a template
class.

template<typename T> struct aClass {

template<typename U>
void mf(const U &u);
// ...

 };

Member template functions cannot be virtual functions and cannot override
virtual functions from a base class when they are declared with the same
name as a base class virtual function.

 Notes:

2 – Generic Programming Page 50

2.4 Template Specialization

There is an exception to every rule. Any generic code development will
need a small case where it needs to do some hard coding or to avoid some
amount generic code. That is where the C++ class template specialization
comes in.

The idea of C++ class template specialization is similar to function template
overloading. It fixes the template code for certain data types that need to be
handled differently than most data. For example, string or char data is not
handled identically to true numeric datatypes, so a specialization of an
‘add’ template for strings or char data may need to work differently than it
would for adding integers or numbers. Once the template is specialized, all
the member functions should be declared and defined for the specific data
type.

When a program instantiates a template with a given set of template
arguments the compiler generates a new definition based on those
template arguments. To override this, instead specify the definition the
compiler uses for a given set of template arguments. This is called explicit
specialization. A program can explicitly specialize any of the following:

• Function or class template
• Member function of a class template
• Static data member of a class template
• Member class of a class template
• Member function template of a class template
• Member class template of a class template

 Notes:

2 – Generic Programming Page 51

The template<> prefix indicates that the following template declaration
takes no template parameters. The declaration_name is the name of a
previously declared template. Note that one can forward-declare an explicit
specialization so the declaration_body is optional, at least until the
specialization is referenced.

Example of template specialization

#include <iostream>
using namespace std;

template <typename T> class aContainer { // class template
public:
 aContainer (const T &arg) : element (arg) { }
 T increase () {return ++element;}
private:
 T element;
};

template <> class aContainer <char> { // class template specialization:
public:
 aContainer (char arg): element (arg) { }
 char uppercase (); //  note how we’ve added a totally new method!
private:
 char element;
};

 Notes:

2 – Generic Programming Page 52

// member of class template specialization:
char aContainer<char>::uppercase() {
 if ((element >= 'a') && (element <= 'z'))
 element += 'A' - 'a';
 return element;
}

int main () {
 aContainer<int> myint (7);
 aContainer<double> mydouble (10.5) ;
 aContainer<char> mychar ('j');
 cout << myint.increase() << endl;
 cout << mydouble.increase() << endl;
 cout << mychar.uppercase() << endl;
 return 0;
}

Partial Specialization

Class templates can also be partly specialized. Consider a class template
like this:

template <typename T, typename U>
class aClass {
 // …
};

 Notes:

2 – Generic Programming Page 53

This template takes arguments of 2 different datatypes, so it can be
partially specialized in several ways.

#include <iostream>

template <typename T, typename U>
struct aClass
{
 aClass () { std::cout << "aClass <T, U>\n"; }
};

template <typename T> //specialize so that both are same datatype
struct aClass <T, T> {
 aClass () { std::cout << "aClass<T, T>\n"; }
};

template <typename T> //specialize so that second datatype is int
struct aClass <T, int > {
 aClass () { std::cout << "aClass<T, int>\n"; }
};

template <typename T, typename U> // both are now pointers
struct aClass <T*, U*> {
 aClass () { std::cout << "aClass<T*, U*>\n"; }
};

 Notes:

2 – Generic Programming Page 54

int main(void)
{
 aClass <int, double> a; // prints “aClass<T, U>”
 aClass <double, double> b; // prints “aClass<T, T>”
 aClass <double, int> c; // prints “aClass<T, int>”
 aClass <int *, double *> d; // prints “aClass<T*, U*>”
 aClass <int, int> e; // prints??
 return 0;
}
We can fix this ambiguity by adding the following partial specialization:

template <>
struct aClass <int, int> {
 aClass () { std::cout << "aClass<int, int>\n"; }
};

 Notes:

2 – Generic Programming Page 55

2.5 Default Template Parameters

Templates classes (but not template functions), can take default template
parameters.

template <typename T = int>
class aStack {
 public:
 // …
 private:
 vector<T> s;
};

And then a program can use those defaults when instantiating the
template:

// use default so aContainer is a vector of doubles.
aStack<double> aStackofdoubles;

//don’t use default, now a vector of ints.
aStack< > aStackofints;

 Notes:

2 – Generic Programming Page 56

2.6 Non-Type Template Parameters

There are three types of parameters that can be used with templates:

 Typed template parameters
 Non-type template parameters
 Template template parameters

As discussed in the previous sections, templates can have regular typed
parameters, similar to those found in functions. Typed template parameters
are preceded by the keyword typename or class.

Templates can also have regular parameters – these are called ‘non type’
template parameters.

 The syntax of a non-typed template parameter is the same as a

declaration of one of the following types:
• integral or enumeration
• pointer to object or pointer to function
• reference to object or reference to function
• pointer to member.

 A program may qualify a non-type template parameter with const or
volatile.

 Non-type template parameters have restrictions: they must be integral

values, enumerations, or instance pointers with external linkage. They

 Notes:

2 – Generic Programming Page 57

can’t be string literals nor global pointers since both have internal
linkage. Nor can they be floating point, typename or void type.

 Non-type template parameters are not lvalues – i.e., they are simply
‘plain old literal data’

Non-type Class Template Parameters

For example, int N is a non-typed template parameter.

#include <iostream> using namespace std;
template <typename T, int N> //  typed param T, non-type param N
class aClass {
public:
 void setmem (int x, T value);
 T getmem (int x);
private:
 T memblock [N];
};
int main () {
 aClass <int,5> myints;
 aClass <double,15> myfloats;
 myints.setmem (0,100);
 myfloats.setmem (3,3.1416);
 cout << myints.getmem(0) << endl;
 cout << myfloats.getmem(3) << endl;
 return 0;
}

 Notes:

2 – Generic Programming Page 58

Non-Type Function Template Parameters

A program can also define non-type function template parameters.

template <typename T, int V>
T Add (const T & n) {
 return n + V;
}

#include <iostream>
using namespace std;

int main () {
 int I;
 I = Add<int,6> (10);
}

 Notes:

2 – Generic Programming Page 59

Deducing type of template parameters

The compiler cannot deduce the value of a major array bound unless the
bound refers to a reference or pointer type. Major array bounds are not part
of function parameter types. The following code demonstrates this:

template<int i> void f(int a[10][i]) { }
template<int i> void g(int a[i]) { }
template<int i> void h(int (&a)[i]) { }

int main () {
 int b[10][20];
 int c[10];
 f(b);
 // g(c);
 h(c);
}

The compiler would not allow the call g(c); the compiler cannot deduce
template argument i.

The compiler cannot deduce the value of a non-type template argument
used in an expression in the template function's parameter list. The
following example demonstrates this:

template<int i> class X { };
template<int i> void f(X<i - 1>) { }

 Notes:

2 – Generic Programming Page 60

int main () {
 X<0> a;
 f<1>(a);
 // f(a);
}

To call function f() with object a, the function must accept an argument of
type X<0>. However, the compiler cannot deduce that the template
argument i must be equal to 1 in order for the function template argument
type X<i - 1> to be equivalent to X<0>. Therefore the compiler would not
allow the function call f(a).

To enable the compiler to deduce a non-type template argument, the type
of the parameter must match exactly the type of value used in the function
call. For example, the compiler will not allow the following:

template<int i> class A { };
template<short d> void f(A<d>) { }

int main() {
 A<1> a;
 f(a);
}

The compiler will not convert int to short when the example calls f().
However, deduced array bounds may be of any integral type.

 Notes:

2 – Generic Programming Page 61

2.7 Template Template Parameters

A template can take a parameter that is itself the name of a template.
These parameters have the name of template template parameters. Let’s
use a simple example. Start with a template for a stack that would accept a
type of data to be stored and a container type to adapt into a stack.

The first parameter, T, is just the name of a datatype as usual. The second
parameter, aContainer, is a ‘template template’ parameter. It's the name of
a class template that has a single type name parameter, and we didn’t
specify a type of data contained in the original container.

The aStack template uses its ‘type name’ parameter to instantiate its
‘template template’ parameter. The resulting container type is used to
implement the aStack object:

template <typename T, template <typename T> class aContainer = deque>
class aStack {
public:
 // …
private:
 aContainer<T> s;
};

 Notes:

2 – Generic Programming Page 62

This approach allows coordination between the element and its container to
be handled by the implementation of the aStack itself, rather than in all the
various code that specializes the aStack class.

This single point of specialization reduces the possibility of mismatches
between the element type and the container used to hold the elements.

So we can create an aStack object from a list or from a deque…as
follows…and the ‘aStack’ created from the list will hold integers while the
aStack created from the deque will hold strings. And all of this resulted from
allowing the aStack template to have a parameter that is itself a template.

aStack<string> aDequeStackofStrings; //  defaults to deque
aStack<int, list> aListStackofInts;

 Notes:

2 – Generic Programming Page 63

2.8 Other Template Related Topics

Friends and Templates

There are four kinds of relationships between classes and their friends
when templates are involved:

 One-to-many: A non-template function may be a friend to all template

class instantiations.
 Many-to-one: All instantiations of a template function may be friends

to a regular non-template class.
 One-to-one: A template function instantiated with one set of template

arguments may be a friend to one template class instantiated with the
same set of template arguments. This is also the relationship
between a regular non-template class and a regular non-template
friend function.

 Many-to-many: All instantiations of a template function may be a
friend to all instantiations of the template class.

Here are some examples showing of these relationships:

class B{
 template<typename V> friend int j();
}

 Function j() has a many-to-one relationship with class B. All

instantiations of j() are friends with class B.

 Notes:

2 – Generic Programming Page 64

template<typename S> int g();

template<typename T> class A {
 friend int e();
 friend int f(T);
 friend int g<T>();
 template<typename U> friend int h();
};
 Function e() has a one-to-many relationship with class A. Function e()

is a friend to all instantiations of class A.
 Function f() has a one-to-one relationship with class A. The function

declares only one function because it is not a template but the
function type depends on the template parameter. The compiler will
give you a warning for this kind of declaration similar to the following:
The friend function declaration "f" will cause an error when the
enclosing template class is instantiated with arguments that declare a
friend function that does not match an existing definition.

 Function g() has a one-to-one relationship with class A. Function g()
is a function template. It must be declared before here or else the
compiler will not recognize g<T> as a template name. For each
instantiation of A there is one matching instantiation of g(). For
example, g<int> is a friend of A<int>.

 Function h() has a many-to-many relationship with class A. Function
h() is a function template. For all instantiations of A all instantiations
of h() are friends.

These relationships also apply to friend classes.

 Notes:

2 – Generic Programming Page 65

Nested Classes and Templates

A nested class is a class enclosed within the scope of another class. They
are used when objects are needed by a class but no code outside the class
needs to know about these objects. They help organize code and
controlling access and dependencies. They can also be templates. For
example:

template <typename T>
class aClass
{
public:

template<typename U>  member function template
void mf(const U &u) { }

private:
 template <typename U>  member class template
 class Nested { /* … */ };
};

Local classes
A local class is a class defined within the scope of a function, whether it’s
a class member function or a standalone function. But a local or unnamed
class cannot be used as a template parameter.

 Notes:

2 – Generic Programming Page 66

Macros and Templates

In many ways, templates work like preprocessor macros, replacing the
templated variable with the given type. However, there are many
differences between a macro and a template:

#define min(i, j) (((i) < (j)) ? (i) : (j))

template<typename T> T min (const T &i, const T &j)
{ return ((i < j) ? i : j) }

Here are some problems with the macro:

 The compiler does not verify that the macro parameters are of

compatible types because macros don’t do type checking.

 In the macro version, the i and j parameters are evaluated twice, e.g.,

int a = 10, b = 20;
int c = min (a++, b++);

 Because macros are expanded by the preprocessor, compiler error

messages will refer to the expanded macro, rather than the macro
definition itself. Also, the macro will show up in expanded form during
debugging so programmers can’t see its code during debugging, e.g.,
debuggers can’t set breakpoints in macros.

 Notes:

2 – Generic Programming Page 67

Templates and void Pointers

Many functions implemented with void pointers could be implemented with
templates instead. The disadvantages of using void pointers are that the
C++ compiler cannot distinguish between datatypes, so it cannot perform
type checking or type-specific behavior such as using type-specific
operators, operator overloading, or constructors and destructors.

With templates, programmers can create functions and classes that
operate on typed data. While the template appears abstract because it is
generic, when code invokes the template, the compiler creates a separate
version of the function for each specified type and will instantiate only the
template functions used. This enables the compiler to treat class and
function templates as if they acted on specific types. Templates can also
improve coding clarity, because programmers do not need to create special
cases for classes.

With some understanding of templates, let’s take a look at the specific
templates offered in the C++ Standard Library, as the ‘Standard Template
Library’.

 Notes:

2 – Generic Programming Page 68

2.9 Using Templates

Inclusion Model

When working with ordinary classes and functions, C++ programmers have
learned to place the class and function declarations into header files. Then
the function implementation and any global variables are defined in
separate source files which #include the class header file. This allows the
program to link together the class declarations and definitions plus any
other program needing the class only needs to #include the class header
files.

For template functions, however this method will not work. Why? Because
when a program statement invokes the template function, C++ needs to be
able to instantiate the function based on the template or blueprint of that
function family. However, when the C++ compiler looks for a definition in
the header file it cannot find one (it’s in the implementation source file); and
as the compiler processes the implementation source file it doesn’t know
what type of datatype function will be instantiated later in the program file.

Processing the program file, the compiler assumes that the template
function will be defined elsewhere and leaves a reference for the linker to
locate where that is. When the linker comes along to process all the
compiled object files together into an exe file, it discovers the reference to
‘find’ the function definition and it cannot put the two files (header and
source) together to find it.

 Notes:

2 – Generic Programming Page 69

One way that programmers have solved this is to place all the template
functions and their full implementation in the same file or to #include the
source file at the end of the header file. This method has now increased
the cost of using this template header file due to its increased size and the
size of any other header files, such as <iostream> that are commonly
needed in the function implementations.

Note that non-inline functions create a new copy of the function each time
they are instantiated, rather than being expanded at the site of the call.
Occasionally when creating large libraries of functions, this can lead to two
copies of the function in different files.

All of this discussion applies to member template functions, and member
functions and data members of class templates. Place declarations and
definitions in the same file or #include the source file at the end of the
header file.

Explicit Instantiation

Another way to prevent linker and compilation errors is to explicitly provide
each template argument when invoking a template function. For example in
a file called printDataType.h, create and define a small template function:

#include <iostream>
#include <typeinfo>
using namespace std;

 Notes:

2 – Generic Programming Page 70

template <typename T>
void printDataType (const T& a) { cout << typeid(a).name() << endl; }

Here are examples of using this particular function template in a program
plus other templates; all being explicitly instantiated.

#include <iostream>
#include <typeinfo>
#include <string>
using namespace std;

template <typename T>
void printDataType (const T& a) { cout << typeid(a).name() << endl; }

template <typename T>
struct aClass
{
 aClass () { }
 T result (T t) { return t; }
 void add (const T &t) {}
};

// explicitly instantiate this function template for types int and double
template void printDataType<int>(const int &);
template void printDataType<double>(const double &);

// explicitly instantiate a template class’ constructor for int data

 Notes:

2 – Generic Programming Page 71

template aClass<int>::aClass();

// explicitly instantiate an entire template class and all its functions
// later cannot explicitly instantiate particular functions of this class
// because ALL are instantiated by this statement
template struct aClass<double>;

// explicitly instantiate just some member functions
template aClass<string>::aClass();
template void aClass<string>::add(const string &);
template string aClass<string>::result(string);

Separation Model

Exported template functions can be used without their definition being
visible; so a program can have the template declaration a header file and
function implementations in a source file (not yet supported by Visual
Studio or GNU G++).

The export keyword must precede the keyword template and cannot be
combined with the keyword inline. Classes can use the keyword export but
it means that their functions are exported unless inline.

So printDataType.h contains:

export
template <typename T>

 Notes:

2 – Generic Programming Page 72

void printDataType (const T& a);

And in printDataType.cpp, the export keyword doesn’t need to be present:

#include <iostream>
#include <typeinfo>
#include “printDataType.h”
 using namespace std;
template <typename T>
void printDataType (const T& a) {
 cout << typeid(a).name() << endl;
}

 Notes:

2 – Generic Programming Page 73

2.10 Components of the Standard Template Library

The STL has five main types of components, all of which use templates
heavily:

 Containers store collections of objects. Examples include vector,

list, deque, set, multiset, map, multimap, unordered_set,
unordered_multiset, unordered_map, and
unordered_multimap.

 Iterator objects are for accessing the objects in a container (like an

index, but are generalization of pointers).

 Generic algorithms, such as count(), search(), and sort(), for

work with objects using iterators, but can also be used with non-STL
C++ code.

 Functors generalize functions and can manipulate the algorithms and

put them together to create more complicated processes. They are an
important part of generic programming because they allow abstraction
not only over the types of objects, but also over the operations that are
being performed.

 Utilities: The STL also includes some low-level utilities for allocating

and de-allocating memory; these are called allocators.

http://www.sgi.com/tech/stl/Vector.html
http://www.sgi.com/tech/stl/List.html
http://www.sgi.com/tech/stl/Deque.html
http://www.sgi.com/tech/stl/set.html
http://www.sgi.com/tech/stl/multiset.html
http://www.sgi.com/tech/stl/Map.html
http://www.sgi.com/tech/stl/Multimap.html
http://www.sgi.com/tech/stl/hash_set.html
http://www.sgi.com/tech/stl/hash_multiset.html
http://www.sgi.com/tech/stl/hash_map.html
http://www.sgi.com/tech/stl/hash_multimap.html

 Notes:

2 – Generic Programming Page 74

An STL data structure, called a container, only has a minimal set of
operations for creating, copying, and destroying itself plus operations for
adding and removing elements.

Container member functions don’t evaluate their elements or change their
order. Instead, algorithms and functors work on a container’s elements
using smart pointers called iterators, to access their values and modify the
order of elements.

Container of
data elements

Algorithm acts
on elements

Function object acts
on elements, holds

data and does actions
on them

Iterators are passed
to perform a function Iterators are passed to

perform an algorithm

Functors are sometimes passed to
algorithms to direct their actions

3 – Sequential Containers Page 75

 Unit Three
Sequential Containers

Unit topics: Page
 3.1 .. Containers 76
 3.2 .. Sequential Containers 81
 3.3 .. The vector Container 82
 3.4 ... ….The deque Container 95
 3.5 ... The list Container 104
 3.6 .. The string class 110
 3.7 ... The bitset Container 116
 3.8 ... The valarray Container 119

 Notes:

3 – Sequential Containers Page 76

3.1 Containers

What are Containers?

The STL containers are classes whose objects can be used to build
collections of data of same type, like built-in C++ arrays. But these
collections also have data and functions because they are objects. The
string, bitset, and valarray classes are very similar to these containers and
will be discussed here as well.

Common characteristics

1. They copy the values of their elements when inserted rather than

maintaining references to these elements. This is called ‘value
semantics’. Thus anything added to an STL container must be able to
be copied; a user defined class must define a public copy constructor
or to use the class objects with an STL container, pointers to the
objects must be stored in the container.

2. All elements added to “classic” STL containers have an order; in

sequential containers this is maintained by the order added to the
container; in associative containers, a key value provides the
ordering.

3. Operations on the elements of an STL container are not tested by the

container for being correct or safe: a program using the STL must

 Notes:

3 – Sequential Containers Page 77

provide its own exception handling code for any errors that might
occur.

Common Operations

1. Initialization constructors: Each container supports both default

and copy constructors, plus a destructor. Containers can be initialized
with a range of values as well.

2. Size functions: There are 3 functions related to a container’s size.

They are: size(), which returns the actual number of elements in the
container, empty(), checks whether there are any elements at all in
the container, and max_size(), which returns the maximum number of
elements the container can contain.

3. Comparison operators: The equality and relational operators, ==,

!=, <, <=, >, >= are defined for containers holding the same datatype
as elements. Two containers are equal if all elements are equal and
in the same order. The relational operators work by comparing the
containers element by element, and if one container has fewer
elements it is ‘less than’ the other. Or if a container’s element value is
less than the value of that element at the same index in the other
container, then this contain is ‘less than’ the other one. If the
comparison test runs through both containers and they are of equal s
size with identical elements in the same order, they are equal and the
relational operator returns false for whatever it is testing for.

 Notes:

3 – Sequential Containers Page 78

4. Assignments and swap() function: When one container is
assigned to another one, all elements in the source container are
copied by value into the destination container, and all old elements
are removed. This takes time. A faster way to get this done if the
source container will not be needed afterward, is to use the swap()
function instead. This will swap the internal pointers to the container’s
elements, allocator and sorting criteria, and is very fast and
exception-safe.

Container Categories

1. Sequential containers. These containers arrange the data they

contain in a linear manner.

2. Associative containers. These containers maintain data in
structures suitable for fast associative look-up. STL now supports
both ordered and unordered associative containers.

3. Adapters. These are containers that provide different ways to access

sequential and associative containers’ data.

 Notes:

3 – Sequential Containers Page 79

Here they are in more detail:

Category Containers Characteristics
Sequential vector Linear and contiguous storage like an array

that allows fast insertions and removals at the
end only.

 list Doubly linked list that allows fast insertions
and removals anywhere

 forward_list Single linked list that allows fast insertions
and removals anywhere

 deque Linear but non-contiguous storage that allows
fast insertions and removals at both ends.

Associative
(both ordered
& unordered)

set Defines where the elements’ values are the
keys and duplicates are not allowed. It has
fast lookup using the key

 multiset Defines where the elements’ values are the
keys and duplicates are allowed. It has fast
lookup using the key

 map Key-to-value mapping where a single key can
only be mapped to one value

 multimap Key-to-value mapping where a single key can
be mapped to many values

Adapter stack First in, last out data structure
 queue First in, first out data structure
 priority_queue Queue that maintains items in a sorted order

based on a priority value

 Notes:

3 – Sequential Containers Page 80

 Non STL containers in the standard C++ library

Besides the powerful string class, there are also several other non-STL
containers in the Standard C++ library. These can sometimes use the
STL’s iterators, algorithms, and functors.

The bitset container packs bits into integers and does not allow direct
addressing of its members. The program can perform bitwise arithmetic on
these elements and, as a result, they are often used as flags.

The valarray template class is a vector-like container and allows programs
to have arithmetic statements referencing the container itself such as a = b
+ c where a, b, c are all valarray containers AND each element of these
containers has the math performed on it.

The complex template in the C++ Standard Library supports complex
numbers along with their specific mathematical definitions for addition,
subtraction, multiplication and division.

The string container in the C++ Standard Library often acts much like a
form of a container of char data, and can use the STL iterators, algorithms
and functions.

Now that we know generally what the concept of a container is, how do we
operate on their elements? We use a type of pointer that is an object of a
class. These pointers, called iterators in the STL, can know things (have
data members), and perform their own functions.

 Notes:

3 – Sequential Containers Page 81

3.2 Sequential Containers

Sequential containers are collections of data elements placed in some
order, usually according to when the element was added to the container.
The order of the elements has nothing to do with their value. The non-
vector sequential containers are something like arrays, but don’t have to be
physically contiguous in storage.

The STL defines four types of sequential collections: vector, deque, list,
and forward_list. And programs can also use the non-STL collections like
string, bitset, and valarray in similar ways that they use STL sequential
containers.

Sequential containers are better than simple C/C++ arrays because:

 They have a size() member function
 They provide a past end entry iterator
 They provide copy constructors
 They allow assignment
 Can be passed by value
 They grow and shrink dynamically, i.e., they know how to cleanup after

themselves because they have destructors

 Notes:

3 – Sequential Containers Page 82

 3.3 Vector

A vector (#include <vector>) is a collection of elements of type T, where
T can be integer, double, char or any object. It is a model of a dynamic
array that grows and shrinks at the end. A vector is a sequential container.
As such, its elements are ordered following a strict linear sequence.

Vector containers are implemented as dynamic arrays; Just as regular
arrays, vector containers have their elements stored in contiguous storage
locations, which means that their elements can be accessed not only using
iterators but also using offsets on regular pointers to elements.

But unlike builtin C/C++ arrays, storage in vectors is handled automatically,
allowing it to be expanded and contracted as needed.

Vectors are efficient for:

 Accessing individual elements by their position index.
 Iterating over the elements in any order.
 Adding and removing elements from the end.

Compared to builtin C/C++ arrays, they provide almost the same
performance for these tasks, plus they have the ability to be easily resized.
They usually consume a bit more memory than arrays, however, because
their capacity is handled automatically, to allow for extra storage space for
future growth.

 Notes:

3 – Sequential Containers Page 83

Compared to the other STL sequential containers, vectors are generally the
fastest for accessing elements and to add or remove elements from the
end of the sequence.

Internally, vectors have a size, which represents the amount of elements
currently contained in the vector. Vectors also have a capacity, which
determines the amount of storage space allocated, and which can be either
equal or greater than the actual size. The extra amount of storage allocated
is not used, but is reserved for the vector to be used in the case it grows.
This way, the vector does not have to reallocate storage on each occasion
it grows, but only when this extra space is exhausted and a new element is
inserted.

Reallocations are costly operations in terms of performance, since they
generally involve copying all values used by the vector to be copied to a
new location. Therefore, whenever large increases in size are planned for a
vector, it is recommended to explicitly indicate a capacity for the vector
using the member function vector::reserve().

 Notes:

3 – Sequential Containers Page 84

The vector implementation in the C++ Standard Template Library take two
template parameters:

template < typename T, typename Allocator = allocator<T> > class vector;

1. T: Datatype of the elements that can be stored in the vector.

2. Allocator: This is the allocator object used to define the storage

allocation model. By default, the Allocator class template from
<memory> for type T is used, which defines the simplest memory
allocation model and is value-independent.

Characteristics of vectors:

 Random access to elements
 Constant time insertion and removal of elements at end
 Linear time insertion of elements at beginning or middle because other

elements have to be moved
 Number of elements can vary dynamically
 Simplest and most efficient type of STL container
 Member function reserve() can pre-allocate all memory needed
 Assignment, copy constructor, and destructor supported

One can use a vector<int> like one would use an ordinary C array, except
that vector eliminates the chore of managing dynamic memory allocation.

 Notes:

3 – Sequential Containers Page 85

Efficiency Tips for vectors

 Provides rapid indexed access with the overloaded subscript operator,

[], because they are stored in contiguous memory like a C or C++ raw
array.

 Supports random-access iterators. All STL algorithms can operate on a
vector. The iterators for a vector are normally implemented as pointers
to elements of the vector.

 It is faster to insert many elements at once than one at a time.

 Vector is the type of sequenced template that should be used by default

if you don’t need to access both ends of the collection and you don't
need to traverse it backwards.

Some useful vector functions:

vector() creates empty vector
vector(size_type n) creates a vector with n elements
vector(size_type n, const T& t) creates a vector with n copies of t
vector(const vector&) creates a vector from another vector
vector(InputIterator, InputIterator) creates a vector from a range of values
bool empty() const returns true of vector is empty
reference operator[](size_type n) returns the nth element (doesn’t check)
reference at(size_type n); returns the nth element (does check)
reference front() returns the first element

 Notes:

3 – Sequential Containers Page 86

reference back() returns the last element
void push_back(const T&) adds a new element at the end
void pop_back() removes the last element
void insert(iterator, value_type) inserts value prior to iterator (inefficient)
iterator erase(iterator pos) removes the element at position pos
iterator erase(iterator first,
 iterator last) removes the range of elements
bool operator==(const vector&, test two vectors for equality
 const vector&)
size_type capacity() const number of elements memory allocated
void reserve (size_type) increase number of elements allocated

Data member Type definition

reference Allocator::reference
const_reference Allocator::const_reference
iterator Random access iterator
const_iterator Constant random access iterator
size_type Unsigned integral type (usually same as size_t)
difference_type Signed integral type (usually same as ptrdiff_t)
value_type T
allocator_type Allocator
pointer Allocator::pointer
const_pointer Allocator::const_pointer
reverse_iterator Random access reverse iterator
const_reverse_iterator Constant random access reverse iterator

 Notes:

3 – Sequential Containers Page 87

Here is an example using a vector declared to hold 3 integers. One way to
initialize a vector’s values is to directly access them just like a C-style array
would be accessed. Arithmetic can be performed on vector elements and
the result assigned to another element:

#include <vector>
using namespace std;

int main()
{
 vector<int> v(3);
 v[0] = 7;
 v[1] = v[0] + 3;
 v[2] = v[0] + v[1]; // v[0] == 7, v[1] == 10, v[2] == 17
 return 0;
}

Here is another example of using a vector, where the vector’s methods
push_back() and size(), are used along with an index.

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 vector <int> myVector;

 Notes:

3 – Sequential Containers Page 88

 // append elements with values 0-6
 for (int i=0; i < 7; ++i)
 myVector.push_back(i);

 // print elements separated by a space
 for (int i=0; i<myVector.size() ; ++i)
 cout << myVector[i] << ’ ’;

cout << endl;
}

What if we need a vector of doubles? It’s just as easy to create and use:

#include <iostream>
#include <vector>
 using namespace std;

int main() {

vector<double> aVector;
aVector.push_back(1.2);
aVector.push_back(4.5);

aVector[1] = aVector[0] + 5.0;
aVector[0] = 2.7; // now it has two elements: 2.7, 6.2
return 0;

}

 Notes:

3 – Sequential Containers Page 89

Here is an example of vectors being created using the C-style array and
char pointer:

#include <string.h>
#include <vector>
using namespace std;

int main() {
 int ar[10] = { 12, 45, 234, 64, 12, 35, 63, 23, 12, 55 };
 const char* str = "Hello World";
 vector<int> vec1(ar, ar+10);
 // In C++11 you can say
 // vector<int> vec1 ({12, 45, 234, 64, 12, 35, 63, 23, 12, 55 });
 vector<char> vec2(str, str+strlen(str));
 // In C++11 you can say
 // vector<char> vec2 ({'H', 'e', 'l', 'l', 'o'});

 return 0;
}

 Notes:

3 – Sequential Containers Page 90

Here is an example showing how to create and use a vector that contains
another vector inside it…a vector of vectors, or a 2-dimensional vector.
#include <iostream>
#include <vector>
using namespace std;

int main() {
 vector< vector<int> > myVec2D; // create 2D int vector
 vector<int> oneVec, twoVec; // create two int vectors

 oneVec.push_back(1); oneVec.push_back(2); oneVec.push_back(3);
 twoVec.push_back(4); twoVec.push_back(5); twoVec.push_back(6);

 myVec2D.push_back(oneVec); myVec2D.push_back(twoVec);

 cout << endl << "Using Iterator:" << endl;
 for(vector< vector<int> >::iterator iter2D= myVec2D.begin();
 iter2D!= myVec2D.end(); ++iter2D)
 for(vector<int>::iterator iter =iter2D->begin();
 iter!=iter2D->end(); ++iter)
 cout << *iter << endl;

 cout << endl << "Using subscript operators:" << endl;
 for (size_t i = 0; i < myVec2D.size (); ++i)
 for (size_t j = 0; j < myVec2D[i].size (); ++j)
 cout << myVec2D[i][j] << endl;

 Notes:

3 – Sequential Containers Page 91

 cout << endl << "Using range-based for loop:" << endl;
 // C++11 version
 for (auto inner_vec : myVec2D)
 for (auto i : inner_vec)
 cout << i << endl;

return 0;
}

 Notes:

3 – Sequential Containers Page 92

Here is another simple example of a vector used with an iterator. Notice
that one can access the elements of the container directly by dereferencing
the iterator.

#include <vector>
#include <iterator>
#include <iostream>
#include <numeric>
using namespace std;

int main() {
 vector<int> aVector;

 for(int i=0; i < 10; ++i) // put some values in vector
 aVector.push_back(i);

 int total = 0;
 for (vector<int>::iterator anIterator = aVector.begin(); // set iterator at start
 anIterator != aVector.end();
 ++anIterator) // process vector using iterator
 total += *anIterator; // add up values stored

 cout << "Total=" << total << endl; // display the total of values

 cout << "Total=" << std::accumulate(aVector.begin(), aVector.end(), 0)
 << endl;

 Notes:

3 – Sequential Containers Page 93

 return 0;
}

 Notes:

3 – Sequential Containers Page 94

Vector specialization: vector<bool>

The vector class template has a special template specialization for the bool
data type. This specialization is provided to optimize for space allocation: In
this template specialization, each element occupies only one bit.

The references to elements of a bool vector returned by the vector
members are not references to bool objects, but a special member type
which is a reference to a single bit, defined inside the vector<bool> class
specialization as:

template <> class vector<bool>::reference {
 friend class vector;
 reference(); // no public constructor
public:
 ~reference();
 operator bool () const; // convert to bool
 reference& operator= (const bool x); // assign from bool
 reference& operator= (const reference& x); // assign from bit
 void flip(); // flip bit value.
}

 Notes:

3 – Sequential Containers Page 95

3.4 deque

A deque (#include <deque>, pronounced like deck), is a double-ended
queue which grows and shrinks at both ends quickly. Insertions and
deletions can be made in the middle but these are slower. They are
another type of sequential container with their elements ordered following a
strict linear sequence.

Deques may be implemented by specific libraries in different ways, but in
all cases they allow for the individual elements to be accessed through
random access iterators, with storage always handled automatically
(expanding and contracting as needed).

Deque containers have the following properties:

 Individual elements can be accessed by their position index.

 Iteration over the elements can be performed in any order.

 Elements can be efficiently added and removed from any of its ends

(either the beginning or the end of the sequence).

Therefore deques provide a similar functionality to vectors, but with efficient
insertion and deletion of elements at the beginning and end of the
sequence. However, unlike vectors, deques don't have all elements in
contiguous storage locations, thus eliminating the possibility of traversing
the deque container with simple pointer arithmetic.

 Notes:

3 – Sequential Containers Page 96

Both vectors and deques provide a very similar interface and can be used
for similar purposes, but internally both work in quite different ways: While
vectors are very similar to a C-style array that grows by reallocating all of
its elements in a unique block when its capacity is exhausted, the elements
of a deques can be divided in several chunks of storage, with the class
keeping all this information and providing uniform access to the elements.

Deques are a little more complex internally, but this generally allows them
to grow more efficiently than vectors with their capacity managed
automatically; this is especially noticeable in large sequences, because
massive reallocations are avoided.

The deque implementation in the C++ Standard Template Library take two
template parameters:

template <typename T, typename Allocator = allocator<T> > class deque;

1. T: Datatype of the elements to be stored.

2. Allocator: This is the allocator object used to define the storage

allocation model. By default, the Allocator class template from
<memory> for type T is used, which defines the simplest memory
allocation model and is value-independent.

 Notes:

3 – Sequential Containers Page 97

All of the member function implemented in vector are also implemented in
deque except for capacity() and reserve(). Also included are two new
functions:

void push_front(const T&) adds an element to the front
void pop_front() removes the first element

Data member Type definition
reference Allocator::reference
const_reference Allocator::const_reference
iterator Random access iterator
const_iterator Constant random access iterator
size_type Unsigned integral type (usually same as size_t)
difference_type Signed integral type (usually same as ptrdiff_t)
value_type T
allocator_type Allocator
pointer Allocator::pointer
const_pointer Allocator::const_pointer
reverse_iterator Random access reverse iterator
const_reverse_iterator Constant random access iterator

 Notes:

3 – Sequential Containers Page 98

Efficiency of deque vs. vector:

 When performing a large number of push_back() calls, use

vector::reserve().

 When performing many de-allocations, deque takes longer to reclaim

memory than vector since it is allocated using multiple “chunks.”

 When using insert() or pop_front() with a deque is more efficient than

vector.

 For element access, vector::at() or vector[] is better than deque’s at()

or deque[] methods.

Here is a simple example showing how to create a deque, add elements to
it using an index, and then display those elements using an index. Here we
process the deque as though it were any container, using its push_back
function, but without using its iterator.

#include <deque>
#include <iostream>
using namespace std;

int main() {
 deque <float> myDeck;

 // can also use the push_back()
 for (size_t i=0; i < 7; i++)

 Notes:

3 – Sequential Containers Page 99

 myDeck.push_front(i * 1.1);
 for (size_t i=0; i < myDeck.size(); i++)
 cout << myDeck[i] << ‘ ‘ ;
 cout << endl;
 return 0;
}

Here is another deque example:

#include <iostream>
#include <deque>
using namespace std;

int main() {
 deque<char> aDeck;

 for(size_t i = 0; i <5; i++)
 aDeck.push_back(i + 'A');

 cout << "Original sequence: ";
 for(size_t i = 0; i <aDeck.size(); i++)
 cout << aDeck[i] << " ";
 cout << endl;

 deque<char>::iterator It1 = aDeck.begin() + 2; // Note random access
 deque<char>::iterator It2 = aDeck.begin() + 3; // iterators here
 cout << "*It1: " << *It1 << ", ";

 Notes:

3 – Sequential Containers Page 100

 cout << "*It2: " << *It2 << endl;
 cout << endl;

 aDeck.insert(It1, 'X');

 cout << "Sequence after insert: ";
 for(size_t i = 0; i <aDeck.size(); i++)
 cout << aDeck[i] << " ";
 cout << endl;

 // These iterator dereferences may cause the program to crash since STL
 // does not implement “robust iterators”..
 cout << "*It1: " << *It1 << ", ";
 cout << "*It2: " << *It2 << endl;

 return 0;
}

Here is a third example, using the deque functions push_back, insert,
begin, and end along with the copy algorithm to copy the members to the
output stream.

#include <deque>
#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;

 Notes:

3 – Sequential Containers Page 101

int main() {

deque<int> aDeck;
aDeck.push_back(3);
aDeck.push_front(1);
aDeck.insert(aDeck.begin() + 1, 2);
aDeck[2] = 0;
copy(aDeck.begin(), aDeck.end(), ostream_iterator<int>(cout, " "));
// Could call print(aDeck) here as well (as per method defined below).
return 0;

}

Here is an example of a deque with its const iterator:

void print(const deque<string> &d) {
 cout << "The number of items in the deque:" << d.size() << endl;

 for (deque<string>::const_iterator iter = d.begin(); iter != d.end(); ++iter)
 cout << *iter << " ";

 cout << endl << endl;
}

On the next page is a more complicated example using two deques of
characters. In this example, after elements are added to both deques, their
sizes are printed out. Then they are swapped using a deque member

 Notes:

3 – Sequential Containers Page 102

function and their sizes now printed out. Finally the swap STL algorithm is
used to swap their elements.

#include <iostream>
#include <deque>
#include <algorithm>
using namespace std;

int main()
{
 deque<char> myFirstDeck, myNextDeck;

 for(size_t i = 0; i <26; i++)
 myFirstDeck.push_back(i+'A');

 for(size_t i = 0; i <10; i++)
 myNextDeck.push_front(i+'0');

 cout << "Size of myFirstDeck and myNextDeck: ";
 cout << myFirstDeck.size() << " " << myNextDeck.size() << endl;
 cout << "myFirstDeck: ";

 for(size_t i = 0; i <myFirstDeck.size(); i++)
 cout << myFirstDeck[i];
 cout << endl << "myNextDeck: ";

 Notes:

3 – Sequential Containers Page 103

 for(size_t i = 0; i <myNextDeck.size(); i++)
 cout << myNextDeck[i];
 cout << "\n\n";

 // swap deque elements using member function.
 myFirstDeck.swap(myNextDeck);

 cout << "Size of myFirstDeck and myNextDeck after first swap: ";
 cout << myFirstDeck.size() << " " << myNextDeck.size() << endl;

 cout << "myFirstDeck after first swap: ";
 for(size_t i = 0; i <myFirstDeck.size(); i++)
 cout << myFirstDeck[i];
 cout << endl;

 cout << "myNextDeck after first swap: ";

 for(size_t i = 0; i <myNextDeck.size(); i++)
 cout << myNextDeck[i];
 cout << "\n\n";

 swap(myFirstDeck, myNextDeck);

 return 0;
}

 Notes:

3 – Sequential Containers Page 104

3.5 list

A list (#include <list>) is a sequential collection of elements of type T.
List containers are implemented as doubly-linked lists; Doubly linked lists
can store each of the elements they contain in different and unrelated
storage locations. The ordering is kept by the association to each element
of a link to the element preceding it and a link to the element following it.
This implementation provides the following advantages to list containers:

 Efficient insertion and removal of elements anywhere in the

container.

 Efficient moving elements and block of elements within the

container or even between different containers.

 Iterating over the elements in forward or reverse order.

Compared to vectors and deques, lists perform generally better in inserting,
extracting and moving elements in any position within the container, and
therefore also in algorithms that make intensive use of these features.

The main drawback of lists compared to these other sequential containers
is that lists don’t provide direct (i.e., random) access to the elements by
their position. Thus, to access the sixth element in a list, a program must
iterate from a known position (like the beginning or the end) to that position,
which takes linear time in the distance between these.

 Notes:

3 – Sequential Containers Page 105

List also use extra memory to keep the linking information associated to
each element (which may be an important factor for large lists of small-
sized elements). As with deques, however, storage is handled
automatically by the class, allowing lists to be expanded and contracted as
needed. If you are concerned about the space overhead of the extra
pointer needed to implement a doubly-linked list then consider using the
STL forward_list.

Characteristics of lists

 Has all the functions that vectors have except capacity(), reserve(),

at(), and the [] operator.

 Does not support random access iterators but does support bidirectional

iterators, which allows both forward and backward transversal.

 Constant time insertion and removal of list elements anywhere

(assuming an iterator points to the desired location).

 Iterators to deleted elements are invalid but inserting elements does not

invalidate iterators

 Notes:

3 – Sequential Containers Page 106

The list implementation in the C++ Standard Template Library take two
template parameters:

template <typename T, typename Allocator = allocator<T> > class list;

1. T: Datatype of the elements to be stored.

2. Allocator: This is the allocator object used to define the storage

allocation model. By default, the Allocator class template from
<memory> for type T is used, which defines the simplest memory
allocation model and is value-independent.

Data Member Type Definition

reference Allocator::reference
const_reference Allocator::const_reference
iterator Bidirectional iterator
const_iterator Constant bidirectional iterator
size_type Unsigned integral type (usually same as size_t)
difference_type Signed integral type (usually same as ptrdiff_t)
value_type T
allocator_type Allocator
pointer Allocator::pointer
const_pointer Allocator::const_pointer
reverse_iterator Bidirectional reverse iterator
const_reverse_iterator Constant bidirectional reverse iterator

 Notes:

3 – Sequential Containers Page 107

Useful functions of list

begin() Returns iterator pointing to first element
end() Returns iterator pointing _after_ last element
push_front(...) Add element to front of list
pop_front(...) Destroy element at front of list
push_back(...) Add element to end of list
pop_back(...) Destroy element at end of list
swap(,) Swap two elements
erase(...) Delete elements
insert(,) Insert new element
size() Number of elements in list
empty() True if list is empty
sort() list; <algorithm> Other STL sort algorithms expect
 random access iterators

Here is a simple example using a list:

#include <iostream>
#include <list>
using namespace std;

int main() {
 list<char> aList;
 for(int i = 0; i <10; i++)
 aList.push_back('A'+i);

 Notes:

3 – Sequential Containers Page 108

 cout << "Size = " << aList.size() << endl;
 cout << "Contents: ";
 while (!aList.empty ()) {
 list<char>::iterator p = aList.begin();
 cout << *p;
 aList.pop_front();
 }
 return 0;
}

Another example using a list:
#include <iostream>
#include <list>
#include <iterator>
using namespace std;

int main() {
 list<int> myList;

 myList.push_back(0); // Insert a new element at the end
 myList.push_front(0); // Insert a new element at the start
 myList.insert(++myList.begin(),2); // Insert "2" after first element
 myList.push_back(5);
 myList.push_back(6);

 Notes:

3 – Sequential Containers Page 109

 copy(myList.begin(), myList.end(),
 ostream_iterator<int>(cout, " "));
 cout << endl; return 0;
}

 Notes:

3 – Sequential Containers Page 110

3.6 string

The C++ strings library (#include <string>) provides the definitions of the
basic_string class, which is a class template specifically designed to
manipulate strings of characters of any character type. It also include two
specific instantiations: string and wstring, which respectively use char and
wchar_t as character types.

string functions

There are a few global functions that provide some additional functionality
for strings to interact either with other string objects or with objects of other
types, mainly through the overloading of operators:

operator+ Add (i.e., concatenate) strings.
swap Swap contents of two strings.
comparison operators String comparison operators.

Here are some string functions that work with input and output streams:

getline Get line from istream.
operator<< Insert string into ostream.
operator>> Extract string from istream.

 Notes:

3 – Sequential Containers Page 111

The string class is not part of the STL; however, it often acts much like a
form of a container of char data, and can use the STL iterators, algorithms
and functions:

#include <iostream>
#include <string>
using namespace std;

int main() {
 string myLetters="abcdefghijklmnopqrstuvwxyz";

 int i = 0;
 for(string::iterator myIndex=myLetters.begin();
 myIndex!=myLetters.end();
 ++myIndex)
 cout << ++i << " " << *myIndex << endl;
 return 0;
}

 Notes:

3 – Sequential Containers Page 112

Examples of string creation:

#include <string>
 using namespace std;

int main() {
 // create a string by using a char string
 const char *ptr = "say goodnight, Gracie";

 // create a string initialized by char* string
 string Str1(ptr);

 string Str2("say goodnight, Gracie"); // or even using the constructor
 string Str3(Str2); // by another string

 // by a substring of another string - a 9 char substring starting with the
 // 4th character
 string Str4(Str3, 4, 9);

 string Str5 = Str3.substr(4, 9) ; // or an explicit call to substr method
 return 0;
}

 Notes:

3 – Sequential Containers Page 113

To find where a substring starts, erase it, and insert another, use the
following code:

string::size_type pos = Str2.find("Gracie",0);
if(pos != string::npos) { // check that found
 Str2.erase(pos, 6);
 Str2.insert(pos, "Irene");
 cout << Str2 << endl;
}

Appending strings can be done using the plus (+) operator:

Str3 = Str2+Str4;

To find the first instance of one of a number of characters, use the following
code:

string match = "Ie";
pos = Str2.find_first_of(match,0);
cout << "Found character " << Str2[pos]
 << " at position " << pos << endl;

 Notes:

3 – Sequential Containers Page 114

More example of using string class functions:

#include <string>
#include <iostream>
using namespace std;

main () {
 string a("abcd efg");
 string b("xyz ijk");
 string c;
 cout << a << " " << b << endl;
 cout << "String empty: " << c.empty() << endl;

 c = a + b;
 cout << c << endl;
 cout << "String length: " << c.length() << endl;
 cout << "String size: " << c.size() << endl;
 cout << "String capacity: " << c.capacity() << endl;
 cout << "String empty: " << c.empty() << endl;

 string d = c;
 cout << d << endl;
 cout << "First character: " << c[0] << endl;

 Notes:

3 – Sequential Containers Page 115

 string f(" Leading and trailing blanks ");
 cout << "String f:" << f << endl;
 cout << "String length: " << f.length() << endl;

 cout << "String f:" << f.append("ZZZ") << endl;
 cout << "String length: " << f.length() << endl;
 string g("abc abc abd abc");
 cout << "String g: " << g << endl;

 // Replace 12,1,"xyz",3: abc abc abd xyzbc
 cout << "Replace 12,1,\"xyz\",3: "
 << g.replace(12,1,"xyz",3) << endl;
 cout << g.replace(0,3,"xyz",3) << endl;
 cout << g.replace(4,3,"xyz",3) << endl;
 cout << g.replace(4,3,"ijk",1) << endl;

 cout << "Find: " << g.find("abd",1) << endl;
 cout << (g.find("qrs",1) == string::npos) << endl;

 string h("abc abc abd abc");
 cout << "Find_first_not_of \"abc\",0: "
 << h.find_first_not_of("abc",0) << endl;
 cout << "Find_first_not_of \" \": "
 << h.find_first_not_of(" ") << endl;
 return 0;
}

 Notes:

3 – Sequential Containers Page 116

3.7 Bitset

The C++ Standard Library contains several classes that work similarly to
the STL’s predefined container classes.

A bitset provides a set of bits as a data structure. They can be manipulated
by various binary operators such as logical AND, OR, etc. They are used to
model sets of flags, bits or Boolean values. Once a bitset is constructed,
the size of the container (bitset) cannot be changed.

Operations of bitset

!= returns true if the two bitsets are not equal.
== returns true if the two bitsets are equal.
&= performs the AND operation on the two bitsets.
^= performs the XOR operation on the two bitsets.
|= performs the OR operation on the two bitsets.
~ reverses the bitset (same as calling flip())
<<= shifts the bitset to the left
>>= shifts the bitset to the right
[n] returns a reference to the nth bit in the bitset.

 Notes:

3 – Sequential Containers Page 117

Useful functions of bitset

 any true if any bits are set

 count returns the number of set bits

 flip reverses the bitset

 none true if no bits are set

 reset sets bits to zero

 set sets bits

 size number of bits that the bitset can hold

 test returns the value of a given bit

 to_string string representation of the bitset

 to_ulong returns an integer representation of the bitset

Bitsets can either be constructed with no arguments or with an unsigned
long number value that will be converted into binary and inserted into the
bitset. When creating bitsets, the number given in the place of the template
determines how long the bitset is.

 Notes:

3 – Sequential Containers Page 118

Here is an example using a bitset:

#include <iostream>
#include <bitset>
using namespace std;

int main() {
 bitset<16> aFewBits(32);
 cout << "Bits:" << aFewBits << endl;
 aFewBits[0] = true; aFewBits[2] = false;
 aFewBits[10] = true; aFewBits[12] = true;
 cout << "Bits:" << aFewBits << endl;
 aFewBits <<= 2; // rotate bits
 cout << "Bits rotate: " << aFewBits << endl;
 aFewBits.flip(); // flip bits
 cout << "After flipping bits: " << aFewBits << endl;
 if(aFewBits.any())
 cout << "aFewBits has at least 1 bit set.\n";
 cout << "aFewBits has " << aFewBits.count() << " bits set.\n";
 if(aFewBits[0] == 1)
 cout << "bit 0 is on\n";
 if(aFewBits.test(1))
 cout << "bit 1 is on\n";
 // can add bits to integers
 cout << "Add 11 to bit 0: " << aFewBits[0] + 11 << endl;
 return 0;
}

 Notes:

3 – Sequential Containers Page 119

3.8 valarray

The valarray template class is a vector-like container that is optimized for
efficient numeric computation. It doesn’t provide iterators.

Although one can instantiate a valarray with nonnumeric types, because it
mainly has mathematical functions that are intended to operate directly on
the numeric data elements, this might not be the most efficient container for
non-numeric data. Most of valarray functions and operators appear to
operate on a valarray as a whole – but they actually do their work element-
by-element.

Useful Functions

The valarray class provides a constructor that takes an array of the target
type and the count of elements in the array to initialize the new valarray.

The shift() member function shifts each valarray element one position to
the left (or to the right, if its argument is negative) and fills in holes with the
default value for the type (zero in this case). There is also a cshift()
member function that does a circular shift (or rotate). This is for bitwise
arithmetic operations that often occur in electronics applications.

All mathematical operators and functions are overloaded to operate on
valarrays; in other words, a valarray’s elements can have all of these
operations performed on them. Binary operators, such as addition,

 Notes:

3 – Sequential Containers Page 120

subtraction, multiplication, division and the modulus operation all require
valarrays of the same type and size.

The apply() member function of valarrays, like the STL transform()
algorithm, applies a function to each element, but the result is collected into
a result valarray.

Useful Operators

The relational operators (equal, not equal, greater than, less than, etc),
return suitably-sized instances of valarray<bool> that indicate the result of
element-by-element comparisons.

Most operations return a new result array, but a few, such as min(),
max(), and sum(), return a single scalar value.

 Here is an example:

#include <iostream>
#include <valarray>
#include <cmath>
using namespace std;

int main() {
 valarray<int> aValuesArray(10);
 int i;

 Notes:

3 – Sequential Containers Page 121

 for(i = 0; i <10; i++)
 aValuesArray[i] = i;

 cout << "Original contents: ";
 for(i = 0; i <10; i++)
 cout << aValuesArray[i] << " ";
 cout << endl;

 aValuesArray = aValuesArray.cshift(3);
 cout << "Shifted contents: ";
 for(i = 0; i <10; i++)
 cout << aValuesArray[i] << " ";
 cout << endl;

 valarray<bool> aValuesArray2 = aValuesArray < 5;
 cout << "Those elements less than 5: ";
 for(i = 0; i <10; i++)
 cout << aValuesArray2[i] << " ";
 cout << endl;

 valarray<double> aValuesArray3(5);
 for(i = 0; i <5; i++)
 aValuesArray3[i] = (double) i;

 cout << "Original contents: ";
 for(i = 0; i <5; i++)
 cout << aValuesArray3[i] << " ";

 Notes:

3 – Sequential Containers Page 122

 cout << endl;

 aValuesArray3 = sqrt(aValuesArray3);
 cout << "Square roots: ";
 for(i = 0; i <5; i++)
 cout << aValuesArray3[i] << " ";
 cout << endl;

 aValuesArray3 = aValuesArray3 + aValuesArray3;
 cout << "Double the square roots: ";
 for(i = 0; i <5; i++)
 cout << aValuesArray3[i] << " ";
 cout << endl;

 aValuesArray3 = aValuesArray3 - 10.0;
 cout << "After subtracting 10 from each element:\n";
 for(i = 0; i <5; i++)
 cout << aValuesArray3[i] << " ";
 cout << endl;
 return 0;
}

 Notes:

4 – Iterators Page 123

 Unit Four
Iterators

Unit topics: Page
 4.1 .. What is an Iterator? 124
 4.2 ... Iterators in the STL 127
 4.3 ... Input Iterators 137
 4.4 .. Output Iterators 139
 4.5 .. Forward Iterators 135
 4.6 ... Bidirectional Iterators 137
 4.7 ... Random Access Iterators 140
 4.8 ... Summary of Iterator Operations 151

 Notes:

4 – Iterators Page 124

4.1 Iterators are smart pointers

What is an iterator?

An iterator in C++ is a concept that implements the iterator design pattern
into a specific set of behaviors that work well with the C++ standard library.
The standard library uses iterators to work with elements in a range in a
consistent manner. Anything that implements this set of behaviors is called
an iterator.

The iterator pattern defines a handful of simple requirements. An iterator
should allow its consumers to:

 Move to the beginning of the range of elements.

 Advance to the next element.

 Return the value referred to.

 Query it to see if it is at the end of the range.

Iterators are defined by the operations that they must support. And
because the underlying representation of an iterator is usually
implementation independent, one can use a regular pointer, an integer, or
a class object so long as it supports the operations *, ++, = and ==.

 Notes:

4 – Iterators Page 125

Their capabilities range from the random access iterator that has all of the
power of a regular C++ pointer, to the input and output iterators that can
only go forward in a collection either reading or writing. In between are the
bi-directional, reverse, insertion, stream and forward iterators. Each is a
class with its own member functions, overloaded operators and data.

Each predefined standard STL container comes with its own iterator, and
that might be a random access iterator, a bidirectional iterator or another
type. But one can always use an additional type of iterator if the predefined
one doesn’t work as needed. Or one can define a custom iterator based on
the STL predefined classes.

Iterators are central to generic programming because they are an interface
between containers and algorithms. Algorithms usually take iterators as
arguments, so for an algorithm to work with a container, a container must
provide a way to access its elements using iterators.

The following copy() template function is a commonly used STL algorithm
that uses iterators.

template <typename InputIterator, typename OutputIterator>
OutputIterator copy (InputIterator first,
 InputIterator last,
 OutputIterator result) {
 for (; first != last; ++first, ++result)
 *result = *first; // *result is “written to”, whereas *first is “read from”
 return result;

 Notes:

4 – Iterators Page 126

}

 Notes:

4 – Iterators Page 127

4.2 Iterators in the STL

The C++ standard library provides iterators for the standard containers
(e.g., list, vector, and deque), and a few other non-container classes, such
as string.

The definition of iterators makes them much more than simple C/C++
pointers although they perform that type of behavior. They also have a
‘state’, in other words they can hold data about themselves. Their base
classes are found in the header <iterator>.

An iterator gives a program access to the contents of a container or other
sequence of data, such as an I/O stream. One can think of an iterator as an
abstraction of a pointer; the syntax for using iterators resembles that of
pointers.

An iterator points to a single element in a container or sequence and can
be advanced to the next element with the ++ (increment) operator. The
unary * (dereference) operator returns the element that the iterator points
to. Iterators, except for output iterators, can be compared, and two iterators
are equal if they point to the same position in the same sequence, or if they
both point to one position past the end of the same sequence.

There are also constant iterators defined for each container so that a
program can safely traverse a container without modifying its elements.
The STL algorithms that don’t modify container elements (search, find etc)
require const iterators as arguments.

 Notes:

4 – Iterators Page 128

Here is a simple example using a vector with its iterator:

vector<int> v;
// …
 for (vector<int>::iterator it = v.begin();
 it != v.end(); // <- end() points to the position AFTER last value
 ++it) {
 cout << *it << endl;
}

The example does the following, showing how iterators work:

 Obtain an iterator to the first element in a container by calling that

container's begin() member function.

 Advance an iterator to the next element with the pre- or post-

increment operator, as in ++it or it++ (it’s good practice to use ++it
since this is more efficient).

 Get the value it refers to with the pointer dereference operator *, as in

*it.

 Finally, determine if an iterator is at the end of a range by comparing

it to the iterator returned by the container's end member function,
which returns an iterator that refers to one past the end of the
elements. This is why the continuation test for the for loop in the
example above is it != v.end().

 Notes:

4 – Iterators Page 129

Here is another vector example, declared to take strings as elements:

#include <vector>
#include <iterator>
#include <iostream>

int main() {
 std::vector<std::string> aVector;
 // …
 for (std::vector<std::string>::iterator strItr = aVector.begin();
 strItr != aVector.end();
 ++strItr)
 std::cout << *strItr << ' ';
 return 0;
}

This example again shows a vector with its iterator; the double colon [::]
indicates that the iterator is a trait of the vector.

To access an element’s value using the iterator, we can dereference the
iterator, as if it were a pointer:

cout << "string value of element: " << *strItr;

Similarly, to invoke an operation of the underlying string element through
our iterator strItr, we can use the member selection arrow syntax:

 Notes:

4 – Iterators Page 130

cout << "(" << strItr->size() << "): " << *strItr << endl;

The iterator returned by a container's end() member function represents a
logical element that's one past the last element in a container, not the
physical memory location that's just beyond the last element.

One should never dereference it, because it is just a marker and holds
nothing of value. The point of such a construct is to provide a logical end
marker for a range, regardless of the context in which that range is used.
Standard algorithms and all member functions that work with a range of
iterators use this convention. This is why standard algorithms, such as sort
in <algorithm> work like this to sort every element within the given range
but not including the iterator used as the second argument to sort().

sort(v.begin(), v.end());

It is always best to use a const object if the program doesn’t need to modify
its elements. Thus, if a program is using a const container, the above code
won't even compile. In that case, use a const_iterator, which works just like
the iterator type in the example above, except that when it is dereferenced,
it returns a const object. Here is an example that works with const objects:

void printConst(const vector<int>& v) {
 for (vector<int>::const_iterator it = v.begin();
 it != v.end(); ++it) {
 cout << *it << endl;

 Notes:

4 – Iterators Page 131

 }
}

 Notes:

4 – Iterators Page 132

STL Iterator Advantages

 The STL provides predefined iterators as a convenient abstraction for

accessing many different types of containers

 Iterators for templated classes are generated inside the class scope with

the syntax class_name<parameters>::iterator, so they can be directly
used with their container.

 Iterators can be thought of as limited (possible stateful) pointers, and

can be dereferenced to get the values of elements pointed to, passed to
stand-alone functions and algorithms to operate indirectly on the
container and more.

 An iterator can be a pointer or a class, and it can be derived from the

STL’s iterator class template. Any pointer can be treated as an iterator.

 Notes:

4 – Iterators Page 133

STL Iterator Disadvantages

 Iterators do not provide bounds checking; it is possible to overstep the

bounds of a container, resulting in segmentation faults

 Different containers support different types of iterators by default; thus it

is not always possible to change the underlying container type without
making changes to the code

 Iterators can be invalidated if the underlying container (the container

being iterated over) is changed significantly

 Iterators have the same advantages and power as pointers. But they

also have the same risks and inconveniences. For example, using a
pointer we can accidentally modify data that we are not supposed to.

 There are also definitions for a class const_iterator that provides

basically the same functionality as a regular iterator except that
modifying the data "pointed to" by the const_iterator is not allowed.

 One result of the possible restrictions on an iterator is that most

algorithms have two iterators as their arguments, or an iterator and a
number of elements count.

 It isn't a good idea to test a output iterator against NULL, because it

can’t read the elements it points to.

 Notes:

4 – Iterators Page 134

 Testing for equality or inequality is safe except for output iterators, which
is why the loops using output iterators often use iterator != x.end() as
their termination test, to test the container’s function itself rather than the
iterator’s value.

We can use the iterator traits template to know what we need to define
when defining our own iterators or what we can check for when using the
STL predefined iterators.

Here are the traits.

 iterator_category must be one of these 5 values: input_iterator_tag,

output_iterator_tag, forward_iterator_tag, bidirectional_iterator_tag, or
random_access_iterator_tag.

 value_type is the base datatype of the iterator, and it can be void for
output iterators since one cannot dereference them

 difference_type is the difference between two iterators.
 pointer is a pointer to the same datatype as the value_type is
 reference is a reference to the same datatype as the value_type

 Notes:

4 – Iterators Page 135

Standard STL Iterator templates from <iterator> header file:

template <typename Category,
 class T,
 class Distance = ptrdiff_t,
 class Pointer = T*,
 class Reference = T&>
struct iterator
{
 typedef Category iterator_category;
 typedef T value_type;
 typedef Distance difference_type;
 typedef Pointer pointer;
 typedef Reference reference;
}
template <typename I>
struct iterator_traits
{
 typedef typename I::iterator_category iterator_category;
 typedef typename I::value_type value_type;
 typedef typename I::difference_type difference_type;
 typedef typename T::pointer pointer;
 typedef typename I::reference reference;
};

template <typename T> struct iterator_traits<T*>;
template <typename T> struct iterator_traits<const T*>;

 Notes:

4 – Iterators Page 136

Generic algorithms often need to have access to these traits described on
the previous page. Many STL algorithms take a range of iterators, and they
might need to declare a temporary variable whose type is the iterators'
value_type. The class iterator_traits is a mechanism that allows such
declarations. In addition to traits, the base class iterators have a few
simple functions of their own:

template<typename Iter, typename difference_type>
void advance(Iter& i, difference_type d);

template<typename Iter>
difference_type distance(Iter start, Iter finish);

Here is another code example of using a vector and an iterator:

#include <list>
#include <vector>
using namespace std;
...
list<int> iList;
list<int>::iterator iListIter;
vector<double> dVector;
vector<double>::iterator dVectorIter;
vector<double>::const_iterator dVectorConstIter;

 Notes:

4 – Iterators Page 137

4.3 Input iterators
This is the simplest type of iterator, because it can only read forward in a
sequence or collection of elements. It reads the elements only once and
can return the elements when it finds them. One can dereference an Input
Iterator to obtain the value it points to, but one can’t assign a new value to
the element using the iterator’s functions. Input iterators can only do these
operations:
 construct themselves i(j);
 assignment operator i=j;
 equality/inequality operator i==j; i!=j;
 dereference operator *j; j->m; // Can’t write
 // but can read
 pre/post increment operator ++j; j++; *j++;

#include <iostream>
#include <vector>
#include <iterator>
using namespace std;
int main ()
{
 vector<int> v;
 for (istream_iterator<int> i (cin);
 i != istream_iterator<int> ();
 ++i)
 v.push_back (*i);
 // copy (istream_iterator<int> (cin),
 // istream_iterator<int>(),

 Notes:

4 – Iterators Page 138

 // back_inserter(v));
}

Input Iterators are used by non-modifying algorithms. For example, the STL
find, find_if, and count algorithms, require no more than input iterators as
their first two arguments. One can pass them more powerful iterators or
pointers, but only the simplest input iterators are required.

The find and find_if algorithms also return only an input iterator pointing to
the element that matches the value to be found, or if the value was not
found, an iterator pointing beyond the last element of the container.

 Notes:

4 – Iterators Page 139

 4.4 Output iterators

These are similar to input iterators, except that output iterators perform only
write operations. Output iterators also process a container only in a single
pass and do no error checking. So the code itself needs to check that a
value to be written is valid and whether each write operation was
successful. Output iterators can do the following:
 constructor i(j);
 assignment operator i=j;
 dereference operator *j=t; *j++=t; // Can write,

 // but can’t read!
 pre/post increment operator ++j; j++;

#include <iostream>
#include <vector>
using namespace std;
int main () {
 vector<int> v;
 copy (istream_iterator<int> (cin), istream_iterator<int>(),
 back_inserter(v));

 for (vector<int>::iterator i = v.begin ();
 i != v.end ();
 ++i)
 cout << *i << endl;
 // copy (v.begin (), v.end (), ostream_iterator<int> (cout, "\n"));
}

 Notes:

4 – Iterators Page 140

Many of the STL algorithms return an output iterator as their result. Some
of these include:

template<typename InputIterator, typename OutputIterator>
 OutputIterator copy(InputIterator start,
 InputIterator finish,
 OutputIterator result);

template<typename InputIterator1,
 typename InputIterator2,
 typename OutputIterator,
 typename BinaryOperation>
 OutputIterator transform(InputIterator1 start1,
 InputIterator1 finish1,
 InputIterator2 start2,
 OutputIterator result,
 BinaryOperation binary_op);

template<typename InputIterator, typename OutputIterator,
 typename Predicate>
 OutputIterator remove_copy_if(InputIterator start,
 InputIterator finish,
 OutputIterator result,
 Predicate pred);

http://stdcxx.apache.org/doc/stdlibref/copy.html
http://stdcxx.apache.org/doc/stdlibref/remove-copy-if.html

 Notes:

4 – Iterators Page 141

4.5 Forward iterators

A forward iterator combines the features of an input iterator and an output
iterator. It permits values to be both accessed and modified. Forward
iterators support the following operations:

 constructor i(j);
 assignment operator i=j;
 equality/inequality operator i==j; i!=j;
 dereference operator t = *j; *j=t; // Can assign & read
 pre/post increment operator ++j; j++;

One function that uses forward iterators is the replace() generic algorithm,
which replaces occurrences of specific values with other values. This
algorithm could be written as follows:

template <typename ForwardIterator, typename T>
void replace(ForwardIterator first,
 ForwardIterator last,
 const T& old_value,
 const T& new_value)
{
 while (first != last) {
 if (*first == old_value) // Can read from and write to *first iterator
 *first = new_value;
 ++first;
 }
}

 Notes:

4 – Iterators Page 142

Ordinary pointers, like all iterators produced by containers in the C++
Standard Library, can be used as forward iterators.

Forward Iterators can be either:

 constant, in which case one can access the object it points to, but one

can’t assign a new value to the element using this iterator

 mutable, in which case one can both access the elements pointed to

and also change them.

 Notes:

4 – Iterators Page 143

4.6 Bidirectional iterators

Bidirectional Iterators work with forward and multi-pass algorithms. They
allow traversing collections backward and forward. A bidirectional Iterator
can be incremented to obtain the next element in a container, or
decremented to obtain the previous element. Bidirectional iterators support
the following operations:

 constructor i(j);
 assignment operator i=j;
 equality/inequality operator i==j; i!=j;
 dereference operator t=*j; *j=t; // Can assign & read
 pre/post increment/decrement
 operators ++j; j++; --i; i--;

All standard STL containers (with the exception of forward_list) provide
bidirectional iterators or better.

Input, output and forward Iterators only support forward motion. An iterator
used to traverse a singly linked list, for example, need only be a forward
iterator, but an iterator used to traverse a doubly linked list has to be a
bidirectional iterator.

 Notes:

4 – Iterators Page 144

A list’s default iterator is bidirectional, which we can use to print the list’s
elements backwards.

#include <list>
#include <iostream>
 using namespace std;
int main() {
 list<int> aList (1, 1);
 aList.push_back (2);
 list<int>::iterator first = aList.begin();
 list<int>::iterator last = aList.end();
 while (last != first) {
 --last;
 cout << *last << " "; // Could write this as cout << *--last << “”
 }
 return 0;
}

 Notes:

4 – Iterators Page 145

Here is another example of a list, using its bidirectional iterator with the
algorithm copy():

#include <list>
#include <iterator>
#include <string>
#include <iostream>
using namespace std;
int main() {
 list<string> aList;
 aList.push_back("peach");
 aList.push_back("apple");
 aList.push_back("banana");
 // Make y the same size - creates empty strings for y's elements.
 list<string> y(aList.size());

 // This is the STL algorithm std::copy...
 copy(aList.begin(), aList.end(), y.begin()); // source is aList, target is y

 // Print result forwards and backwards.
 copy (y.begin (), y.end (), ostream_iterator<string> (cout, " "));
 cout << endl;
 copy (y.rbegin (), y.rend (), ostream_iterator<string> (cout, " "));
 cout << endl;
 return 0;
}

 Notes:

4 – Iterators Page 146

Bidirectional iterators can be used to reverse the values of elements in a
container, placing the results into a new container:

template <typename BidirectionalIterator, typename OutputIterator>
OutputIterator
reverse_copy(BidirectionalIterator first,
 BidirectionalIterator last,
 OutputIterator result)
{
 while (first != last)
 *result++ = *--last;
 return result;
}

 Notes:

4 – Iterators Page 147

4.7 Random access iterators

Random Access Iterators allow the operations of pointer arithmetic:
addition of arbitrary offsets, subscripting, and subtraction of one iterator
from another to find a distance. These are the most powerful iterators and
are like regular pointers but they are also smart, e.g., they can hold state.
In addition doing all that bidirectional iterators do, random access iterators
can do the following as well:

 operator+ (int)
 operator+= (int)
 operator- (int)
 operator-= (int)
 operator- (random access iterator)
 operator[] (int)
 operator < (random access iterator)
 operator > (random access iterator)
 operator >= (random access iterator)
 operator <= (random access iterator)

 Notes:

4 – Iterators Page 148

The vector class provides a random access iterator that can be used as
follows:

#include <vector>
#include <iostream>
using namespace std;
int main () {
 vector<int> myVector;
 int total_even = 0;

 for(int i=0; i < 10; i++)
 myVector.push_back(i);

 for (vector<int>::iterator myVectorIter = myVector.begin();
 myVectorIter != myVector.end();
 myVectorIter += 2)
 {
 total_even += * myVectorIter;
 }

 cout << "Total even =" << total_even << endl;
 return 0;
}

 Notes:

4 – Iterators Page 149

Here is another example using a vector with its random access iterator:

#include <vector>
#include <iostream>
 using namespace std;
int main () {
 vector<int> aVector (1, 1); //created a vector with one element: 1
 aVector.push_back (2);
 aVector.push_back (3);
 aVector.push_back (4); // vector v: 1 2 3 4
 // now create 2 iterators, they are random access iterators
 vector<int>::iterator i = aVector.begin();
 vector<int>::iterator j = i + 2; cout << *j << " ";
 i += 3; cout << *i << " ";
 j = i - 1; cout << *j << " ";
 j -= 2;
 cout << *j << " ";
 cout << aVector[1] << endl;
 (j < i) ? cout << "j < i" : cout << "not (j < i)"; cout << endl;
 (j > i) ? cout << "j > i" : cout << "not (j > i)"; cout << endl;
 i = j;
 i <= j && j <= i ? cout << "i and j equal" : cout << "i and j not equal";
 cout << endl;
 return 0;
}

 Notes:

4 – Iterators Page 150

Random access iterators can jump to any element in the container:

#include <vector>
#include <iterator>
#include <iostream>
#include <string>
 using namespace std;
int main () {
 const char *s[] = { "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" };
 vector<string> v (s, s + 10);
 // C++11 enables this:
 // vector<string> v ({ "a", "b", "c", "d", "e", "f", "g", "h", "i", "j" });

 copy (v.begin (), v.end (), ostream_iterator<string> (cout, "\n"));

 vector<string>::iterator p = v.begin(); // initialized to start of vector
 p += 5; // Now p refers to the 5th element
 p[1] = "z"; // Value at p[1] is changed but p refers to 5th

 // position still; position wasn"t changed
 p -= 5; // Back to start

 copy (p, v.end (), ostream_iterator<string> (cout, "\n"));
 return 0;
}

 Notes:

4 – Iterators Page 151

4.8 STL Iterator Operations Summary

For most iterators:

it; Use dereference () op to get/set value
++it; Points to next element. Value after update
it++; Points to next element. Value before update
it2 = it2; Assignment
it1 == it2; Equality comparison
it1 != it2; Inequality

Additional operators for bidirectional iterators:

--it; Pre-decrement
it--; Post-decrement. May be less efficient

Additional operators for random-access iterators:

It += i; Increments it by i positions
It -= i; Decrements it by i positions
it2 + I; Increments it by i positions
it2 – I; Decrements it by i positions
it[i]; Returns reference to ith element after it
it1 < it2; Comparison
it1 <= it2; Comparison
it1 > it2; Comparison
It1 <= it2; Comparison

 Notes:

6 – Iterator Adaptors Page 152

 Unit Five
Associative Containers

Unit topics: Page
 5.1 ... What is an Ordered Associative Container? 153
 5.2 ... The pair Container 156
 5.3 ... The set Container 159
 5.4 ... The multiset Container 166
 5.5 .. The map Container 170
 5.6 ... The multimap Container 173
 5.7 ... The Unordered Containers 177

 Notes:

6 – Iterator Adaptors Page 153

5.1 What is an Ordered Associative Container?

An ordered associative container is a container that supports efficient
insertion, removal, and lookup of elements (values) based on keys. It
supports insertion and removal of elements, but differs from a sequential
container because it doesn’t let one insert an element at a specific position
or remove an element from a given position based on the position itself –
all access is done to the ‘value’ using a key. And once one adds the
elements to the container, the key cannot change, although the element
and its key can be removed. The STL provides four ordered associative
containers.

For sets and multisets there are only a group of values stored, but they
are stored in some kind of order keyed by the values. So if the values are
numbers, the ordering is by numeric value. If they are letters, the collection
is ordered by alphabetical order, OR the values can be classes and the
programmer can define a function to base the key order upon.

For maps and multimaps there are actually two series of data that go
together hand in hand. One is the values and the other is called the key.
These are called pair associative containers because each value is paired
with a key. The keys cannot be changed by iterators once they are
assigned (you can, of course, erase a key).

Associative containers are implemented as binary trees. This means that
each element has a parent element and can have up to two child
elements. In addition, all ancestors to the left of an element have lesser
values and all ancestors to the right of an element have greater values.

 Notes:

6 – Iterator Adaptors Page 154

 Notes:

6 – Iterator Adaptors Page 155

STL Predefined Ordered Associative Containers

set<key> Supports unique keys only and provides fast key

retrieval
multiset<key> Supports duplicate keys, also fast key retrieval
map<key, value> Supports unique keys only, and fast retrieval of type T

data based on the key
multimap<key, value> Supports duplicate keys, otherwise performs like

map.

Of course one can also create a custom associative container and use it
with the STL iterators, algorithms, and functions.

What are the applications of such containers? Think of a symbolic
debugger. It can use an associative container that maps strings (variable
names) to memory addresses (the variables' addresses). This way, when
one evaluate or modify a variable by its name, the debugger knows where
that variable is stored in memory.

Another example is a phone book, in which names serve as keys, and
telephone numbers are their associated values.

 Notes:

6 – Iterator Adaptors Page 156

5.2 The pair Container

Pair

This template group is the basis for the map and set associative containers
because it stores heterogeneous pairs of data together. Here are the
templates:

template <typename T1, typename T2>
struct pair {
 T1 first;
 T2 second;
 pair();
 pair (const T1&, const T2&);
 ~pair();
};

// non-member operators and a non-member function
template <typename T1, typename T2>
bool operator== (const pair<T1, T2>&, const pair T1, T2>&);

template <typename T1, typename T2>
bool operator< (const pair<T1, T2>&, const pair T1, T2>&);

template <typename T1, typename T2>
pair<T1,T2> make_pair (const T1&, const T2&);

 Notes:

6 – Iterator Adaptors Page 157

The concept of a pair is essential for understanding how associative
containers work. A pair binds a key (known as the first element) with an
associated value (known as the second element).

In the library <utility> and included in other standard libraries such as
<map> there is a class called pair that implements the mathematical idea of
a Cartesian point. A pair is used to construct maps and other associative
data structures.

Purpose Notation Meaning
class name pair<X, Y> set of pairs (x,y)
 where x is in class X and y is in class Y.
get first pair.first the first item in pair
get second item pair.second the second item in pair
make a new pair make_pair(x,y) constructs instance of pair<X,Y> with
 first=x and second=y.
The Standard Library defines a pair template that behaves like a special
tuple of two elements. This example creates two pairs:

#include <utility> //definition of pair
#include <string>

pair <string, string> myTest("Chapter1", "Meet the STL");
pair <string, void *> aValue ("mynum", 0x410928a8);

 Notes:

6 – Iterator Adaptors Page 158

Here is a simple program that wraps a pair as a class and then instantiates
an object of this simple class to make a point:

#include <iostream>
#include <utility>
 using namespace std;

template<typename T1, typename T2>
class Point : private pair<T1, T2> {
public:
 Point(T1 x, T2 y): pair<T1, T2>(x, y), x(first), y(second) { }
 T1 &x;
 T2 &y;
};

int main() {
 Point<int, int> myPoint(1, 2);
 cout << "x = " << myPoint.x << "\ny = " << myPoint.y << endl;
}

 Notes:

6 – Iterator Adaptors Page 159

5.3 The set Container

A set is a collection of ordered data in a balanced binary tree structure.

STL template:

#include <set>
template <typename Key,
 typename Compare = less<Key>,
 typename Allocator = allocator <Key> >
class set { /* … */ };

Characteristics of set
 It orders the elements that are added to it.
 A set contains only one copy of any element (key) added to it.

Useful functions of set

insert() Inserts elements anywhere based on key
erase() Remove elements anywhere based on key
count() Returns the number of elements with a certain key
find() Returns an iterator to the first element with a certain

value
lower_bound() Returns an iterator to the earliest element that has a

key that does not match the value passed
upper_bound() Returns an iterator to the earliest element that has a

key matching the value passed
key_comp() Returns the stored functor that determines the order of

the elements.

 Notes:

6 – Iterator Adaptors Page 160

Example of creating one set and using an iterator with it

#include <set>
#include <iostream>
#include <algorithm>
#include <functional>
#include <iterator>
 using namespace std;

int main()
{
 int A[3]= {1, 2, 3};
 set<int, greater<int> > setofNum(A, A+3);

 set<int, greater<int> >::iterator myIndex= setofNum.find (9);

 if (myIndex == setofNum.end())
 cout << "9 not found\n";
 else
 cout << "9 found\n";
 setofNum.insert(9);

 cout << setofNum.size() << " elements in the set" << endl;
 myIndex = find(setofNum.begin(), setofNum.end(), 9);
 if (myIndex == setofNum.end())
 cout << "9 not found in the set\n" << endl;
 else

 Notes:

6 – Iterator Adaptors Page 161

 cout << "9 found it! \n" << endl;

 copy (setofNum.begin (), setofNum.end (),
 ostream_iterator<int> (cout, "\n"));

 return 0;
}

 Notes:

6 – Iterator Adaptors Page 162

Example: Showing how insert() works.

#include <iostream>
#include <iterator>
#include <set>
using namespace std;

int main () {
 set<int> myset;
 set<int>::iterator it;
 pair<set<int>::iterator,bool> ret;

 for (int i=1; i<=5; i++) myset.insert(i*10); // set: 10 20 30 40 50
 ret = myset.insert(20); // no new element inserted
 if (ret.second==false) it=ret.first; // "it" now points to element 20

 myset.insert (it,25); // max efficiency inserting
 myset.insert (it,24); // max efficiency inserting
 myset.insert (it,26); // no max efficiency inserting

 int myints[]= {5,10,15}; // 10 already in set, not inserted
 myset.insert (myints,myints+3);

 cout << "myset contains:" << endl;
 copy (myset.begin (), myset.end (), ostream_iterator<int> (cout, "\n"));
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 163

Example: Creating a few sets and using swap

#include <set>
#include <list>
#include <iostream>
#include <iterator>
#include <algorithm>
using namespace std;

int main() {
 int a[] = {5, 4, 6, 7, 8, 2, 1, 3};
 set <int> firstSet (a, a + 8); // Defaults to less<int>.
 set <int> secondSet (a, a + 8);

 list <int> aList (secondSet.begin (), secondSet.end ());
 set <int, greater<int> > thirdSet (aList.begin(), aList.end());

 set <int, less<int> > fourthSet;
 fourthSet.swap (firstSet);
 copy (thirdSet.begin (), thirdSet.end (),
 ostream_iterator<int> (cout, " "));
 cout << endl;
 copy (fourthSet.begin (), fourthSet.end (),
 ostream_iterator<int> (cout, " "));

 return 0;

 Notes:

6 – Iterator Adaptors Page 164

}

There is only one way to add a new element to a set or multiset after
initializing via the constructor; you insert a value using the insert() member
function.

Insert operations for a set return a pair of values, where the first field
contains the iterator, and the second field contains a boolean value that is
true if the element was inserted, and false otherwise. In a set, an element
will not be inserted if it matches an existing element.

Here is an example of inserting a value in a set

#include <set>
#include <iostream>
 using namespace std;
int main() {
 set<int> firstSet;
 //insert an element with value of 55
 firstSet.insert (55);
 if (firstSet.insert(55).second)
 cout << "element was inserted" << endl;
 else
 cout << "element was not reinserted " << endl;
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 165

To remove a value from a set, use erase(). The arguments can be either a
specific value, an iterator that denotes a single value, or a pair of iterators
that denote a range of values.

#include <set>
#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;
int main() {
 int a[] = {5, 4, 6, 7, 8, 2, 1, 3};
 set <int> firstSet (a, a + 8);
 firstSet.erase(4); // erase element whose value is 4
 set<int>::iterator five = firstSet.find(5);
 firstSet.erase(five); // erase element with value 5

 // erase all values in range 6 up to 8, define 2 iterators
 set<int>::iterator six = firstSet.find(6);
 set<int>::iterator eight = firstSet.find(8);
 firstSet.erase (six, eight);

 copy (firstSet.begin (), firstSet.end (), ostream_iterator<int> (cout, " "));
 return 0;
}

Iterators for sets

 Notes:

6 – Iterator Adaptors Page 166

The member functions begin() and end() produce iterators for both sets
and multisets. The iterators produced by these functions are constant so
that keys cannot be changed when traversing the set since this could
perturb the ordering of the keys!!

Elements are generated by the iterators in sequence, ordered by the
comparison operator provided when the set was declared. If there was no
comparison function used when the set or multiset was declared, C++ uses
the < operator if it is defined. This works for all primitive data type elements
in a set, but if one use a set for holding a user defined class, one need to
have a function that compares values passed to the set when it is declared.

There are also reverse iterators: member functions rbegin() and rend()
produce iterators that yield the elements in reverse order.

5.4 The multiset Container

Multisets are just like regular sets except that they allow duplicate keys.

STL template:

#include <set>
template <typename Key,
 typename Compare = less<Key>,
 typename Allocator = allocator <T> >
class multiset { /* … */ };

 Notes:

6 – Iterator Adaptors Page 167

Characteristics of multiset
 Stores objects of type key in a sorted manner.
 Its value type, as well as its key type, is 'key.'
 Two or more elements may be identical.

Set and multiset are particularly well suited to the set-related algorithms:
set_union, set_intersection, set_difference, and
set_symmetric_difference because:

 Set algorithms require their arguments to be sorted ranges and the

elements in set and multiset are sorted in ascending order.

 The output range of these algorithms is always sorted and inserting a

sorted range into a set or multiset is a fast operation.

 Inserting a new element into a multiset or set does not invalidate

iterators that point to existing elements; only iterators pointing to
elements being erased are invalid.

http://www.sgi.com/tech/stl/set_union.html
http://www.sgi.com/tech/stl/set_intersection.html
http://www.sgi.com/tech/stl/set_difference.html
http://www.sgi.com/tech/stl/set_symmetric_difference.html

 Notes:

6 – Iterator Adaptors Page 168

The following is an example of multiset using several STL algorithms. The
copy algorithm copies each element from the specified range (given by its
first two arguments), into a place pointed to by the third argument.

#include <set>
#include <iostream>
#include <iterator>
#include <algorithm>
 using namespace std;
int main() {
 const int N = 10;
 int a[N] = {4, 1, 1, 1, 1, 1, 0, 5, 1, 0};
 int b[N] = {4, 4, 2, 4, 2, 4, 0, 1, 5, 5};

 multiset<int> A(a, a + N);
 multiset<int> B(b, b + N);
 multiset<int> C;
 cout << "Set A: ";
 copy(A.begin(), A.end(), ostream_iterator<int>(cout, " ")); cout << endl;

 cout << "Set B: ";
 copy(B.begin(), B.end(), ostream_iterator<int>(cout, " ")); cout << endl;

 cout << "Union: ";
 set_union(A.begin(), A.end(), B.begin(), B.end(),
 ostream_iterator<int>(cout, " "));
 cout << endl;

http://www.sgi.com/tech/stl/copy.html

 Notes:

6 – Iterator Adaptors Page 169

 cout << "Intersection: ";
 set_intersection(A.begin(), A.end(), B.begin(), B.end(),
 ostream_iterator<int>(cout, " "));
 cout << endl;
 set_difference(A.begin(), A.end(), B.begin(), B.end(),
 inserter(C, C.end())); // essentially back_inserter(C)
 cout << "Set C (difference of A and B): ";
 copy(C.begin(), C.end(), ostream_iterator<int>(cout, " "));
 cout << endl;
 return 0;
}

http://www.sgi.com/tech/stl/copy.html

 Notes:

6 – Iterator Adaptors Page 170

5.5 The map Container

A map is a sorted associative container that associates key objects with
value objects. It is called a pair associative container because its
value_type is actually implemented as pair<const Key, Value>. For a
map, keys must be unique. The keys don’t have to be integers, so a map is
more general than a sequential container such as vector, deque, or list.

STL template:

#include <map>
template <typename Key, typename Value,
 typename Compare = less<Key>,
 typename Allocator = allocator <pair<const Key, Value>> >
class map { /* … */ };

Characteristics of map
 Inserting a new element into a map does not invalidate iterators that

point to existing elements.
 Erasing an element from a map also does not invalidate any iterators,

except those iterators that actually point to the element that is being
erased.

To use a map you must supply a key type and data type. You can also
choose to provide a comparing function that does the job of the less than
operator so that data can be placed in order by key:

map <key_type, data_type [, comparison_function]>

 Notes:

6 – Iterator Adaptors Page 171

Simple—but powerful—example code using a map:

#include <iostream>
#include <map>
#include <string>
#include <algorithm>
using namespace std;

struct print {
 void operator () (const map<string, int>::value_type&p) {
 cout << p.second << " " << p.first << endl;
 }
};

int main() {
 map<string, int> myMap; // map of words and their frequencies
 string aWord; // input buffer for words.

 while (cin >> aWord)
 ++myMap[aWord];

 for_each (myMap.begin(), myMap.end(), print ());

 return 0;
}

 Notes:

6 – Iterator Adaptors Page 172

Here’s another example, using both a map and a pair:
#include <utility>
#include <iostream>
#include <string>
#include <map>
using namespace std;
struct print { // Iterator value is a key-value pair.
 void operator () (const map<string, string>::value_type &p)
 { cout << p.first << "=" << p.second << endl; }
};

int main() {
 pair<string, int> pr1, pr2("heaven", 7);
 cout << pr2.first << "=" << pr2.second << endl; // Prints heaven=7

 //-- Declare and initialize pair pointer.
 unique_ptr < pair<string, int> > prp (new pair<string, int>("yards", 9));
 cout << prp->first << "=" << prp->second << endl; // Prints yards=9

 //-- Declare map and assign value to keys.
 map<string, string> engGerDict;
 engGerDict["shoe"] = "Schuh"; engGerDict["head"] = "Kopf";

 //-- Iterate over map in sorted order.
 for_each (engGerDict.begin(), engGerDict.end(), print ());
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 173

5.6 The multimap Container

A multimap is a sorted associative container that associates key objects
with value objects. It is called a pair associative container because its
value type is actually implemented as pair<const Key, Value>.

For a multimap keys don’t have to be unique. Nor do the keys have to be
integers, so maps are multimaps are more general than a sequential
container such as vector, deque, or list.

STL template:

#include <map>
template <typename Key, typename Value,
 typename Compare = less<Key>,
 typename Allocator = allocator <pair<const Key, Value> >
class multimap

Here is an example using a multimap:

#include <string>
#include <map>
#include <iostream>
#include <iterator>
#include <algorithm>
#include <functional>

 Notes:

6 – Iterator Adaptors Page 174

using namespace std;

typedef multimap <string, string> names_type;

struct print {
 print(ostream& out) : os (out) {}

 void operator() (const names_type::value_type &p) {
 os << p.first << " belongs to the " << p.second << " family\n";
 }

 ostream& os;
};

// Print out a multimap
ostream& operator<<(ostream& out, const names_type &l) {
 for_each (l.begin (), l.end (), print (out));
 return out;
}

ostream &operator << (ostream &out,
 const pair<names_type::iterator,
 names_type::iterator> &p) {
 for_each (p.first, p.second, print (out));
 return out;
}

 Notes:

6 – Iterator Adaptors Page 175

int main(int argc, char* argv[]) {
 names_type names; // create a multimap of names
 typedef names_type::value_type value_type;

 // Put the names in the multimap
 names.insert(value_type(string("Sue"), string("Smith")));
 names.insert(value_type(string("Jane"), string("Smith")));
 names.insert(value_type(string("Kay"), string("Smith")));
 names.insert(value_type(string("Kurt"), string("Jones")));
 names.insert(value_type(string("Sue"), string("Jones")));
 names.insert(value_type(string("John"), string("Jones")));
 names.insert(value_type(string("Sophie"), string("Mackay")));
 names.insert(value_type(string("Steve"), string("Mackay")));
 names.insert(value_type(string("Sue"), string("Mackay")));

 // print out the names
 cout << "All the names:" << endl << names << endl;

 // Find the people named Sue
 pair<names_type::iterator,names_type::iterator> p =
 names.equal_range ("Sue");

 // print them out
 cout << endl << names.count("Sue") << " People called Sue:"
 << endl << p << endl;

 Notes:

6 – Iterator Adaptors Page 176

 return 0;
}

 Notes:

6 – Iterator Adaptors Page 177

5.7 Unordered Associative Containers

Unordered associative containers refer to a group of class templates in
recent versions of STL that implement variations of the hash table data
structure. Being templates, they can be used to store arbitrary elements,
such as integers or custom classes.

STL Predefined Unordered Associative Containers

unordered_set<key> Supports unique keys only and provides
 fast key retrieval
unordered_multiset<key> Supports duplicate keys, otherwise

performs like unordered_set.
unordered_map<key, T> Supports unique keys only, and fast

retrieval of type T data based on the key
unordered_multimap<key, T> Supports duplicate keys, otherwise

performs like unordered_map.

The unordered associative containers are similar to the associative
containers in C++ standard library but have different constraints. As their
name implies, the elements in the unordered associative containers are not
ordered. This is due to the use of hashing to store objects. The containers
can still be iterated through like a regular associative containers.

The main difference between the ordered associative containers and the
unordered associative containers is that the former keeps the keys sorted
according to some total order. For example, in a map<string, int>, the

http://en.wikipedia.org/wiki/Hash_table
http://en.wikipedia.org/wiki/Template_(programming)
http://en.wikipedia.org/wiki/Associative_containers_(C%2B%2B)
http://en.wikipedia.org/wiki/Associative_containers_(C%2B%2B)
http://en.wikipedia.org/wiki/C%2B%2B_standard_library
http://en.wikipedia.org/wiki/Well_ordering
http://en.wikipedia.org/wiki/Iterator

 Notes:

6 – Iterator Adaptors Page 178

elements are sorted according to the lexicographical order of the strings.
An unordered associative container, on the other hand, divides the keys
into a number of subsets, and the association of each key to its subset is
done by a hash function.

Consequently, searching a key is confined to its subset rather than the
entire key space. Searching an unordered associative container can
therefore be faster than searching a sorted associative container under
some circumstances; but unlike ordered associative containers, the
performance is less predictable.

5.8 The unordered_map Container

An unordered_map is a unordered associative container that associates
key objects with value objects. It is called a pair associative container
because its value_type is actually implemented as pair<const Key,
Value>. For an unordered_map, keys must be unique. The keys don’t
have to be integers, so an unordered_map is more general than a
sequential container such as vector, deque, or list.

STL template:

#include <unordered_map>
template <typename Key, typename Value,
 class Hash = hash<Key>,
 class Pred = std::equal_to<Key>,
 typename Allocator = allocator <pair<const Key, Value>> >
class unordered_map { /* … */ };

 Notes:

6 – Iterator Adaptors Page 179

Characteristics of unordered_map
 Inserting a new element into an unordered_map does not invalidate

iterators that point to existing elements.
 Erasing an element from an unordered_map also does not invalidate

any iterators, except those iterators that actually point to the element
that is being erased.

To use an unordered_map you must supply a key type and data type.
You can also choose to provide a unary function object that acts as a hash
function for a key, which takes a single object of type key and returns a
value of type std::size_t. You can also optionally provide a binary function
object that implements an equivalent relation on values of type key, which
takes two arguments of type key and returns a value of type bool:

map <key_type, data_type [, hash_function_object],

[predicate_function_object]>

 Notes:

6 – Iterator Adaptors Page 180

Simple—but powerful—example code using an unordered_map and
C++11 features.

// -std=c++0x
#include <iostream>
#include <initializer_list>
#include <unordered_map>
#include <vector>
#include <string>
#include <algorithm>

using namespace std;

int main ()
{
 std::vector<std::string> word_list ({"now", "is", "the", "time",
 "for", "all", "good", "men", "to", "come", "to", "the",
 "aid", "of", "their", "party"});
 typedef std::unordered_map<std::string, int> WORD_MAP;
 WORD_MAP word_map; // Map of words and their frequencies.

 for (auto const &word_iter = word_list.begin ();
 word_iter != word_list.end ();
 ++word_iter)
 word_map[*word_iter]++;

 for (auto const &i : word_map)

 Notes:

6 – Iterator Adaptors Page 181

 std::cout << i.second << " " << i.first << std::endl;

 std::vector<std::pair <std::string, int>> v;

 for (auto const &i : word_map)
 v.push_back (i);

 std::sort (v.begin (), v.end ());

 std::cout << std::endl;

 // Print out the sorted vector. Note auto type deduction.
 for (auto const &i : v)
 std::cout << i.second << " " << i.first << std::endl;

 auto total = 0;

 for_each (word_map.begin(),
 word_map.end(),
 [&total] (const WORD_MAP::value_type &p)
 {
 total += p.second;
 });

 std::cout << "total number of words = " << total << std::endl;
 return 0;
 }

 Notes:

6 – Iterator Adaptors Page 182

Unit Six
Adapted Iterators

Unit topics: Page
 6.1 ……………………………………………………………….STL Predefined Adaptors 180
 6.2 ... What are Iterator Adaptors? 183
 6.3 .. The inserter Iterator Adaptor 185
 6.4 .. The reverse Iterator Adaptor 193
 6.5 ... The stream Iterator Adaptor 195

 Notes:

6 – Iterator Adaptors Page 183

6.1 STL Predefined Adaptors

 Iterator adaptors include reverse and insert iterators.

 Container adaptors include stack, queue, and priority_queue.

 Function adaptors include negators and binders.

6.2 What are Iterator Adaptors?

Iterator Adaptors are types of iterators that operate on more than just STL
containers; they can also ‘adapt’ the standard containers’ iterators to work
differently if that is desired.

Iterator adaptors turn the standard iterators into things that can operate in
reverse, in insertion mode, and with streams.

So we take the input, output, forward, bidirectional iterators and make them
into the following adapted iterators:

 Insert iterators
 Reverse iterators
 Stream iterators
 Raw storage iterators  discussed later.

Use adaptors to make a custom class act like an STL collection

 Notes:

6 – Iterator Adaptors Page 184

One can cause any existing class with sequence-like characteristics act like
an STL collection simply by writing an iterator adaptor class. Wrap
anything: a tokenizer, a parser, a database query, a sequence of frames in
an animation, a stream of MIDI data, whatever is needed. The code for the
STL-provided stream adaptors is concise and self-explanatory, and is a
good place to start to develop one’s own.

 Notes:

6 – Iterator Adaptors Page 185

6.3 The Inserter Iterator Adaptors

Insert iterators, also called inserters, change the assignment of a new
value into an insertion of that value into a sequence of values, thus not
overwriting other values. Note that these are output iterators since they
write values, and they override the container’s assignment operator.

The insert iterators allow insertion at the front, back or middle of the
elements depending upon the container type.

There are several types of inserters and they also can change how
algorithms work:

Type Function used Container
front_insert_iterator push_front(value) deque, list

back_insert_iterator push_back(value) vector, deque, list, string

insert_iterator insert(value, position) vectors, deques, lists,

maps, and sets

 Notes:

6 – Iterator Adaptors Page 186

Why use inserters?

The STL algorithms that copy elements, such as copy(), unique_copy(),
copy_backwards(), remove_copy(), & replace_copy() are passed an
iterator that marks the position within a container to begin copying.

With each element copied, the value is assigned and the iterator is
incremented. Each copy requires that we guarantee that the target
container is of a sufficient size to hold the set of assigned elements. So we
may need to expand the containers as we perform the algorithm unless we
want to make the containers huge from the start…thus the inserters are
useful. Start with an empty container, and use the inserter along with the
algorithms to make the container grow only as needed.

back inserter

For example, a back_inserter() causes the container's push_back()
operator to be invoked in place of the assignment operator. This is the
preferred inserter for vectors. The argument passed to back_inserter is the
container itself.

#include <iostream>
#include <iterator>
#include <vector>
using namespace std;

int main() {

 Notes:

6 – Iterator Adaptors Page 187

 vector <int>aVect;
 back_insert_iterator< vector <int> > n (aVect);
 int i;
 while(cin>> i)
 *n++ =i;
 // copy (istream_iterator<int>(cin), istream_iterator<int>(),
 // back_inserter (aVect));
 copy (aVect.begin (), aVect.end (), ostream_iterator<int> (cout, "\n"));
 return 0;
}

Here is another example using a back inserter:

#include <iostream>
#include <iterator>
#include <vector>
using namespace std;

int main()
{
 vector<int> aVect1, aVect2;

 for(int i = 0; i <5; i++)
 aVect1.push_back(i);

 cout << "Original contents of aVect1:\n";
 copy (aVect1.begin (), aVect1.end (), ostream_iterator<int> (cout, "\n"));

 Notes:

6 – Iterator Adaptors Page 188

 back_insert_iterator<vector<int> > bck_i_itr(aVect1);
 *bck_i_itr++ = 100; // insert rather than overwrite at end
 *bck_i_itr++ = 200;

 cout << "aVect1 after insertion:\n";
 copy (aVect1.begin (), aVect1.end (), ostream_iterator<int> (cout, "\n"));

 cout << "Size of aVect2 before copy: " << aVect2.size() << endl;

 copy(aVect1.begin(), aVect1.end(), back_inserter(aVect2));
 cout << "Size of aVect2 after copy: " << aVect2.size() << endl;

 cout << "Contents of aVect12 after insertion:\n";
 copy (aVect2.begin (), aVect2.end (), ostream_iterator<int> (cout, "\n"));
 return 0;
}

front inserter

A front_inserter() causes the container's push_front() operator to be
invoked. This inserter can be used only with the list and deque containers,
because one cannot add to the front of a vector:

#include <iostream>
#include <iterator>
#include <list>

 Notes:

6 – Iterator Adaptors Page 189

using namespace std;

int main() {
 list<int> aList1, aList2;
 list<int>::iterator itr;
 int i;

 for(i = 0; i <5; i++)
 aList1.push_back(i);

 cout << "Original contents of aList:\n";
 copy (aList1.begin (), aList1.end (), ostream_iterator<int> (cout, "\n"));

 front_insert_iterator<list<int> > frnt_i_itr(aList1);
 // create a front_insert_iterator to aList

 *frnt_i_itr++ = 100; // insert rather than overwrite at front
 *frnt_i_itr++ = 200;

 cout << "aList after insertion:\n";
 copy (aList1.begin (), aList1.end (), ostream_iterator<int> (cout, "\n"));

 cout << "Size of aList2 before copy: " << aList2.size() << endl;

 copy(aList1.begin(), aList1.end(), front_inserter(aList2));

 cout << "Size of aList2 after copy: " << aList2.size() << endl;

 Notes:

6 – Iterator Adaptors Page 190

 cout << "Contents of aList2 after insertion: ";
 copy (aList2.begin (), aList2.end (), ostream_iterator<int> (cout, "\n"));

 return 0;
}

inserter

An inserter() causes the container's insert() operation to be invoked.
inserter() takes two arguments: the container and an iterator into the
container indicating the position at which insertion should begin. Here is an
example using an inserter with a vector:

One can construct an insert_iterator directly from a container and an
iterator i. The values written to the insert iterator are inserted before i.
inserters can be used in place of output iterators. Create one like this to
insert elements at the back of a deque:

deque<int> aDeck;
insert_iterator<deque<int> > i (aDeck, aDeck.end());

One can also declare back and front inserters like this using a deque:

deque<int> aDeck;
back_insert_iterator<deque<int> > backItr (aDeck);
front_insert_iterator<deque<int> > forwardItr (aDeck);

 Notes:

6 – Iterator Adaptors Page 191

Here is an example using an insert iterator for vector (note that this
inefficient due to the copying overhead of inserting into a vector anywhere
but at the end):

#include <iostream>
#include <iterator>
#include <vector>
using namespace std;

int main() {
 vector<int> aVect;
 vector<int>::iterator itr;
 int i;

 for(i = 0; i <5; i++)
 aVect.push_back(i);

 cout << "Original contents of aVect:\n";
 copy (aVect.begin (), aVect.end (), ostream_iterator<int> (cout, "\n"));

 itr = aVect.begin();
 itr += 2; // point to element 2

 insert_iterator<vector<int> > i_itr(aVect, itr);
 *i_itr = 100; // insert rather than overwrite
 *i_itr = 200;

 Notes:

6 – Iterator Adaptors Page 192

 cout << "aVect after insertion:\n";
 copy (aVect.begin (), aVect.end (), ostream_iterator<int> (cout, "\n"));
 return 0;
}

Here are the inserter function templates:

template <typename Container>
back_insert_iterator<Container> back_inserter(Container& x) {
 return back_insert_iterator<Container>(x);
}

template <typename Container>
front_insert_iterator<Container> front_inserter(Container& x) {
 return front_insert_iterator<Container>(x);
}

template <typename Container, typename Iterator>
insert_iterator<Container> inserter(Container& x, Iterator i) {
 return insert_iterator<Container>(x, Container::iterator(i));
}

Note how functions adapters (e.g., back_inserter()) are used to leverage
C++’s implicit type inference feature for functions.

 Notes:

6 – Iterator Adaptors Page 193

6.4 The Reverse Iterator Adaptor

Reverse iterators walk backwards through collections. There are two types:
reverse_iterator, which only goes backward through the data, and
reverse_bidirectional_iterator, which can go backward and forward.

Useful Operators
These iterators can be created using a default constructor or by a single
argument constructor which initializes the new reverse_iterator with a
random_access_iterator. Here are some of their operators:

* operator returns a reference to the current item i.e. value pointed

to.

++ operator advances the iterator to the previous item (--current)

and returns a reference that item.

++ operator (int) advances the iterator to the integer previous item (--

current) and returns a copy of the previous item.

-- operator advances the iterator to the next item (++current) and

returns a reference to that item.

-- operator (int) (int) advances the iterator to the integer next item

(++current) and returns a copy to the previous item.

== operator This returns true only if the iterators x and y point to the

same item.

 Notes:

6 – Iterator Adaptors Page 194

Here is an example:
#include <iostream>
#include <deque>
#include <iterator>
#include <algorithm>
 using namespace std;
int main() {
 deque<int> aDeck;

 for(int i = 0; i <10; i++) aDeck.push_back(i);

 cout << "Contents printed backward:\n";

 copy (aDeck.rbegin (), aDeck.rend (), ostream_iterator<int> (cout, "\n"));

 cout << "Contents printed backwards with reverse iterator adapter:\n";

 reverse_iterator<deque<int>::iterator> rfirst(aDeck.end());
 reverse_iterator<deque<int>::iterator> rlast(aDeck.begin());

 copy (rfirst, rlast, ostream_iterator<int> (cout, "\n"));

 cout << "Contents printed backwards with reverse_copy:\n";
 reverse_copy (aDeck.begin (), aDeck.end (),
 ostream_iterator<int> (cout, "\n"));
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 195

6.5 The Stream Iterator Adaptor

Instead of extracting and inserting data explicitly from the passed streams,
we can use the stream adaptors to make the streams appear as STL
containers, and the copy algorithm to manage the process of building the
sorted collection. There are three stream adaptors: istream, ostream and
stream buffers.

In addition, because STL algorithms are template functions specialized by
the types of the iterators returned by the underlying containers it is perfectly
reasonable to use the copy algorithm with a stream adaptor to move the
contents of one container to another of a different type.

Here is a function using both istream and ostream adaptors:
#include <iostream>
#include <set>
#include <algorithm>
#include <string>
#include <iterator>

int main (void) {
 list<string> myList;
 copy(istream_iterator<string>(cin), istream_iterator<string>(),
 inserter(myList, myList.begin())); // Essentially front_inserter()
 copy(myList.begin(), myList.end(), ostream_iterator<string>(cout, "\n"));
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 196

Istream iterator

The class template istream_iterator reads elements from an input stream
using operator >>(). A value of type T is retrieved and stored when the
iterator is constructed and each time operator++() is called.

The iterator is equal to the end-of-stream iterator value if the end-of-file is
reached. The constructor with no arguments can be used to create an end-
of-stream iterator. The only valid use of this iterator is to compare to other
iterators when checking for end of file. Do not attempt to dereference the
end-of-stream iterator; it plays the same role as the past-the-end iterator of
the end() function of containers.

Since an istream_iterator is an input iterator, one cannot assign to the
value returned by dereferencing the iterator. This also means that
istream_iterators can only be used for single pass algorithms.

#include <algorithm> // for copy algorithm
#include <iostream> // for cin, cout, endl
#include <iterator> // for stream_iterators and inserter
#include <vector> // for vector
#include <numeric> // for accumulate algorithm
 using namespace std;

int main ()
{
 typedef vector<int> Vector;

 Notes:

6 – Iterator Adaptors Page 197

 typedef istream_iterator<Vector::value_type> is_iter;
 typedef ostream_iterator<Vector::value_type> os_iter;

 Vector v;
 Vector::value_type sum = 0;

 // default constructor to get ending iterator; get values from cin until EOF
 cout << "Enter a sequence of integers (eof to quit): ";
 copy (is_iter (cin), is_iter (), back_inserter (v));

 // Stream the whole vector and the sum to cout.
 copy (v.begin (), v.end () - 1, os_iter (std::cout, " + "));

 if (v.size () != 0)
 cout << v.back () << " = " << accumulate (v.begin (), v.end (), sum)
 << endl;
 return 0;
}

 Notes:

6 – Iterator Adaptors Page 198

Ostream iterator

Another type of stream iterator, ostream iterator, writes values to a
standard output stream, therefore allowing STL algorithms to write to output
streams. Ostream iterators change the assignment of a new value to be an
output operation using the << operator.

When created, an ostream iterator must be provided with the output stream
and optionally a character can be defined to separate the values being
passed into the output stream

#include <iostream>
#include <iterator>
 using namespace std;
int main() {
 ostream_iterator<int> oi(cout, “ “);
 *oi++ = 6;
 *oi++ = 88;
 return 0;
}

Here is another example:

#include <iterator>
 #include <numeric>
 #include <deque>
 #include <iostream>
 using namespace std;

 Notes:

6 – Iterator Adaptors Page 199

 int main () {
 int arr[4] = { 3,4,7,8 };
 int total=0;
 deque<int> d(arr+0, arr+4);
 // stream the whole deque and a sum to cout
 copy(d.begin(),d.end()-1,
 ostream_iterator<int>(cout," + "));
 cout << *(d.end()-1) << " = " <<
 accumulate(d.begin(),d.end(),total) << endl;
 return 0;
 }

Stream buffer iterator (work with files)

A third type of stream iterator adaptor is the stream buffer iterator, and
there are two types, istreambuf_iterator for reading and
ostreambuf_iterator for writing streams. These template class objects
can read or write individual characters from or to basic_streambuf objects.

The class template istreambuf_iterator reads successive characters from
the stream buffer for which it was constructed. operator*() gives access to
the current input character, if any, and operator++() advances to the next
input character. If the end of stream is reached, the iterator becomes equal
to the end of stream iterator value, which is constructed by the default

 Notes:

6 – Iterator Adaptors Page 200

constructor, istreambuf_iterator(). An istreambuf_iterator object can be
used only for one-pass-algorithms.

#include <iostream> // for cout, endl
#include <fstream> // for ofstream, istreambuf_iterator
#include <stdio.h> // for tmpnam () and remove ()
 using namespace std;
int main () {
 const char *fname = tmpnam (0); // temp filename
 if (!fname)
 return 1;
 ofstream out (fname, ios::out | ios::in | ios::trunc);

 // output the example sentence into the file
 out << "Here is a sample sentence for output.\n"
 "I hope that you like this sentence out there.";
 // go to the beginning of the file
 out.seekp (0);

 // construct an istreambuf_iterator pointing to the ofstream object
 // underlying streambuffer
 istreambuf_iterator<char> iter (out.rdbuf ());

 // construct an end of stream iterator
 const istreambuf_iterator<char> end;
 cout << endl;
 // output the content of the file

 Notes:

6 – Iterator Adaptors Page 201

 while (iter != end)
 cout << *iter++;

 // Alternative more concise approach is:
 // copy (istreambuf_iterator<char> (out.rdbuf ()),
 // istreambuf_iterator<char> (),
 // ostream_iterator<char> (cout));

 cout << endl;
 remove (fname); // remove the temp file
 return 0;
}

 Notes:

7 – Container Adaptors Page 202

 Unit Seven
Adapted Containers

Unit topics: Page
 7.1 ... What are Container Adaptors? 203
 7.2 .. The stack Container Adaptor 205
 7.3 .. The queue Container Adaptor 207
 7.4 .. The priority_queue Container Adaptor 209

 Notes:

7 – Container Adaptors Page 203

7.1 What are Container Adaptors?

Container adaptors are classes that are based on other classes to
implement a new functionality, often a more limited one. For example,
stack restricts vector and queue restricts deque.

Member functions can be added or hidden or can be combined to achieve
new functionality.

 Notes:

7 – Container Adaptors Page 204

Adaptor containers change ordinary containers such as vector, deque,
and list into stack and queue, by ‘adapting’ them to reflect a user’s
expectations (i.e., limiting what their underlying container can do).

An adaptor allows the standard algorithms to be used on a subset or to
modify the data without having to copy the data elements into a new
container.

 Notes:

7 – Container Adaptors Page 205

7.2 The stack Container Adaptor

A stack is an ideal choice when one need to use a LIFO (Last In, First Out)
data structure. For example, think about people entering the back seat of a
car that has only one door: the last person to enter is the first to exit. It is
implemented with a deque by default, but one can change that.

Here is a simple example using the STL stack class:

#include <iostream>
#include <stack>
 using namespace std;

int main() {
 stack<char> aStack;
 aStack.push('A');
 aStack.push('B');
 aStack.push('C');
 aStack.push('D');

 while(!aStack.empty()) {
 cout << "Popping: ";
 cout << aStack.top() << endl;
 aStack.pop();
 }
 return 0;
}

 Notes:

7 – Container Adaptors Page 206

Here is its template:

template <typename T, typename Container = deque<T> >
class stack
{
public:
 explicit stack(const Container& c = Container());
 bool empty() const;
 size_type size() const;
 value_type& top();
 const value_type& top() const;
 void push(const value_type& t);
 void pop();

private :
 Container container_ ;
 //…
};

 Notes:

7 – Container Adaptors Page 207

7.3 The queue Container Adaptor

A queue or FIFO (First In, First Out), is characterized by having elements
inserted into one end and removed from the other end, for example: a
queue of people at a theater's box office. Again by default it is implemented
from a deque, but that can be changed.

Here is an example program:

#include <iostream>
#include <queue>
#include <string>
 using namespace std;
int main() {
 queue<string> aCue;
 cout << "Pushing one two three \n";
 aCue.push("one");
 aCue.push("two");
 aCue.push("three");

 while(!aCue.empty()) {
 cout << "Popping ";
 cout << aCue.front() << endl;
 aCue.pop();
 }
 return 0;
}

 Notes:

7 – Container Adaptors Page 208

Here is the queue template definition:

template <typename T, typename Container = deque<T> >
class queue
{
public:
 explicit queue(const Container& c = Container());
 bool empty() const;
 size_type size() const;
 value_type& front();
 const value_type& front() const;
 value_type& back();
 const value_type& back() const;
 void push(const value_type& t);
 void pop();

private:
 Container container_;
 // …
};

 Notes:

7 – Container Adaptors Page 209

7.4 The priorty_queue Container Adaptor

A priority queue assigns a priority to every element that it stores. New
elements are added to the queue using the push() function, just as with a
FIFO queue.

This queue also has a pop() function, which differs from the FIFO pop() in
one key area. When you call pop() for the priority queue, you don't get the
oldest element in the queue. Instead, one get the element with the highest
priority.

The priority queue fits in well with certain types of tasks. For example, the
scheduler in an operating system might use a priority queue to track
processes running in the operating system:

Its template is found in the <queue> header file. It uses the less functor to
compare its keys. Internally it is implemented from a vector that has been
“heapified”.

 Notes:

7 – Container Adaptors Page 210

template <typename T, typename Container = vector<T>,
 typename Compare = less<Container::value_type> >
class priority_queue
{
public:
 // Constructors
 explicit priority_queue(const Compare& comp = Compare(),
 const Container& c = Container());
 template <typename InputIterator>
 priority_queue(InputIterator start, InputIterator finish,
 const Compare& comp = Compare(),
 const Container& c = Container());
 bool empty() const;
 size_type size() const;
 const value_type& top() const; // const version only
 void push(const value_type& t);
 void pop();
};

On the next page is an example using a priority_queue that prints out city
names and their distance from a given place. The output will be:
 El Cajon 20
 Poway 10
 La Jolla 3

 Notes:

7 – Container Adaptors Page 211

#include <queue> // priority_queue
#include <string>
#include <iostream>
using namespace std;

struct Place {
 unsigned int dist; string dest;
 friend ostream& operator<<(ostream &, const Place &) ;
 Place (const string dt, unsigned int ds) : dist(ds), dest(dt) {}
 // This method is needed to order the priority queue properly.
 bool operator< (const Place & right) const
 { return dist < right.dist; }
};
ostream & operator << (ostream& os, const Place & p)
 { return os << p.dest << " " << p.dist; }

int main()
{
 priority_queue < Place > pque;
 pque.push(Place("Poway", 10));
 pque.push(Place("El Cajon", 20));
 pque.push(Place("La Jolla", 3));
 while (! pque.empty()) { // remove top entry from queue
 cout << pque.top() << endl;
 pque.pop();
 }
 return 0;
}

 Notes:

8 – Functors Page 212

 Unit Eight

Functors

Unit topics: Page
 8.1 ... What is a Function Pointer? 213
 8.2 ... What is a Functor? 224
 8.3 ... Classifying Functors 231
 8.4 .. Arithmetic Functors 237
 8.5 .. Relational Functors 239
 8.6 ... Logical Functors 241

 Notes:

8 – Functors Page 213

8.1 What is a Function Pointer?

Functors work very much like function pointers, so it would be good to
remember how C++/C function pointers work. Function pointers are
pointers, i.e. variables, which point to the address of a function. A running
program gets only a certain amount of space in the main memory. Both the
executable compiled program code and the used variables reside in this
memory. A function in the program code becomes nothing more than an
address in memory.

When calling a function, say f(), at a certain point called label in a program,
just put the call to the function f() at the point label in the source code. Then
compile the program and every time the program execution reaches that
point in the code, the function is called.

But what is efficient, if it is not known at compile time which function should
be called? Perhaps different objects will be created in the program and this
determines the proper function call?

Determining the function to call at runtime might be done using callback
functions or selecting a functions out of a pool of possible functions using a
switch statement.

Another way to achieve this functionality is to use the powerful concept of a
function pointer.

 Notes:

8 – Functors Page 214

Here is an example first using a switch statement and then doing the same
thing with a function pointer. This is a function designed to perform the four
basic arithmetic operations as function calls.

float Plus (float a, float b) { return a+b; }
float Minus (float a, float b) { return a-b; }
float Multiply(float a, float b) { return a*b; }
float Divide (float a, float b) { return a/b; }

// The char variable opCode specifies which operation to execute
void Switch(float a, float b, char opCode) {
 float result;
 switch(opCode) {
 case ’+’ :
 result = Plus (a, b);
 break;
 case ’-’ :
 result = Minus (a, b);
 break;
 case ’*’ :
 result = Multiply (a, b);
 break;
 case ’/’ :
 result = Divide (a, b);
 break;
}

 Notes:

8 – Functors Page 215

Here is the same problem but using a function pointer named pt2Func,
which points to a function which takes two floats and returns a float. The
function pointer "specifies" which arithmetic operation is executed.

void SwitchFunctPtr(float a, float b, float (*pt2Func)(float, float)) {
 float result = pt2Func(a, b); // call using function pointer
 cout << "Switch replaced by function pointer: 2-5=";
 cout << result << endl;
}

And here is another function that calls both of these:

void testThem() {
 Switch(2.0, 5.0, /* ’+’ specifies function ’Plus’ to be executed */ ’+’);
 SwitchFunctPtr (2.0, 5.0, /* pointer to function ’Minus’ */ &Minus);
}

Important note: A function pointer always points to a function with a specific
signature. Thus all functions to be used with that function pointer must
have the same signature (parameters and return type) as the function
pointer does.

In addition, there are actually two different types of function pointers. One
type are pointers to ordinary C functions or to static C++ member functions.
The second type are function pointers to non-static C++ member functions;

 Notes:

8 – Functors Page 216

these contain the hidden argument, the ‘this’ pointer. These two types are
incompatible with each other; one cannot create a function pointer of one
type and use it to point to the other type of function.

Declaring Function Pointers

Since a function pointer is a variable, it must be declared. This example
defines some function pointers named pt2Function, pt2Member and
pt2ConstMember. They all point to functions, which take one float and two
char and return an int. In the C++ examples it is assumed that the functions
pointed to are non-static member functions.

int (*pt2Function)(float, char, char) = 0; // C
int (aClass::*pt2Member)(float, char, char) = 0; // C++
int (aClass::*pt2ConstMember)(float, char, char) const = 0; // C++

Function Call Conventions

Normally a programmers doesn’t have to think about a function’s calling
convention: The compiler assumes cdecl as default if a program doesn’t
specify another convention The calling convention tells the compiler things
like how to pass the arguments or how to generate the name of a function.
Examples of other calling conventions are stdcall, pascal, fastcall. The
calling convention belongs to a function’s signature.

 Notes:

8 – Functors Page 217

Therefore functions and function pointers with different calling conventions
are incompatible with each other. For Borland and Microsoft compilers one
can specify a specific calling convention between the return type and the
function’s or function pointer’s name. For the GNU GCC, use
the attribute keyword. Write the function definition followed by the keyword
attribute and then state the calling convention in double parentheses.

Examples specifying function all specifications:

void __cdecl f(float a, char b, char c); // Borland and Microsoft
void f(float a, char b, char c) __attribute__((cdecl)); // GNU GCC

Use the Address-of Operator when calling a function pointer

Note: Although one may omit the address-of operator on most compilers,
always use the correct way to write portable code. Here are two standalone
functions in C:

int aFun(float a, char b, char c) {
 return a+b+c;
}
int anotherFun(float a, char b, char c) const {
 return a-b+c;
}
pt2Function = aFun; // short form
pt2Function = &anotherFun; // correct assignment using address operator

 Notes:

8 – Functors Page 218

Here they are as member functions in a C++ class:

class aClass {
public:
 int aFun(float a, char b, char c) {
 return a+b+c;
 }
 int anotherFun(float a, char b, char c) const {
 return a-b+c;
 }
 static int aStaticFun (float a, char b, char c) {
 return a+ b + c;
 }
};

Now here is some code that calls both member functions:

// correct assignment using address operator
pt2ConstMember = &aClass::anotherFun;

// note: <pt2Member> may also legally point to &anotherFun
pt2Member = &aClass::aFun;

pt2Function = &aClass::aStaticFun;

 Notes:

8 – Functors Page 219

Using the equality and inequality operators

The == and != can be used as with other pointers. This example verifies
whether the pt2Function and pt2Member actually contain the address of
the functions aFun and aClass::anotherFun.

Here is an example written in C

if (pt2Function != 0) { // check if initialized
 if(pt2Function == &aFun)
 printf("Pointer points to aFun\n"); }
 else
 printf("Pointer not initialized!!\n");

Here is an example using C++

if (pt2ConstMember == &aClass::anotherFun)
 cout << "Pointer points to aClass::anotherFun" << endl;

In C call a function can be called using a function pointer by explicitly
dereferencing it using the * operator. Another way to call it is to use the
function pointer’s name instead of the function’s name.

In C++ the two operators .* and ->* are used together with an instance of a
class to call one of its non-static member functions. If the call takes place

 Notes:

8 – Functors Page 220

within another member function, the program can use the ‘this’ pointer.
Here are some examples.

In C the calls can be done either way:

int result1 = pt2Function (12, ’a’, ’b’);
int result2 = (*pt2Function) (12, ’a’, ’b’);

In C++, calls are done in the way:

aClass instance1;
int result3 = (instance1.*pt2Member)(12, ’a’, ’b’);
int result4 = (*this.*pt2Member)(12, ’a’, ’b’); // ‘this’ pointer can be used

// instance2 is a pointer
aClass* instance2 = new aClass;
int result4 = (instance2->*pt2Member)(12, ’a’, ’b’);
delete instance2;

 Notes:

8 – Functors Page 221

Passing a Function Pointer as an Argument

A function pointer can be provided as a function’s calling argument; this is
how it works when using a callback function. The following code shows
how to pass a pointer to a function, pt2Func, which returns an int and takes
a float and two chars:

void PassPtr(int (*pt2Func)(float, char, char)) {
 int result = (*pt2Func)(12, ’a’, ’b’); // call using function pointer
 cout << result << endl;
}

void TestPassPtr() {
 PassPtr(&aFun);
}

 Notes:

8 – Functors Page 222

Returning a Function Pointer

A function pointer can be a function’s return value. The following code
shows two ways to return a pointer to a function that takes two floats as
arguments and returns a float. To return a pointer to a member function,
just change the definitions/declarations of the function pointers.

Here is one solution where a function takes a char and returns a pointer to
a function that takes two floats and returns a float. The variable opCode
specifies which function to return, and the functions pointed to are the Plus
and Minus defined in the examples above.

float (*GetPtr1(const char opCode))(float, float) {
 if(opCode == ’+’)
 return &Plus;
 else
 return &Minus;
}

Here is another way to do it using a typedef. First define a pointer to a
function which takes two floats and returns a float:

typedef float(*pt2Func)(float, float);

 Notes:

8 – Functors Page 223

Now use a function that takes a char and returns a function pointer which is
defined with the typedef above. Again, opCode specifies which function to
return:

pt2Func GetPtr2(const char opCode)
{
 if(opCode == ’+’)
 return &Plus;
 else
 return &Minus;
}

void TestFunctionPtr()
{
 // define a function pointer and initialize it to NULL
 float (*pt2Function)(float, float) = NULL;

 // get the function pointer from function ’GetPtr1’
 pt2Function=GetPtr1(’+’);

cout << (*pt2Function)(2, 4) << endl; // call function using the pointer

// get function pointer from function ’GetPtr2’
pt2Function=GetPtr2(’-’);
cout << (*pt2Function)(2, 4) << endl; // call function using the pointer

}

 Notes:

8 – Functors Page 224

8.2 What is a Functor?

A functor, or function object, is simply any object that can be called as if
it is a function. The C++ Standard Template Library defines a few simple
functors to do arithmetic and make relational and logical comparisons.

Create a functor

To create an object that behaves just like a function, one only need to
provide a way to call this object by name using parentheses and
(optionally) pass arguments. Just create a class that overloads the function
call operator, which is simply a pair of parentheses: '()'.

Let’s create the simplest functor we can:

class simple_function_object
{
public:
 int operator()(int i) { return i; }
 };

Now we can call this function just like any other function, only being a class
it can hold data as well as several functions within itself.

 Notes:

8 – Functors Page 225

#include <iostream>
 using namespace std;

int main() {
 // instantiate the functor
 simple_function_object aFunctor;

 // calls operator '()' of class 'function_object'
 cout << aFunctor(5) << endl;

 // also calls operator '()' of class 'function_object'
 cout << aFunctor.operator()(2) << endl;
 return 0;
}

Functors are the STL's improvement over traditional C function pointers.
One could use regular function pointers with the correct argument
signature, but the STL’s predefined functors offer some advantages, such
as the ability to optimize the functors via inline method calls and/or the
ability to maintain state within the functor.

 Notes:

8 – Functors Page 226

Functor classes

The following are functor base classes plus their derived classes, found in
<functional> for the functors that take one or two arguments. Custom
functor classes can inherit from these classes or be defined on their own as
in the example above. Here are a few templates of the binary functors.

template <typename _Arg1, typename _Arg2, typename _Result>
struct binary_function {
 typedef _Arg1 first_argument_type;
 typedef _Arg2 second_argument_type;
 typedef _Result result_type;
};

template <typename T>
struct plus : public binary_function<T,T,T> {
 T operator()(const T& x, const T& y) const { return x + y; }
};

template <typename T>
struct minus : public binary_function<T,T,T> {
 T operator()(const T& x, const T& y) const { return x - y; }
};

template <typename T>
struct multiplies : public binary_function<T,T,T> {

 Notes:

8 – Functors Page 227

 T operator()(const T& x, const T& y) const { return x * y; }
};

template <typename T>
struct divides : public binary_function<T,T,T> {
 T operator()(const T& x, const T& y) const { return x / y; }
};

Here is the unary functor base class and its derived class:

template <typename _Arg, typename _Result>
struct unary_function {
 typedef _Arg argument_type;
 typedef _Result result_type;
};

template <typename T>
struct negate : public unary_function< T, T >
{
 T operator()(const T & x) const { return -x; }
};

 Notes:

8 – Functors Page 228

Here is an example of a user-defined functor that extends the
unary_function template:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>
 using namespace std;

class isEven : public unary_function<int, bool> {
public:
 bool operator()(int i)
 {
 return (result_type) !(i%2);
 }
};

int main() {
 vector<int> aVect;
 int i;
 for(i = 1; i <= 20; i++)
 aVect.push_back(i);

 cout << "Sequence:";
 for(i = 0; i <aVect.size(); i++)

 Notes:

8 – Functors Page 229

 cout << aVect[i] << " ";
 cout << endl;

 i = count_if(aVect.begin(), aVect.end(), isEven());
 cout << i << " numbers are evenly divisible by 2.";
 return 0;
}

 Notes:

8 – Functors Page 230

STL Functor Classes

From those base classes, also found in <functional> are the following
functor classes. These are used in the STL for working as parameters to
both containers and algorithms.

// Arithmetic functors
template <typename T> struct plus; // binary +
template <typename T> struct minus; // binary -
template <typename T> struct multiplies; // binary *
template <typename T> struct divides; // binary /
template <typename T> struct modulus; // binary %
template <typename T> struct negate; // unary –

// Comparisons
template <typename T> struct equal_to; // ==
template <typename T> struct not_equal_to; // !=
template <typename T> struct less; // <
template <typename T> struct greater; // >
template <typename T> struct less_equal; // <=
template <typename T> struct greater_equal; // >=

// Logical operations
template <typename T> struct logical_and; // binary &&
template <typename T> struct logical_or; // binary ||
template <typename T> struct logical_not; // unary !

 Notes:

8 – Functors Page 231

8.3 Classifying Functors

Three of the most common reasons to use functors instead of using
ordinary functions are:
1. To use an existing functor provided by the standard library instead of

creating a new function.
2. To improve execution by using inline function calls.
3. To allow a functor to access or set state information that is held by an

object.

How Functors differ from functions and algorithms

 Each functor does a single, specific operation

o Often implemented as small classes or structs
o Often has only one public member function: operator()

 Functors can have member variables
o Arguments not stored may be supplied at point of call
o Member variables can parameterize the operations such as the value

k for a +k functor or arguments for an invocation on a remote object

Types of Functors

 The comparison and predicate functors return a boolean value

indicating the result of a comparison such as:
o one object greater than another, or

 Notes:

8 – Functors Page 232

o Telling an algorithm whether to perform a conditional action. For
example to remove all objects with a particular attribute.

 The numeric functors perform operations like addition, subtraction,

multiplication or division. These usually apply to numeric types, but
some, like +, can be used with strings.

Classifications

STL functors are classified based on their capabilities in various ways.
For example, they can be categorized by whether the functor’s operator()
takes zero, one or two arguments. See the new few pages for other
classifications.

#1. Functors classified based on number of arguments:

 Generator Takes no arguments and returns a value of the

desired type. (A RandomNumberGenerator is a
special case of a generator because it takes no
arguments but returns a specific thing: a
number.) But generators can be defined to
return any type of data; they just don’t take any
arguments as input.

 UnaryFunction Takes a single argument of any type and returns

a value which may be of a different type.

 Notes:

8 – Functors Page 233

 BinaryFunction Takes two arguments of any two types and
returns a value of any type.

#2. Functors returning a boolean result classified

A special case of the unary and binary functions is the predicate, which
simply means a function that returns a boolean result, which is used to
make a true/false decision.

 Predicate This can also be called a UnaryPredicate. It

takes a single argument of any type and returns
a boolean result.

 BinaryPredicate This type of predicate takes two arguments of the

same data type, and returns a boolean result. It
can do anything inside the function.

 Notes:

8 – Functors Page 234

#3. Functors classified based on the operators supported:

There are sometimes qualifications on the functor types passed into
algorithms. These qualifications are given as the template argument type
identifier name for the algorithm. They limit the type of functor that can be
used as the argument to that algorithm. Here are some of them.

 LessThanComparable A functor class that has a less-than operator,

<.

 Assignable A functor class that has an assignment

operator = for its own type. (All STL functors
are assignable.)

 EqualityComparable A functor class that has an equivalence

operator == .

For functors that are LessThanComparable and EqualityComparable, the
STL provides templates in the <utility> header file so they can use the !=,
the >=, and <= operators.

 Notes:

8 – Functors Page 235

#4. Functors classified based whether they can carry a ‘state’:

Having a state means having member variables that can take on values.
For example a class named Rectangle can have a fillColor member
variable. This could distinguish between different Rectangle object
instances.

 Stateless - Stateless functors are the closest correspondent to a

regular function. The functor doesn't have data members, or, if it
does, they have no impact whatsoever on the function call operator.

 State (constant) - Invariable functors do have a state, but the

function call operator is declared constant. This means that the
operation will use the state, but won't change it.

 State (variable) - Variable functions objects not only have a state,

but also can change this state with each operation.

 Notes:

8 – Functors Page 236

Functor efficiency considerations

 Passing parameters to Functors

o Can be done by value or by reference
o Same kinds of aliasing issues as with any other object

 Watch performance with many small functors
o Watch out especially for creation and destruction overhead
o May want to inline functors constructors and destructors
o Put functors on stack instead of heap

 Functors are a powerful, general mechanism
o Reduces programming complexity and increases reuse
o Several new uses of generic programming
o Could go farther with parameterization than just algorithms

Functors are often referred to as smart functions because they can :
 contain more than their main function,
 hold data members (have a state) and
 be passed to other functions.

 Notes:

8 – Functors Page 237

8.4 Arithmetic Functors

Arithmetic functors are (mostly) binary operations that return the sum,
difference, product, or division of the first argument and the second. Binary
means they take two arguments and unary means they take one argument.

Functor Type Result

negate<type>() Unary Negates supplied parameter (-param)

plus<type>() Binary Adds supplied parameters (param1 +

param2)

minus<type>() Binary Subtracts supplied parameters (param1

– param2)

multiplies<type>() Binary Multiplies supplied parameters (param1

* param2)

divides<type>() Binary Divides supplied parameters (param1 /

param2)

modulus<type>() Binary Remainder of parameters (param1 %

param2)

 Notes:

8 – Functors Page 238

Example using the arithmetic functors with the transform algorithm:

#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>
#include <iterator>
 using namespace std;
int main() {
 vector<float> aVect;
 aVect.push_back(1); aVect.push_back(2); aVect.push_back(3);
 aVect.push_back(4); aVect.push_back(5);

 // Multiple all float in the vector by themselves (i.e., double themselves)
 transform(aVect.begin(), aVect.end(), aVect.begin(),
 aVect.begin (), multiplies<float>());

 copy (aVect.begin (), aVect.end (), ostream_iterator<float> (cout, "\n"));

 // Divide all floats in the vector by 3
 transform(aVect.begin(),aVect.end(), aVect.begin (),
 bind2nd(divides<float>(), 3));
 copy (aVect.begin (), aVect.end (), ostream_iterator<float> (cout, "\n"));

 return 0;
}

 Notes:

8 – Functors Page 239

8.5 Relational Functors

Sometimes is it convenient to compare two values and the STL relational
functors have the standard six math functions =, != , >, >=, <, and <=.

Predicate Type Result
equal_to<type>() Binary Equality of parameters (param1 ==

param2)

not_equal_to<type>() Binary Inequality of parameters (param1 !=

param2)

less<type>() Binary Parameter 1 less than parameter 2

(param1 < param2)

greater<type>() Binary Parameter 1 greater than parameter

2 (param1 > param2)

less_equal<type>() Binary Parameter 1 less than or equal to

parameter 2 (param1 <= param2)

greater_equal<type>() Binary Parameter 1 greater than or equal to

parameter 2 (param1 >= param2)

 Notes:

8 – Functors Page 240

Here is an example to remove spaces in a string that uses the equal_to
and bind2nd functors. It says perform remove_if when the equal to
function finds a blank char in the string.

#include <algorithm>
#include <iostream>
#include <string>
#include <functional>
using namespace std;

int main() {
 string s="spaces in text";
 cout << s << endl;
 string::iterator new_end = remove_if(s.begin(), s.end(),
 bind2nd(equal_to<char>(), ' '));
 cout << s << endl; // Note the “xt” aren’t removed at the end!
 s.erase(new_end, s.end());
 cout << s << endl;
 return 0;
}

 Notes:

8 – Functors Page 241

8.6 Logical Functors

The three STL functors for logical comparisons match the three types of
logical comparisons allowed in C++:

Predicate Type Result
logical_and Binary logical conjunction x && y
logical_or Binary logical disjunction x || y
logical_not Unary logical negation ! x

The STL templates also allow one to create custom binary or unary
functors that would work similarly to their in the algorithms:

template <typename Arg, typename Result>
struct unary_function {
 typedef Arg argument_type;
 typedef Result result_type;
};

template <typename Arg1, typename Arg2, typename Result>
struct binary_function {
 typedef Arg1 first_argument_type;
 typedef Arg2 second_argument_type;
 typedef Result result_type;
};

 Notes:

9 – Function Adaptors Page 242

 Unit Nine
Function Adaptors

Unit topics: Page
 9.1 ... What are Function Adaptors? 243
 9.2 .. The Binder Function Adaptors 244
 9.3 ... The Negator Function Adaptors 247
 9.4 .. Member Function Adaptors 251
 9.5 ... Pointers to Functions 255
 9.6 ... User Defined Functors 259

 Notes:

9 – Function Adaptors Page 243

9.1 Function Adaptors

In general, adaptors can transform one predefined interface to another. The
STL has predefined functor adaptors that will change their functors so
that they can:

 Perform function composition and binding

 Allow fewer created functors

 Allow building functions as graphs (especially chains and trees) of other

functions

These functors allow one to combine, transform or manipulate functors
with each other, certain values or with special functions. They are divided
into the following categories:

Type of adaptor STL adaptor What it does

binders bind1st, bind2nd adapt functors by ‘binding’ one of

their arguments
negators not1, not2 adapt functor by negating

arguments
member functions ptr_fun allow functors to be class member
 mem_fun function adaptors
 mem_fun_ref

 Notes:

9 – Function Adaptors Page 244

9.2 Binder Adaptors

A binder can be used to transform a binary functor into an unary one by
acting as a converter between the functor and an algorithm.

Binders always store both the binary functor as well as the argument
internally. This argument then will being passed as one of the arguments of
the functor every time it is being called.

Binder Result
bind1st(Op, Arg) Calls 'Op' with 'Arg' as its first parameter
bind2nd(Op, Arg) Calls 'Op' with 'Arg' as its second parameter

How does a binder work? Suppose one create a class to add up two
integer numbers. Call it addEm (which is similar to the standard STL plus
functor):

class addEm {
public:
 int operator()(const int& i, const int &j) { return i + j; }
};

 Notes:

9 – Function Adaptors Page 245

Now it is a general class. But what if sometimes a programmer wants to
use this class but fix the value being added so that it always adds 5 to
whatever is being passed to addEm? One could write another class or one
could use the STL bind1st functor:

bind1st(addEm(), 5)

The addEm() expression above is a binary functor that computes the sum
of two integers, and bind1st invokes this functor by binding the first
argument to 5. One can now use this bound addEm object in STL
algorithms

Here is an example using the STL object and algorithms:

vector<double> myVector;
…
int factor = 33;
transform(myVector.begin(), myVector.end(), myVector.begin(),
 bind2nd(multiplies<double>(), factor));

The multiplies arithmetic functor is takes two arguments: the first must be a
reference to a value and the second argument, factor, is a value to multiply
the argument by.

For each element in the range the algorithm passes the currently
processed value to the functor. However, we still need the additional
argument 'factor'. The bind2nd adaptor simply causes the algorithm to

 Notes:

9 – Function Adaptors Page 246

always pass the factor as second argument. The results are stored in the
vector.

Here is another example of using bind2nd to bind the second argument to a
functor greater to the value 5.67 and then pass the result of this to the
count_if algorithm as its third argument. This counts and returns how many
values in a vector<float> have values greater than 5.67.

count_if(v.begin(),v.end(), bind2nd(greater<float>(), 5.67));

But how does this work? First consider greater, which is defined in the
<functional> header file. It's a binary functor - something that can be used
like a function and takes 2 arguments.

Then, bind2nd is an function adaptor, a kind of wrapper that in this case
lets us use a binary function when a unary function is required. So in this
example count_if passes an element to what it thinks is a unary function,
which in turn passes this element plus a comparison value of 5.67 to a
binary function whose return value is given back to count_if.

 Notes:

9 – Function Adaptors Page 247

9.3 Negator Adaptors

A negator can be used to store the opposite result of a functor.

Negater Result
not1(Op) Negates the result of unary 'Op'
not2(Op) Negates result of binary 'Op'

Let’s see how it works by creating our own template for simple boolean
functor that will check if a value is an odd number and it will return true or
false. This template takes only one argument, so it is unary:

template<typename T>
struct is_odd : unary_function<T, bool> {
 bool operator() (T number) const { return (number % 2 != 0); }
};

Let’s use these templates with a STL algorithm named remove_copy_if and
a STL functor, not1. This takes 4 arguments: start copying from here, stop
here, and the true/false function to use to determine whether to copy the
argument into the result output iterator.

#include <vector>
#include <algorithm>
#include <iterator>
#include <functional>

 Notes:

9 – Function Adaptors Page 248

#include <iostream>
using namespace std;

template<typename T>
struct is_odd : unary_function<T, bool> {
 bool operator() (T number) const { return (number % 2 != 0); }
};

int main() {
 vector<int> vector1;
 vector1.push_back (1);
 vector1.push_back (2);
 vector1.push_back (3);
 vector1.push_back (4);

 vector<int> vector2;
 remove_copy_if (vector1.begin(), vector1.end(),
 back_inserter (vector2), is_odd<int>());
 copy (vector2.begin(), vector2.end (), ostream_iterator<int> (cout, "\n"));

 vector<int> vector3;
 remove_copy_if (vector1.begin(), vector1.end(),
 back_inserter (vector3), not1 (is_odd<int>()));
 copy (vector3.begin(), vector3.end (), ostream_iterator<int> (cout, "\n"));

 return 0;

 Notes:

9 – Function Adaptors Page 249

}

Here is a simple example showing a user defined functor being used with
the not1 negator and the find_if algorithm:

#include <functional>
#include <vector>
#include <iterator>
#include <iostream>
#include <algorithm>
 using namespace std;

struct IntGreaterThanThree
 : public unary_function<int, bool>
 {
 bool operator() (int x) const { return x > 3; }
 };

int main() {
 vector<int> v;
 vector<int>::iterator itr;
 v.push_back(4); v.push_back(1); v.push_back(2);
 v.push_back(8); v.push_back(5);v.push_back(7);

 itr = find_if (v.begin(), v.end(), not1(IntGreaterThanThree()));
 // itr = find_if (v.begin(), v.end(), not1(bind2nd(greater<int> (), 3)));

 Notes:

9 – Function Adaptors Page 250

 copy (itr, v.end (), ostream_iterator<int> (cout, "\n"));

 return 0;
}

 Notes:

9 – Function Adaptors Page 251

9.4 Member Function Adaptors

A member function adapter can be used to allow class member functions
as arguments to the STL predefined algorithms. There are 2 of them:

mem_fun(PtrToMember mf);
Converts a pointer to member to a functor whose first arg is a pointer to the
object. Unary function if mf takes no arguments, binary function if mf takes
an argument.

mem_fun_ref(PtrToMember mf);
Converts a pointer to member to a functor whose first arg is a reference to
the object. Unary function if mf takes no arguments, binary function if mf
takes one argument.

Example showing member function reference function adaptor,
mem_fun_ref, plus examples using several STL algorithm functions:

#include <iostream>
#include <vector>
#include <algorithm>
#include <functional>
 using namespace std;

class WrapInt {
 int val;

 Notes:

9 – Function Adaptors Page 252

public:
 WrapInt(): val (0) { }
 WrapInt(int x): val (x) {}

 bool showval() {
 cout << val << " ";
 return true;
 }

 bool isPrime() {
 for(int i = 2; i <= (val/2); i++)
 if(!(val%i))
 return false;
 return true;
 }

 bool isEven() { return (bool) !(val % 2); }

 bool isOdd() { return (bool) (val %2); }
};

int main() {
 vector<WrapInt> aVect(10);
 vector<WrapInt>::iterator end_p;
 int i;

 Notes:

9 – Function Adaptors Page 253

 for(i = 0; i <10; i++)
 aVect[i] = WrapInt(i+1);

 cout << "Sequence contains: ";
 for_each(aVect.begin(), aVect.end(), mem_fun_ref(&WrapInt::showval));
 cout << endl;

 // remove the primes
 end_p = remove_if(aVect.begin(), aVect.end(),
 mem_fun_ref(&WrapInt::isPrime));

 cout << "Sequence after removing primes: ";
 for_each(aVect.begin(), end_p, mem_fun_ref(&WrapInt::showval));
 cout << endl;
 for(i = 0; i <10; i++)
 aVect[i] = WrapInt(i + 1);

 end_p = remove_if(aVect.begin(), aVect.end(),
 mem_fun_ref(&WrapInt::isEven));

 cout << "Sequence after removing even values: ";
 for_each(aVect.begin(), end_p, mem_fun_ref(&WrapInt::showval));
 cout << endl;

 for(i = 0; i < 10; i++)
 aVect[i] = WrapInt(i + 1);

 Notes:

9 – Function Adaptors Page 254

 end_p = remove_if(aVect.begin(), aVect.end(),
 mem_fun_ref(&WrapInt::isOdd));

 cout << "Sequence after removing odd values: ";
 for_each(aVect.begin(), end_p, mem_fun_ref(&WrapInt::showval));

 return 0;
}

 Notes:

9 – Function Adaptors Page 255

9.5 Pointers to Functions

The ptr_fun() adapters take a pointer to a function and turn it into a
functor. They are not designed for a function that takes no arguments;
they are for both unary functions and binary functions.

Here is an example of using a pointer to a class member function. Define
ptrFunc as a pointer to a non class member function taking a single integer
argument and returning a bool:

 bool (*ptrFunc)(int);

The value of ptrFunc becomes an actual function address to the CPU:

bool myFunction (int i) {
 return i > 10 ;
}

int main ()
{
 bool (*ptrFunc)(int) ;
 ptrFunc = myFunction ;
 if ((*ptrFunc)(11))
 std::cout << "ptrFunc (11) true\n" ;
 return 0 ;
}

 Notes:

9 – Function Adaptors Page 256

Now what if this becomes a member function:

 bool (myClass::* ptrFunc)(int) ;

And then ptrFunc is now a pointer to a member function of class aClass:

#include <iostream>
 using namespace std;
class aClass
{
private :
 int x ;
public :
 aClass (int y) : x(y)
 {
 bool firstFunc (int i)
 return i > x ;
 }
} ;
int main () {
 bool (aClass::*ptrFunc)(int) ; //declare a member function pointer
 ptrFunc = &aClass::firstFunc ;
 aClass array (10) ;
 if ((array.*ptrFunc)(11))
 cout << "the pointer member function is true" << endl;
}

 Notes:

9 – Function Adaptors Page 257

Example using the predefined STL object ptr_fun:

#include <iostream>
#include <vector>
#include <algorithm>
#include <iterator>
#include <functional>
#include <cstring>
 using namespace std;

int main()
{
 vector<char *> aVect;
 vector<char *>::iterator charIt;
 int i;

 aVect.push_back("One");
 aVect.push_back("Two");
 aVect.push_back("Three");
 aVect.push_back("Four");
 aVect.push_back("Five");

 cout << "Sequence contains:";
 copy (aVect.begin (), aVect.end (), ostream_iterator<char *> (cout, " "));
 cout << endl;
 cout << "Searching for Three.\n";

 Notes:

9 – Function Adaptors Page 258

 // use a pointer-to-function adaptor
 charIt = find_if(aVect.begin(), aVect.end(),
 not1(bind2nd(ptr_fun(strcmp), "Three")));

 if(charIt != aVect.end()) {
 cout << "Found it.";
 cout << "Here is the rest of the story:";
 copy (charIt, aVect.end (), ostream_iterator<char *> (cout, " "));
 cout << endl;
 }
 return 0;
}

 Notes:

9 – Function Adaptors Page 259

9.6 Creating custom Functors

Whether for use with custom algorithms and containers or with STL’s,
sometimes one want to create custom functors. Here are some tips for
making them work:

 Functors need to provide an appropriate function call operator.

This is what makes them usable just like regular functions.

 Functors must implement correct copy semantics. Passing by
value always introduces additional copies of the functors. Thus,
functors with a state need to ensure that their state information gets
mirrored correctly to additional copies of them. This requires a
specialized copy constructor as well as a specialized assignment
operator, so that the values pointed to get copied rather than just
copying their references; this is what is known as making a “deep
copy.”

 Functors should be small to avoid expensive copies. Passing by

value always comes at a performance penalty because instead of
simply copying or assigning a small pointer, the complete object
needs to be copied or assigned. This performance penalty will
increase the bigger the object itself is.

 Notes:

9 – Function Adaptors Page 260

 Functors should not contain any polymorphic elements (in other
words, no virtual functions). Using polymorphic functors opens the
door to some problems. If a derived class functor is being passed by
value into parameters of the corresponding base class type, a
problem occurs: While copying the object, the additional parts of the
derived class are removed.

However, there is still a way to use polymorphic functors, but only by
putting the polymorphic parts into a separate class. The remaining
non-polymorphic functor then contains a pointer to this separate
class. This is a well-known design pattern, usually referred to as the
Bridge or “pimpl” pattern (which stands for “pointer implementation”).

When one create a new class one can define what "+" does for objects of
that class. Other operators can be defined too. Objects with "()" defined are
called function objects or functors. Here's a simple example:

 class is_more_than_two {
 public:
 bool operator() (int val) {return val>2;}
 };

which we can use with count_if in this statement:

 count_if(v.begin(),v.end(), is_more_than_two());

10 – Non-Mutating Algorithms Page 261

 Unit Ten
Non-Mutating Algorithms

Unit topics: Page
 10.1 .. Algorithms 262
 10.2 .. Non-Mutating Algorithms 265
 10.3 ... Searching 267
 10.4 ... Counting 275
 10.5 .. Max and Min 277
 10.6 .. Comparing ranges 280

 Notes

10 – Non-Mutating Algorithms Page 262

10.1 Algorithms

There are several header files containing the STL algorithms:

#include <algorithm>
#include <numeric>
#include <functional> - for the functors

The Standard Template Library provides a number of simple, useful and
general algorithms to perform the most common operations on groups and
sequences of elements. These include traversals, searching, sorting and
the insertion and removal of elements in containers.

These algorithms are implemented in a way that works well with the
containers and iterators, but one can also use them alone with custom
code with standard arrays and pointers.

No containers are passed to the algorithms, so programmers don’t even
need a container. Arguments to the algorithms are only data ranges, i.e.,
iterator values, plus functors (if needed for ‘if’ tests). Algorithms can work
with any type of calling function that can pass the correct data to them.

 Notes

10 – Non-Mutating Algorithms Page 263

Algorithm categories

There are various ways to categorize the STL algorithms. One way is to
use four categories: non-mutating (also known as search, scan, compare,
and count), mutating (also known as copy, move, swap, change, delete,
generate and fill), sorting and sets, and numeric algorithms.

 Non-mutating Operate using a range of iterators, but don’t change

the data elements found

 mutating Operate using a range of iterators, but can change

the order of the data elements

 sorting and sets Sort or searches ranges of elements and act on

sorted ranges by testing values

 numeric Type of algorithms that produce numeric results

In addition to these main types, there are specific algorithms within each
type that accept a test condition, known as a predicate. These are named
ending with the _if suffix to remind us that they require an ‘if’ test’s result
(true or false), as an argument; these can be the result of functor calls.

 Notes

10 – Non-Mutating Algorithms Page 264

Advantages of STL algorithms

 STL algorithms are decoupled from the particular containers they

operate on and are instead parameterized by iterators.

 All containers with the same iterator type can use the same algorithms.

 Because algorithms are written to work on iterators rather than

containers, the software development effort is drastically reduced. For
example, instead of writing a search routine for each kind of container,
one only write one for each iterator type and apply it any container.

 Since different containers can be accessed by the same iterators, just a

few versions of the search routine must be implemented.

 Notes

10 – Non-Mutating Algorithms Page 265

10.2 Non-mutating Algorithms

Algorithms that don’t change the contents of what is found are called non-
mutating. These do lookup and counting operations.

The non-mutating algorithms

 adjacent_find Finds two items adjacent to each other
 count Returns a count of elements matching a given value
 count_if Returns a count of elements for which a predicate is

true
 equal Determines if two sets of elements are the same
 find Finds a specified value in a given range
 find_end Finds last sequence of elements in a range
 find_first_of Finds first sequence of elements in a range
 find_if Finds the first element for which a predicate is true
 for_each Applies a function to a range of elements
 mismatch Finds the first position where two ranges differ
 search Searches for a range of elements
 search_n Searches for n consecutive copies of an element

within a range

Note that unexpected behavior can result if two sequences or strings of
unequal size are compared. STL will not warn one or prevent this, so you
need to have error checking in custom code.

 Notes

10 – Non-Mutating Algorithms Page 266

How to use non-mutating algorithm functions

ForwardIter loc = adjacent_find(first, last[, bin_pred]);
advance(i, n);
difference_type n = count(first, last, value);
difference_type n = count_if(first, last, value, pred);
distance_type n = distance(first, last);
bool is_equal = equal(first1, last1, first2[, bin_pred]);
Function result = for_each(first, last, func);
InputIter loc = find(first, last, target);
InputIter loc = find_if(first, last, pred);
ForwardIter loc = find_end(first, last, subseq_first, subseq_last[,
bin_pred]);
ForwardIter loc = find_first_of(first, last, targets_first, targets_last[,
bin_pred]);
pair<InputIter1, InputIter2> differ = mismatch(first1, last1, first2[,
bin_pred]);
ForwardIter loc = search(first, last, subseq_first, subseq_last[, bin_pred]);
ForwardIter loc = search_n(first, last, count, target[, bin_pred]);

 Notes

10 – Non-Mutating Algorithms Page 267

10.3 Searching

• find: looks for a value in a range.
• find_if: looks for items in a range that satisfy a predicate.
• find_first_of: looks for items in first range that is also in the second

range or uses a binary_predicate to find first matching item.
• find_end: looks backward for items in first range that are not also in

the second range or uses a binary_predicate to find first non-
matching item.

• adjacent_find: looks for first pair in range that are equal, or match
under a binary_predicate.

For example, find a value without using any predefined algorithm:

list<int> myList;
int findIt = 10;

for (list<int>::iterator i = myList.begin(); i != myList.end(); ++i)
{
 if (*i == findIt)
 break;
 else

……
}

Suppose we want do a better job and make the find condition an iterator:

 Notes

10 – Non-Mutating Algorithms Page 268

list<int>::iterator find (list<int>::iterator start,
 list<int>::iterator end, int findIt)
{
 list<int>::iterator i;
 for (i = start; i != end; ++i)
 {
 if (*i == findIt) break;
 }
 return i; // return end if the value was not found
}

Now let’s look at the STL templates for the find algorithms:

template <typename InputIterator, typename T>
InputIterator find(InputIterator first, InputIterator last,
 const T& value) {
 while (first != last && *first != value) ++first;
 return first;
}

template <typename InputIterator, typename Predicate>
InputIterator find_if(InputIterator first, InputIterator last,
 Predicate pred) {
 while (first != last && !pred(*first)) ++first;
 return first;

 Notes

10 – Non-Mutating Algorithms Page 269

}

template <typename InputIterator, typename T, typename Size>
void count(InputIterator first, InputIterator last, const T& value,
 Size& n)
{
 while (first != last)
 if (*first++ == value) ++n;
}

These templates can be used with pointers, iterators or even with const
iterators as the first two arguments (or any datatype that supports the unary
* and ++ operators). The third parameter can be any value that supports
comparison with the type *i.

But there’s more; What if we want to find the first occurrence of a positive
value in a sequence? Or the first prime number in the sequence? Or,
working with a sequence of strings, what if we want to find the first string
that contains no spaces?

The common factor in these situations is an algorithm similar to find, only
we don't search for a particular value, but for an element that matches a
predicate (a true/false test condition). This algorithm is part of the STL, and
it is called find_if. It takes 3 values; the first two can be pointers (iterators
or numbers) and a new third argument which must be a condition or
boolean function (predicate).

 Notes

10 – Non-Mutating Algorithms Page 270

Example using a function predicate with the find_if algorithm:

template <typename Iterator, typename Function>
void find_if (Iterator first, Iterator last, Function predicate)
{
 for (Iterator i = first; i != last; ++i)
 {
 if (predicate(*i))
 return i;
 }
 return i;
}

Note that the predicate parameter can be anything that supports the
expression predicate(x) and returns a boolean value (or something
convertible to a boolean value).

Here is the template for the find_linear algorithm, which uses a forward
iterator:

template<typename ForwardIterator, typename T>
ForwardIterator find_linear (ForwardIterator first,
 ForwardIterator last, T& value) {
 while (first != last) if (*first++ == value) return first;
 return last;
}

 Notes

10 – Non-Mutating Algorithms Page 271

Here is some code using the find_if algorithm with a functor rather than
simply using a pointer or iterator.

class is_negative
{
public:
 bool operator() (int value) const
 return value < 0;
};

…some code…

list<int> values;

//very compact test!
if (find_if (values.begin(), values.end(), is_negative()) != values.end())
// Could also use bind2nd (less<int>(), 0)
{
…. a negative number is found
}

In the example above, the compiler will instantiate a version of the find_if
template with the first two parameters of type list<int>::iterator and the
last parameter of type is_negative.

 Notes

10 – Non-Mutating Algorithms Page 272

Notice the pair of brackets after the name is_negative. We are passing an
object of class is_negative, which is instantiated on-the-fly to be passed to
the function.

That same object "lives" only throughout the entire execution of the loop
inside find_if. The expression predicate(*i) inside find_if simply calls the
member function operator(), passing an int as parameter, which is each
element of the list since that's what we get when we dereference the
iterator.

What if we want to search the first value that it is less than 5 or less than a
number specified by the user?

The above example can be extended to provide that extra flexibility since
we can add data members to the functor and hold some data that we pass
it when instantiating the object.

 Notes

10 – Non-Mutating Algorithms Page 273

This example demonstrates extending the functor to add data members to
hold values sent to the object, but it isn’t a template function:

class is_greater_than
{
public:
 is_greater_than (int n) : value(n) {}
 bool operator() (int element) const
 return element > value;
private:
 const int value;
};

list<int> values;
// ... fill the list
if (find_if (values.begin(), values.end(),
 is_greater_than(5)) != values.end())
// Could also use bind2nd(greater<int>(), 5)
{
 //do something since the set contains an integer > 5
}

 Notes

10 – Non-Mutating Algorithms Page 274

Finally, declare and then use a template function. Now this
is_greater_than functor could take any type of numeric data or even a
class if the > operator has been defined for it:

template <typename T>
class is_greater_than
{
public:
 is_greater_than (const T & n) : value(n) {}
 bool operator() (const T & element) const
 // Could say: return greater<T>(element, value);
 return element > value;
private:
 const T value;
};

list<int> values;
// ... fill the list
if (find_if (values.begin(), values.end(),
 is_greater_than<int> (5)) != values.end())
{
// … it contains a number greater than 5 so do something
 }

 Notes

10 – Non-Mutating Algorithms Page 275

10.4 Counting

• count: scan range and count occurrence of a value.
• count_if: scan range and count times a predicate is true.

count
count is for counting occurrences of a value in a container. Here is its
definition:

template <typename InputIterator, typename EqualityComparable>
iterator_traits<InputIterator>::difference_type
count(InputIterator first,
 InputIterator last,
 const EqualityComparable& value);
count counts the number of occurrences of the value between first and last
and returns the result. Here is an example of using count:

int num = count(v.begin(), v.end(), 10);
cout << "Found " << num << " occurrences of 10." << endl;

http://www.sgi.com/tech/stl/InputIterator.html
http://www.sgi.com/tech/stl/EqualityComparable.html
http://www.sgi.com/tech/stl/iterator_traits.html

 Notes

10 – Non-Mutating Algorithms Page 276

count_if

count_if is like count and find_if. It counts every element in the range that
satisfies the predicate. A predicate is a function object that tests some
condition and returns true or false.

template <typename InputIterator, typename Predicate>
iterator_traits<InputIterator>::difference_type
count_if(InputIterator first,
 InputIterator last,
 Predicate pred);

This example counts the even numbers in the given range:

int numEvens = count_if(v.begin(), v.end(), evenPred ());
cout << "Found " << numEvens << " even numbers" << endl;

 Notes

10 – Non-Mutating Algorithms Page 277

10.5 Max and Min

• max: returns larger of two items, possible using a binary predicate.
• max_element: finds largest item in a range, may use a

binary_predicate.
• min: returns larger of two items, possible using a binary_predicate.
• min_element: finds largest item in a range, may use a

binary_predicate.

max_element and min_element

Like find and find_if, they return an iterator pointing to the element found. If
none is found, the iterator will point to the end of the range.

ForwardIterator
max_element(ForwardIterator first,
 ForwardIterator last)

ForwardIterator
 min_element(ForwardIterator first,
 ForwardIterator last)

Notice that max_element and min_element require Forward Iterators, not
just Input Iterators. This is because they have to save the iterator of the
largest or smallest element found, and Input Iterators don't support saving.
Here is an example:

 Notes

10 – Non-Mutating Algorithms Page 278

vector<int> stats;
vector<int>::iterator result;
...
cout << "Looking for max number" << endl;
result = max_element(stats.begin(), stats.end());

if (result != stats.end())
 cout << "Found " << (*result) << endl;

This version of max_element and min_element uses operator< to the
biggest and smallest items. One can also pass a function object to
max_element and min_element. The predicate should take two arguments,
the current maximum and an element, and return true only when the
element should replace the current maximum.

ForwardIterator
 max_element(ForwardIterator first,
 ForwardIterator last,
 Compare pred)

ForwardIterator
min_element(ForwardIterator first,
 ForwardIterator last,
 Compare pred)

 Notes

10 – Non-Mutating Algorithms Page 279

Here's how to find the largest odd number in a collection:

class MaxOdd {
 public:
 bool operator() (int theMax, int x)
 { return ((x % 2) == 1) && (x > theMax); }
};
cout << "Looking for max odd" << endl;
result = max_element(stats.begin(), stats.end(), MaxOdd());

if (result != stats.end())
 cout << "Found " << (*result) << endl;

 Notes

10 – Non-Mutating Algorithms Page 280

10.6 Comparing Ranges

• mismatch: search two parallel ranges and returns position of the first
one that is unequal or doesn't satisfy a binary_predicate.

• search: look in first range for an occurrence of the second range,
possibly using a binary_predicate.

• search_n: look in range for an occurrence of n items equal to a value,
possibly using a binary_predicate.

• equal: test if a range equals, element another parallel range, possibly
using a binary_predicate

• for_each: Apply a function to every item in a range.

Here is an example using for_each:
#include <iostream>
#include <algorithm>
#include <functional>

using namespace std;

template<typename T> struct print : public unary_function<T, void>
{
 print(ostream& out) : os_(out), i_ (0) {}
 void operator() (const T &x) { os_ << x << ' '; ++i_; }
 int count () { return i_; }
 ostream& os_;
 int i_;
};

 Notes

10 – Non-Mutating Algorithms Page 281

int main() {
 int anArray[] = {1, 4, 2, 8, 5, 7};
 const int N = sizeof(anArray) / sizeof(int);
 print<int> fun = for_each(anArray, anArray + N, print<int>(cout));
 cout << endl << fun.count() << " objects printed." << endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 282

 Unit Eleven
Mutating Algorithms

Unit topics: Page
 11.1 ... Mutating Algorithms 283
 11.2 .. Filling and Generating 285
 11.3 .. Manipulating Sequences 290
 11.4 .. Remove 294
 11.5 .. Replace 302
 11.6 .. Sort and Merge 304

 Notes:

11 –Mutating Algorithms Page 283

11.1 Mutating Algorithms

Mutating algorithms sound as if they modify the actual elements in the
container. What they actually do is to reorganize the elements based on
some rule.

These algorithms work with iterators and since the iterators can be used
with different types of containers, or even no containers, algorithms cannot
remove or change the value of elements. In addition, since they only
receive iterators, algorithms can't even figure out what container the
elements are in!

For example, the remove and remove_if only reorganize the pointers to
the elements, moving the "removed" elements to the end of the sequence
and returning an iterator that indicates the first element that was "removed"
(i.e., the first element that is not part of the resulting sequence).

Other code must remove the elements no longer wanted.

List of mutating algorithms
copy copy_n copy_backward iter_swap
fill fill_n generate generate_n
partition random_shuffle random_sample random_sample_n
replace replace_if replace_copy replace_copy_if
remove remove_if remove_copy remove_copy_if
reverse reverse_copy rotate rotate_copy
stable_partition swap swap_ranges transform
unique unique_copy

 Notes:

11 –Mutating Algorithms Page 284

OutputIter result_end = copy(first, last, result);
BidirectionalIter result_begin = copy_backward(first, last, result_end);
fill(first, last, value);
fill_n(first, count, value);
generate(first, last, generator);
generate_n(first, count, generator);
random_shuffle(first, last[, rand]);
replace (first, last, old_value, new_value);
replace_if(first, last, pred, new_value);
OutputIter result_end = replace_copy(first, last, result, oldval, newval);
OutputIter result_end = replace_copy_if(first, last, result, pred, newval);
ForwardIter new_last remove(first, last, value);
ForwardIter new_last remove_if(first, last, pred);
OutputIter result_end remove_copy(first, last, result, value);
OutputIter result_end remove_copy_if(first, last, result, pred);
reverse(first, last);
OutputIter result_end = reverse_copy(first, last, result);
rotate(first, middle, last);
OutputIter result_end = rotate_copy(first, middle, last, result);
swap(a, b);
ForwardIter2 new_last2 = swap_ranges(first1, last1, first2);
OutputIter result_end = transform(first, last, result, op);
OutputIter result_end = transform(first1, last2, first2, result, bin_op);
ForwardIter new_last = unique(first, last[, bin_pred]);
ForwardIter result_end = unique_copy(first, last[, bin_pred]);

 Notes:

11 –Mutating Algorithms Page 285

11.2 Filling and Generating

• fill: change a range to all have the same given value.
• fill_n: change n items to all have the same given value.
• generate: change items in a range to be values produced by a

function object.
• generate_n: change n items to be values produced by function

object.
• transform: scans a range and for each use a function to generate a

new object put in a second container, OR takes two intervals and
applies a binary operation to items to generate a new container.

One example of a mutating algorithm is transform which requires four
parameters: two iterators to specify the input sequence, one to specify the
output sequence and another to specify the transforming operation. It
returns a non-boolean value.

The following code is an example of the transform algorithm:

#include <iostream>
#include <algorithm>
#include <ctype.h>
#include <functional>
#include <string>

using namespace std;

 Notes:

11 –Mutating Algorithms Page 286

class to_lower
{
public:
 char operator() (char c) const //returns char
 {
 return isupper (c) ? tolower(c) : c;
 }
};

string lower (const string &str)
{
 string lcase;
 transform (str.begin(), str.end(), back_inserter (lcase), to_lower());
 return lcase;
}

int main ()
{
 string s = "HELLO";
 cout << s << endl;
 s = lower (s);
 cout << s << endl;
 return 0;
}

Here is another example using transform, copy and generate:

 Notes:

11 –Mutating Algorithms Page 287

#include <iostream>
#include <functional>
#include <algorithm>
#include <vector>
#include <iterator>
#include <cstdlib>
#include <ctime>
 using namespace std;

int main() {
 srand(time(0));
 vector<int> v;
 generate_n(back_inserter(v), 10, rand);
 vector<int> v2(10, 20);

 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 transform(v.begin(), v.end(), v2.begin(), v.begin(), modulus<int>());
 // transform(v.begin(), v.end(), v.begin(), bind2nd(modulus<int>(), 20));
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 sort(v.begin(), v.end(), greater<int>());
 copy(v.begin(), v.end(), ostream_iterator<int>(cout," "));
 cout << endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 288

First, generate_n is used to fill the vector with data. The vector is empty,
but the magic of an back Insert Iterator makes it so that when generate_n
writes to the output iterator it adds it to the end of the vector. One'll notice
that in this case a function pointer to rand makes a perfectly acceptable
Functor.

The transform line does the equivalent of v[i] = v[i] % v2[i]; for each v[i] in
v. The first 3 parameters are the 2 input ranges -- the second input range is
assumed to be at least as large as the first. The fourth parameter is the
output iterator. In this case it's safe to use a normal iterator into the
container since we know exactly how many elements will need to be
written. The fifth parameter is the binary operation performed.

This example uses several STL algorithm functions to work with the
elements of two vectors, each holding 10 integers. It also uses the plus()
functor with the transform algorithm to add the elements.

#include <iostream>
#include <functional>
#include <vector>
#include <algorithm>
#include <numeric>
#include <iterator>
 using namespace std;

int main() {

 Notes:

11 –Mutating Algorithms Page 289

 vector<int> V1(10), V2(10);

 fill(V1.begin(), V1.end(), 1);
 partial_sum(V1.begin(), V1.end(),V1.begin());

 random_shuffle(V1.begin(), V1.end());
 fill(V2.begin(), V2.end(), 2);
 partial_sum(V2.begin(), V2.end(),V2.begin());
 random_shuffle(V2.begin(), V2.end());

 copy(V1.begin(),V1.end(), ostream_iterator<int>(cout, " "));
 cout << endl;
 copy(V2.begin(),V2.end(), ostream_iterator<int>(cout, " "));
 transform(V1.begin(), V1.end(), V2.begin(), V2.begin(),plus<int>());
 cout << endl; cout << endl;
 copy(V2.begin(),V2.end(), ostream_iterator<int>(cout, " "));
 cout <<endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 290

11.3 Manipulating Sequences

• swap: swaps values of two given variables.
• iter_swap: swaps two items in a container indicated by iterators.
• swap_ranges: interchanges value between two ranges.
• reverse: places the elements in the reverse order.
• reverse_copy: creates a backwards copy of a range.
• rotate: given a middle point in a range, reorganizes range so that

middle comes first.
• rotate_copy: creates a rotated copy.

rotate

template <typename ForwardIterator>
 void rotate (ForwardIterator first, ForwardIterator middle,
 ForwardIterator last); <algorithm>

Rotate elements in range

Rotates the order of the elements in the range [first,last), in such a way that
the element pointed by middle becomes the new first element.

template <typename ForwardIterator>
 void rotate (ForwardIterator first, ForwardIterator middle,
 ForwardIterator last)
{

 Notes:

11 –Mutating Algorithms Page 291

 ForwardIterator next = middle;
 while (first!=next)
 {
 swap (*first++,*next++);
 if (next==last) next=middle;
 else if (first == middle) middle=next;
 }
}

 Here is an example:

#include <iostream>
#include <algorithm>
#include <iterator>
#include <vector>
using namespace std;

int main () {
 vector<int> myVect;
 vector<int>::iterator it;

 for (int i=1; i<10; ++i)
 myVect.push_back(i);

 cout << "myVect originally contains:\n";
 copy (myVect.begin (), myVect.end (), ostream_iterator<int> (cout, " "));

 Notes:

11 –Mutating Algorithms Page 292

 rotate(myVect.begin(),myVect.begin()+5,myVect.end());

 cout << "\nmyVect rotated contains:\n";
 copy (myVect.begin (), myVect.end (), ostream_iterator<int> (cout, " "));
 cout << endl;
 return 0;
}

reverse

template <typename BidirectionalIterator>
 void reverse (BidirectionalIterator first, BidirectionalIterator
last);<algorithm>

Reverses the order of the elements in the range [first,last). Behaves
like this:

template <typename BidirectionalIterator>
 void reverse (BidirectionalIterator first, BidirectionalIterator last)
{
 while ((first!=last)&&(first!=--last))
 swap (*first++,*last);
}

 Notes:

11 –Mutating Algorithms Page 293

Here is an example program using it:

#include <iostream>
#include <algorithm>
#include <vector>
#include <iterator>
using namespace std;

int main () {
 vector<int> myVect;

 for (int i=1; i<10; ++i) myVect.push_back(i);

 reverse(myVect.begin(),myVect.end());
 cout << "myVect contains:";
 copy (myVect.begin (), myVect.end (), ostream_iterator<int> (cout, " "));
 cout << endl;

 return 0;
}

 Notes:

11 –Mutating Algorithms Page 294

11.4 Remove

• remove: deletes items in a range that equal a given value.
• remove_if: deletes items in a range if a predicate is true.
• remove_copy: makes a copy of items in a range but not those with a

given value.
• remove_copy_if: makes a copy of items in a range but not those

where a predicate is true.

remove

template < class ForwardIterator, typename T >
 ForwardIterator remove (ForwardIterator first, ForwardIterator last,
 const T& value); <algorithm>

Removes from the range [first,last) the elements with a value equal to value
and returns an iterator to the new end of the range, which now includes
only the values not equal to value.

The behavior of this function template is equivalent to:

template < class ForwardIterator, typename T >
 ForwardIterator remove (ForwardIterator first, ForwardIterator last, const
T& value)
{
 ForwardIterator result = first;

 Notes:

11 –Mutating Algorithms Page 295

 for (; first != last; ++first)
 if (!(*first == value)) *result++ = *first;
 return result;
}

This function does not alter the elements past the new end, which keep
their old values and are still accessible. Here is an example:

#include <iostream>
#include <algorithm>
#include <iterator>
using namespace std;

int main ()
{
 int myints[] = {10,20,30,30,20,10,10,20};
 // bounds of range:
 int* pbegin = myints;
 int* pend = myints+sizeof(myints)/sizeof(int);

 cout << "original array contains:";
 copy (pbegin, pend, ostream_iterator<int> (cout, " "));
 cout << endl;

 int *nend = remove (pbegin, pend, 20);

 Notes:

11 –Mutating Algorithms Page 296

 cout << "range contains:";
 copy (pbegin, nend, ostream_iterator<int> (cout, " "));
 cout << endl;

 cout << "complete array contains:";
 copy (pbegin, pend, ostream_iterator<int> (cout, " "));
 cout << endl;

 return 0;
}

remove_if

template < class ForwardIterator, typename Predicate >
 ForwardIterator remove_if (ForwardIterator first, ForwardIterator last,
 Predicate pred); <algorithm>

Removes from the range [first,last) the elements for which pred applied to
its value is true, and returns an iterator to the new end of the range, which
now includes only the values for which pred was false.

The behavior of this function template is equivalent to:

template < class ForwardIterator, typename Predicate >
 ForwardIterator remove_if (ForwardIterator first, ForwardIterator last,
 Predicate pred)

 Notes:

11 –Mutating Algorithms Page 297

{
 ForwardIterator result = first;
 for (; first != last; ++first)
 if (!pred(*first)) *result++ = *first;
 return result;
}

 Notes:

11 –Mutating Algorithms Page 298

Here is an example using remove_if:

#include <iostream>
#include <algorithm>
using namespace std;

bool IsOdd (int i) { return ((i%2)==1); }

struct IsEvenOdder {
 bool operator () (int i) { return ((i%2)==1); }
};

int main () {
 int myints[] = {1,2,3,4,5,6,7,8,9};

 // bounds of range:
 int* pbegin = myints;
 int* pend = myints+sizeof(myints)/sizeof(int);

 pend = remove_if (pbegin, pend, IsEvenOdder ());
 pend = remove_if (pbegin, pend, IsOdd);

 cout << "range contains:";
 copy (pbegin, pend, ostream_iterator<int> (cout, " "));
 cout << endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 299

remove_copy

template <typename InputIterator, typename OutputIterator, typename T>
 OutputIterator remove_copy (InputIterator first, InputIterator last,
 OutputIterator result, const T& value); <algorithm>

Copies the values of the elements in the range [first,last) to the range
positions beginning at result, except for the elements that compare equal to
value, which are not copied.

The behavior of this function template is equivalent to:

template <typename InputIterator, typename OutputIterator, typename T>
 OutputIterator remove_copy (InputIterator first, InputIterator last,
 OutputIterator result, const T& value)
{
 for (; first != last; ++first)
 if (!(*first == value)) *result++ = *first;
 return result;
}

 Notes:

11 –Mutating Algorithms Page 300

Here is a program using remove_copy:

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main () {
 int myints[] = {10,20,30,30,20,10,10,20};
 vector<int> myVect;
 vector<int>::iterator it;
 remove_copy (myints,myints+8, back_inserter (myVect), 20);

 cout << "myvector contains:";
 copy (myVect.begin(), myVect.end(), ostream_iterator<int> (cout, " "));
 cout << endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 301

Here is a program using remove_copy_if:

#include <iostream>
#include <algorithm>
#include <vector>
#include <iterator>
using namespace std;

struct twenty : unary_function<int, int>
{
 bool operator () (int x) const { return x == 20; }
};

int main () {
 int myints[] = {10,20,30,30,20,10,10,20};
 vector<int> myVect;
 vector<int>::iterator it;
 remove_copy_if (myints,myints+8,
 back_inserter (myVect), not1 (twenty ()));
 // remove_copy_if (myints,myints+8,
 // back_inserter (myVect),
 // not1 (bind2nd (equal_to<int> (), 20)));

 cout << "myvector contains:";
 copy (myVect.begin(), myVect.end(), ostream_iterator<int> (cout, " "));
 cout << endl; return 0;
}

 Notes:

11 –Mutating Algorithms Page 302

11.5 Replace

• replace: scan a range and replace given old values by given new
value.

• replace_if: scan a range and replace given old values by given new
value IF a predicate is true.

• replace_copy: make a copy of a range but replace given old values
by given new value.

• replace_copy_if: make a copy of a range but replace given old values
by given new value IF a predicate is true.

template <typename ForwardIterator, typename T>
void replace(ForwardIterator first,
 ForwardIterator last,
 const T& old_value,
 const T& new_value)
{
 while (first != last) {
 if (*first == old_value) // Can read from and assign to *first iterator
 *first = new_value;
 ++first;
 }

 Notes:

11 –Mutating Algorithms Page 303

}

 Notes:

11 –Mutating Algorithms Page 304

11.6 Sort and Merge

 Sorting algorithms are a special type of mutating algorithms which change
the positions of data elements in a collection. Searching and comparison
algorithms are special types of non-mutating algorithms that work best with
sorted data.

In general, programming algorithms are often categorized by their
efficiency, which means how long they take to run and how much storage
or memory is used during their running. This is most important for those
that sort or search large collections of data.

Several algorithms that perform searching or comparison operations
require sorted input in order to work correctly: binary_search,
equal_range, inplace_merge, includes, lower_bound, merge,
set_difference, set_intersection, set_symmetric_difference, set_union
and upper_bound. The unique and unique_copy algorithms work best
with sorted input, but don’t require it.

Therefore, it is important to choose the most efficient sort algorithm for the
task on hand. We define efficient in terms of time using the concept of
complexity.

 Notes:

11 –Mutating Algorithms Page 305

Algorithmic complexity is generally discussed in a form known as Big-O
notation, where the O represents the complexity of the algorithm and a
value n represents the size of the set the algorithm is run against. For
example, O(n) means that an algorithm has a linear complexity.

For linear processes, it takes ten times longer to operate on a set of 10
items than it does on 1 item and ten times longer again to operate on 100
items than it does on a set of 10 items (10 * 10 = 100). So if reading a file
of 10 lines takes 1 CPU millisecond then reading a file containing 100 lines
would take 100 milliseconds for a linear algorithm. This is the complexity of
a one loop algorithm.

But if the complexity is O(n2) (quadratic complexity), then it takes 100 times
longer to operate on a set of 100 items than it does on a set of 10 items.
This type of algorithm has 2 nested loops with one inside another. The
sorting algorithms that are O(n2) in efficiency include the bubble, insertion,
selection and shell sorts.

Finally, there are some sorting algorithms which have complexity of O(n
log n): the heap, merge, and quick sorts. These algorithms are fast, but
that speed comes at the cost of complexity; these algorithms use recursion,
advanced data structures and multiple arrays.

 Notes:

11 –Mutating Algorithms Page 306

The most important thing is to choose the sorting algorithm that is most
appropriate for a custom program. Here is a list of the STL sorting, set, and
heap algorithms:

adjacent_difference binary_search
equal_range includes
inplace_merge is_heap
is_sorted lexicographical_compare
lexicographical_compare_3way lower_bound
make_heap max
max_elementmerge min
min_element nth_element
partial_sort partial_sort_copy pop_heap
power push_heap
set_difference set_intersection
set_union set_symmetric_difference
stable_sort sort
sort_heap upper_bound

 Notes:

11 –Mutating Algorithms Page 307

How to call sorting related algorithm functions

OutputIter result_end = adjacent_difference(first, last, result[, bin_op]);
bool is_present = binary_search(first, last, value[, comp]);
pair<ForwardIter, ForwardIter> loc_range = equal_range(first, last, value[,
comp]);
bool is_included = includes(first, last, subseq_first, subseq_last[, comp]);
inplace_merge(first, middle, last[, comp]);
bool is_inorder = is_sorted(first, last[, comp]);
bool is_less = lexicographical_compare(first1, last1, first2, last2[,
bin_pred]);
ForwardIter loc = lower_bound(first, last, value[, comp]);
OutputIter result_end = merge(first1, last1, first2, last2, result[, comp]);
nth_element(first, nth, last[, comp]);
partial_sort(first, middle, last[, comp]);
RandomAccessIter result_end = partial_sort_copy(first, middle, last,
result_first, result_last[, comp]);
OutputIter result_end = partial_sum(first, last, result[, bin_op]);
BidirectionalIter middle = partition(first, last, pred);
RandomAccessIter result_end = random_sample(first, last, out_first,
out_last[, rand])
RandomAccessIter result_end = random_sample_n(first, last, out_first,
count[, rand])
stable_sort(first, last[, comp]);
BidirectionalIter middle = stable_partition(first, last, pred);
sort(first, last[, comp]);
ForwardIter loc = upper_bound(first, last, value[, comp]);

 Notes:

11 –Mutating Algorithms Page 308

Sorting Concepts
The following is a discussion of several sorting concepts to enhance
programmers' understanding when deciding which sorting algorithms to
choose or ways to implement them.

Bubble Sort

Bubble sort is the oldest and easiest to implement, but with a complexity of
O(n2) it is also the slowest sort. It works by comparing each item in the list
with the item next to it and swapping them if required. It then repeats this
process until it makes a pass all the way through the list without swapping
any items because all items are in the correct order. This causes larger
values to "bubble" to the end of the list while smaller values "sink" toward
the beginning.

Heap Sort

Heap sort is the slowest of the O(n log n) sorting algorithms, but unlike the
merge and quick sorts it doesn't require lots of recursion or multiple arrays.
This makes it the most efficient choice for very large data sets containing
millions of items. It begins by building a heap out of the data set, and then
removing the largest item and placing it at the end of the sorted array. After
removing the largest item, it reconstructs the heap and removes the largest
remaining item and places it in the next open position from the end of the
sorted array.

 Notes:

11 –Mutating Algorithms Page 309

This is repeated until there are no items left in the heap and the sorted
array is full. Simple implementations require two arrays - one to hold the
heap and the other to hold the sorted elements, but more complex
implementations use one array; when an item is removed from the heap, it
frees up a space at the end of the array that the removed item can be
placed.

Insertion Sort

Insertion sort has a complexity of O(n2) and it is a more than twice as
efficient as the bubble sort, but is inefficient for large sets of data. It inserts
each item into its proper place in the final list. The simplest implementation
uses two list structures - the source list and the list into which sorted items
are inserted. But, to use storage efficiently, most implementations use an
in-place sort that works by moving the current item past the already sorted
items and repeatedly swapping it with the preceding item until it is in place.

Merge Sort

Merge sort has a complexity of O(n log n), and is only a little faster than
the heap sort for larger datasets. But it needs at least twice the memory
storage of the other sorts because it splits the list of data to be sorted into
two equal halves, and places them in separate arrays. Each array is
recursively sorted and then merged back together to form the final sorted
list. Simple implementations use three arrays - one for each half of the
data set and one to store the sorted results.

 Notes:

11 –Mutating Algorithms Page 310

Quick Sort

Quick sort is an in-place, divide-and-conquer, recursive kind of sort which
can have complexity of O(n log n). There are four steps to this sorting
method: If there are one or less elements in the array to be sorted, return
immediately. Then an element in the array is chosen to serve as a "pivot"
point. The array is split into two parts - one with elements larger than the
pivot and the other with elements smaller than the pivot. Finally the sort
recursively repeats the algorithm for both halves of the original array until
everything is sorted.

Selection Sort

Selection sort has a complexity of O(n2). It works by selecting the smallest
unsorted item remaining in the list, and then swapping it with the item in the
next position to be filled. It is inefficient for large collections of data.

Shell Sort

Shell Sort was invented by Donald Shell. It is the most efficient of the O(n2)
complexity sorting algorithms. This sort makes multiple passes through the
data, each time sorting a number of equally sized subsets using the
insertion sort. The size of the sets to be sorted gets larger with each pass
through the data, until there is only one set left consisting of the entire list of
data. It is efficient for medium sized lists of data, but not nearly as efficient
as the merge, heap or quick sorts.

 Notes:

11 –Mutating Algorithms Page 311

IntroSort

Introsort is a new, hybrid sorting algorithm, created by David Musser, (one
of the guys who created the STL). It acts almost like quick sort for most
data and is just as fast, but smarter, than quick sort because it detects
when partitioning the data is taking too long and switches its process to a
heap sort algorithm at that point.

 Notes:

11 –Mutating Algorithms Page 312

STL Sorting Algorithms

There are only a few of these sorting algorithms implemented in the STL:

merge uses the merge sort algorithm and combines two sorted ranges
into a single sorted range of data. There are two versions: one uses the <
operator for comparisons and the other requires a functor comparator.
inplace_merge is another STL merge sort algorithm.

partial_sort and partial_sort_copy use the heap sort algorithm and sort
the entire range of data. Both heap sort and introsort have the same
complexity, but introsort is usually faster.

stable_sort uses the merge sort algorithm. If one are sorting a sequence
of records that have several different key fields, then one may want to sort
it by one field without completely destroying the ordering that one
previously obtained from sorting it by a different field. For example, sorting
by last name and then by first name.

sort currently uses the introsort implementation created by Musser, and
sorts the entire range of data. This allows the efficiency of using quick sort
until it becomes inefficient at which point it shifts to heap sort. Earlier
versions of sort used the quick sort algorithm.

Below is an example of using sort on a vector. The sort algorithm orders
the container's contents in ascending order, as defined by the "less than"
(<) operator as applied to the vector elements.

 Notes:

11 –Mutating Algorithms Page 313

#include <vector>
#include <algorithm>
using namespace std;

int main()
{
 vector<int> aVector;
 aVector.push_back (10);
 aVector.push_back (3);
 aVector.push_back (7); // vector contains 10,3,7 in order
 sort(aVector.begin(), aVector.end()); // vector now has 3,7,10
}

Here is another example using a vector and the sort() algorithm function.

#include <vector>
#include <algorithm>
#include <functional>
#include <iostream>
#include <iterator>
using namespace std;

int main() {
 int sum=0;
 vector<int> V;
 V.push_back(1); V.push_back(4);V.push_back(2);
 V.push_back(8); V.push_back(5);V.push_back(7);

 Notes:

11 –Mutating Algorithms Page 314

 copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));

 sum = count_if (V.begin(), V.end(), bind2nd(greater<int>(),5));
 cout << endl << "There are " << sum << " number(s) greater than 5"
 << endl;

 // "remove" all the elements less than 4
 vector<int>::iterator new_end =
 remove_if(V.begin(), V.end(), bind2nd(less<int>(), 4));

 // remove_if doesn't actually remove elements. It moves the unwanted
 // elements to the end and returns an iterator pointing to the first
 // of these unwanted elements. It works this way because it’s a generic
 // routine and it doesn't "know" whether the size of the underlying data
 // structure can be changed. However, v.erase() does know
 V.erase(new_end, V.end());

 copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
 cout << endl << "Elements less than 4 removed" << endl;

 sort(V.begin(), V.end());
 copy(V.begin(), V.end(), ostream_iterator<int>(cout, " "));
 cout << endl << "Elements sorted" << endl;
 return 0;
}

 Notes:

11 –Mutating Algorithms Page 315

Example using Insertion Sort:

#include <iostream>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <algorithm>

void sort(vector<int>::iterator begin, vector<int>::iterator end)
{
 vector<int>::iterator sorted;//lowest sorted item
 for (sorted = end-1; sorted != begin; sorted--)
 {
 vector<int>::iterator next = sorted-1;//put in place
 int value = *next;
 vector<int>::iterator i;
 for (i = sorted; i != end; i++)
 {
 if (value <= *i)
 break;
 *next = *i;
 next++;
 }
 *next=value;
 }
}

 Notes:

11 –Mutating Algorithms Page 316

int main() {
 const int seed = static_cast<int>(time(0));
 srand(seed);//set random number differently each run
 const int Biggest = 100000;
 const int Size = 5000;
 const int Sample = 100;

 double total_time =0.0;

 for(int s = 0; s<Sample; s++)
 {
 vector <int> data;
 for(int i = 0; i< Size; i++)
 data.push_back(rand()%Biggest);
 time_t time1 = time(0);
 sort(data.begin(), data.end());
 time_t time2 = time(0);

 total_time+= difftime(time2, time1);
 }
 cout << "Insertion Sort. Size =" << Size << ", mean time =";
 cout << total_time /Sample;
 return 0;
}

The bubble sort algorithm is an example of a multi-pass one-directional
algorithm. Here the template for this algorithm.

 Notes:

11 –Mutating Algorithms Page 317

template <typename BidirectionalIterator, typename Compare>
void bubble_sort (BidirectionalIterator first, BidirectionalIterator last,
 Compare comp)
{
 BidirectionalIterator leftElement = first, rightElement = first;
 rightElement++;
 while (first != last)
 {
 while (rightElement != last) {
 if (comp(*rightElement, *leftElement))
 iter_swap (leftElement, rightElement);
 rightElement++;
 leftElement++;
 }
 last--;
 leftElement = first, rightElement = first;
 rightElement++;
 }
}

 Notes:

12 – Other Algorithms Page 318

 Unit Twelve
Other Algorithms

Unit topics: Page
 12.1 .. Set Algorithms 319
 12.2 ... Heap Algorithms 328
 12.3 .. Numeric Algorithms 331

 Notes:

12 – Other Algorithms Page 319

12.1 Set Algorithms

Calling set related algorithms

OutputIter result_end = set_difference(first1, last1, first2, last2, result[,
comp]);
OutputIter result_end = set_intersection(first1, last1, first2, last2, result[,
comp]);
OutputIter result_end = set_symetric_difference(first1, last1, first2, last2,
result[, comp]);
OutputIter result_end = set_union(first1, last1, first2, last2, result[, comp]);

In addition, an output stream can be thought of as a container, thus the
copy algorithm can be used with other containers to copy elements to it.

The line: copy(s1.begin(), s1.end(), ostream_iterator<int>(cout," ")); also
puts spaces between the integers being printed.

Sometimes it is not known how many resulting elements will be produced
by an operation, but it is necessary to add them all to a container. Use the
iterator adaptors: inserter (which calls the container's insert() routine),
front_inserter (which calls the container's push_front() routine - which
vectors don't have) or back_inserter (which calls push_back()).

 Notes:

12 – Other Algorithms Page 320

Example:

 #include <algorithm>
 #include <set>
 #include <iostream>
 #include <iterator>
 using namespace std;

 int main() {
 int a1[10] = {1,2,3,4,5,6,7,8,9,10};
 int a2[6] = {2,4,6,8,10,12};
 set<int> s1(a1, a1+10), s2(a2, a2+6), answer;
 cout << "s1=";
 copy(s1.begin(), s1.end(),
 ostream_iterator<int>(cout," "));
 cout << "\ns2=";
 copy(s2.begin(), s2.end(),
 ostream_iterator<int>(cout," "));
 set_difference(s1.begin(), s1.end(),
 s2.begin(), s2.end(),
 inserter(answer,answer.begin()));
 cout << "\nThe set-difference of s1 and s2 =";
 copy(answer.begin(), answer.end(),
 ostream_iterator<int>(cout," "));
 cout << endl;
 return 0;
 }

 Notes:

12 – Other Algorithms Page 321

set_union

Union of two sorted ranges

Constructs a sorted range beginning in the location pointed by result with
the set union of the two sorted ranges [first1,last1) and [first2,last2) as
content.

The union of two sets is formed by the elements that are present in either
one of the sets, or in both.

The comparison to check for equivalence of values, uses either operator<
for the first version, or comp for the second, in order to test this; The value
of an element, a, is equivalent to another one, b, when (!a<b && !b<a) or
(!comp(a,b) && !comp(b,a)).

For the function to yield the expected result, the elements in the ranges
shall be already ordered according to the same strict weak ordering
criterion (operator< or comp).

The behavior of this function template is equivalent to:

template <typename InputIterator1, typename InputIterator2, typename
OutputIterator>
 OutputIterator set_union (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,

 Notes:

12 – Other Algorithms Page 322

 OutputIterator result)
{
 while (true)
 {
 if (*first1<*first2) *result++ = *first1++;
 else if (*first2<*first1) *result++ = *first2++;
 else { *result++ = *first1++; first2++; }

 if (first1==last1) return copy(first2,last2,result);
 if (first2==last2) return copy(first1,last1,result);
 }
}

Here is an example program:

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main () {
 int first[] = {5,10,15,20,25};
 int second[] = {50,40,30,20,10};
 vector<int> v(10);
 vector<int>::iterator it;

 sort (first,first+5);

 Notes:

12 – Other Algorithms Page 323

 sort (second,second+5);

 it=set_union (first, first+5, second, second+5,
 v.begin());

 cout << "union has " << int(it - v.begin())
 << " elements.\n";
 return 0;
}

set_intersection

Intersection of two sorted ranges

Constructs a sorted range beginning in the location pointed by result with
the set intersection of the two sorted ranges [first1,last1) and [first2,last2)
as content.

The intersection of two sets is formed only by the elements that are present
in both sets at the same time.

The comparison to check for equivalence of values, uses either operator<
for the first version, or comp for the second, in order to test this; The value
of an element, a, is equivalent to another one, b, when (!a<b && !b<a) or
(!comp(a,b) && !comp(b,a)).

 Notes:

12 – Other Algorithms Page 324

For the function to yield the expected result, the elements in the ranges
shall be already ordered according to the same strict weak ordering
criterion (operator< or comp).

The behavior of this function template is equivalent to:

template <typename InputIterator1, typename InputIterator2, typename
OutputIterator>
 OutputIterator set_intersection (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result)
{
 while (first1!=last1 && first2!=last2)
 {
 if (*first1<*first2) ++first1;
 else if (*first2<*first1) ++first2;
 else { *result++ = *first1++; first2++; }
 }
 return result;
}

Here is an example program:

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

 Notes:

12 – Other Algorithms Page 325

int main () {
 int first[] = {5,10,15,20,25};
 int second[] = {50,40,30,20,10};
 vector<int> v;
 sort (first,first+5);
 sort (second,second+5);
 set_intersection (first, first+5, second, second+5, back_inserter (v));

 cout << "intersection has " << int(v.size ()) << " elements:\n";
 copy (v.begin(), v.end (), ostream_iterator<int> (cout, " "));
 cout << endl;
 return 0;
}

set_difference

Difference of two sorted ranges

Constructs a sorted range beginning in the location pointed by result with
the set difference of range [first1,last1) with respect to [first2,last2) as
content.

The difference of two sets is formed by the elements that are present in the
first set, but not in the second one. Notice that this is a directional operation
- for a symmetrical equivalent, see set_symmetric_difference.

 Notes:

12 – Other Algorithms Page 326

The comparison to check for equivalence of values, uses either operator<
for the first version, or comp for the second, in order to test this; The value
of an element, a, is equivalent to another one, b, when (!a<b && !b<a) or
(!comp(a,b) && !comp(b,a)).

For the function to yield the expected result, the elements in the ranges
shall be already ordered according to the same strict weak ordering
criterion (operator< or comp).

The behavior of this function template is equivalent to:

template <typename InputIterator1, typename InputIterator2, typename
OutputIterator>
 OutputIterator set_difference (InputIterator1 first1, InputIterator1 last1,
 InputIterator2 first2, InputIterator2 last2,
 OutputIterator result)
{
 while (first1!=last1 && first2!=last2)
 {
 if (*first1<*first2) *result++ = *first1++;
 else if (*first2<*first1) first2++;
 else { first1++; first2++; }

 }
 return copy(first1,last1,result);
}

 Notes:

12 – Other Algorithms Page 327

Here is an example:

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;

int main () {
 int first[] = {5,10,15,20,25};
 int second[] = {50,40,30,20,10};
 vector<int> v(10);
 vector<int>::iterator it;

 sort (first,first+5);
 sort (second,second+5);

 it=set_difference (first, first+5, second, second+5,
 v.begin());
 cout << "difference has " << int(it - v.begin())
 << " elements.\n";
 return 0;
}

 Notes:

12 – Other Algorithms Page 328

12.2 Heap Algorithms

sort_heap uses the heap sort algorithm. It is one of several heap
algorithms: push_heap, pop_heap, sort_heap and is_heap_sorted. The
STL doesn’t come with heap containers however there are some
extensions that have them.

Example:

#include <iostream>
#include <ctime>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <queue>
 using namespace std;

int main() {
 const int seed = static_cast<int>(time(0));
 srand(seed);
 const int Biggest = 100000;
 const int Size = 500000;
 const int Sample = 100;
 double total_time =0.0;

 for(int s = 0; s<Sample; s++)
 {

 Notes:

12 – Other Algorithms Page 329

 vector <int> data;
 for(int i = 0; i< Size; i++)
 data.push_back(rand()%Biggest);
 time_t time1 = time(0);
 make_heap(data.begin(), data.end());
 sort_/******/(data.begin(), data.end());
 time_t time2 = time(0);
 total_time+= difftime(time2, time1);
 }
 cout << "Heap Sort. Size =" << Size << ", mean time =";
 cout << total_time /Sample;
 return 0;
}

is_heap

bool is_heap(iterator start, iterator end);
bool is_heap(iterator start, iterator end, StrictWeakOrdering cmp);

The is_heap() function returns true if the given range [start,end) is a heap.
The StrictWeakerOrdering is a function object that defines 'less than' rule to
be used for the sorting.

 Notes:

12 – Other Algorithms Page 330

pop_heap

void pop_heap(iterator start, iterator end);
void pop_heap(iterator start, iterator end, StrictWeakOrdering cmp);

The pop_heap() function removes the larges element (defined as the
element at the front of the heap) from the given heap.

sort_heap

void sort_heap(iterator start, iterator end);
void sort_heap(iterator start, iterator end, StrictWeakOrdering cmp);

The sort_heap() function turns the heap defined by [start,end) into a sorted
range.

 Notes:

12 – Other Algorithms Page 331

12.3 Numeric Algorithms

The numeric algorithms are math functions found in <numeric> .

accumulate
It calculates the sum of all the elements in a specified range. It doesn’t
change the input data and can also concatenate strings. It can also give the
product of the data in the range.

adjacent_difference
It calculates the successive differences between each data element and
the one before it, given an input range. It outputs the results to a
destination range or performs any operation where the difference operation
is replaced by another binary operation passed as an argument.

checked_adjacent_difference
It works the same way as adjacent_difference, but uses a checked iterator
on the output iterator.

checked_partial_sum
It works the same way as partial_sum (see below), but uses a checked
iterator on the output iterator.

 Notes:

12 – Other Algorithms Page 332

inner_product
It calculates the sum of the element-wise product of two ranges and adds it
to a specified initial value or calculates the result of a generalized
procedure where the sum and product binary operations are replaced by
other specified binary operations.

partial_sum
It calculates a series of sums in an input range from the first element
through the nth element and stores the result of each such sum in nth
element of a destination range or it calculates the result of a generalized
procedure where the sum operation is replaced by another specified binary
operation.

unchecked_adjacent_difference
It is the same as adjacent_difference, but allows the use of an unchecked
iterator as output iterator when _SECURE_SCL=1 is defined.

unchecked_partial_sum
It is the same as partial_sum, but allows the use of an unchecked iterator
as output iterator when _SECURE_SCL=1 is defined.

 Notes:

12 – Other Algorithms Page 333

How call numeric algorithm functions

bool next_permutation(first, last[, comp]);
bool prev_permutation(first, last[, comp]);
T total = accumulate(first, last, init_total[, bin_op]);
T prod = inner_product(first1, last1, first2, init[, bin_op1, bin_op2]);

accumulate
The accumulate algorithm adds up a range of elements in a container.

T accumulate(InputIterator first,
 InputIterator last,
 T initial_value)

To add up all the numbers in our vector,

cout << "Sum of all the numbers is "
 << accumulate(stats.begin(), stats.end(), 0)
 << endl;

The third argument, 0 in this case, is the initial value for the sum.
The above call to accumulate uses operator+ but one can pass a function
as a fourth argument to change this. That function should take two
arguments. The first will be the "sum" so far, starting with the initial value
given. Each element will be passed in turn to the second element.

 Notes:

12 – Other Algorithms Page 334

T accumulate(InputIterator first,
 InputIterator last,
 T initial_value,
 BinaryOperation op)

So, to add up just the odd numbers:

class SumOdd {
 public:
 int operator() (int sum, int y)
 { return ((y % 2) == 1) ? sum + y : sum; }
};
...
cout << "Sum of all the odd numbers is "
 << accumulate(stats.begin(), stats.end(), 0, SumOdd())
 << endl;

13 – Utilities Page 335

 Unit Thirteen
Utilities

Unit topics: Page
 13.1 ... Memory Allocators 336
 13.2 .. The smart pointer: auto_ptr 338
 13.3 ... The raw storage iterator 340
 13.4 .. Some relational operators 341

 Notes

13 – Utilities Page 336

13.1 Memory Allocators

Using and filling Memory

There are several memory allocators provided which allow a programmer
to determine memory allocation strategies. All C++ standard library objects
that allow for specification of an allocator have a default allocator that will
be used if the program does not specify otherwise.

Custom allocators are needed when custom program code uses memory in
unique ways. There are also other cases where the default allocator won’t
work well, such as when using standard containers with code that has its
own replacements for the global operators new and delete. Thus several
implementations of the STL have customized their allocators. Examples of
what GNU and SGI provide are below.

GNU’s libstdc++
 The C++ Standard encapsulates memory management characteristics

for strings, container classes, and parts of iostreams in a template class
called std::allocator.

 The C++ standard has these requirements:
o When one add elements to a container, and the container must

allocate more memory to hold them, the container makes the request
via its Allocator template parameter. This includes adding characters
to the string class.

o The default Allocator of every container-of-T is std::allocator<T>.

 Notes

13 – Utilities Page 337

 But std::allocator can allocate and de-allocate using implementation-
specified strategies.

 So every call to an allocator object's allocate member function may not
actually call the global operator new, and this is also true for calls to the
de-allocate member function, delete.

 Starting with GCC 3.2, to globally disable memory caching within the
library for the default allocator, set GLIBCPP_FORCE_NEW in the
system's environment before running a program.

 The 3.4 code base continues to use this mechanism, only the
environment variable is now GLIBCXX_FORCE_NEW.

 Starting with gcc-3.4, all extension allocators are standard style. Before
this, SGI style was used

SGI’s allocator
 The current SGI STL also supports the allocator interface in the C++

standard.
 But it is specific to the SGI STL; cannot be used in code that must be

portable to other STL implementations
 The default allocator alloc maintains its own free lists for small objects
 The SGI allocator, alloc

o obtains memory from malloc (not new)
o does not free all memory - Memory allocated for blocks of small

objects is not returned to malloc
o leak detection tests should be run with malloc_alloc not alloc
o The default allocator makes no special attempt to ensure that

consecutively allocated objects are "close" to each other

 Notes

13 – Utilities Page 338

13.2 The smart pointer: auto_ptr

auto_ptr acts like C++ pointer in many ways. But, when an auto_ptr object
goes out of scope, it automatically deletes the memory that it is holding —
something that ordinary C++ pointers fail to do.

In addition to memory leaks, the auto_ptr also prevents dangling
references. How? When one assign one auto_ptr to another, the auto_ptr
on the right hand side actually becomes the equivalent of a NULL pointer.
The target of the assignment (on the left hand side) now points to the
memory that the right hand side auto_ptr pointed to before.

An auto_ptr controls a dynamically allocated object and performs
automatic cleanup when the object is no longer needed. Thus, if one don’t
use an auto_ptr, the program must be sure to free any memory that
pointers use.

Example of using auto_ptr:

int main()
{
 T* regularPtr = new T; //create a pointer of any datatype
 auto_ptr<T> autoPtr(regularPtr); // use auto_ptr to control it
 *autoPtr = 12; // same as "*regularPtr = 12;"

 autoPtr->MyFunct(); // same as "regularPtr->MyFunct();"

 Notes

13 – Utilities Page 339

 assert(regularPtr == autoPtr.get()); // use get() to see the ptr value

 T* anotherPtr = autoPtr.release(); // use release() to remove auto_ptr
 // but save pointer value
 delete anotherPtr; // now we could use this pointer
 // when done we need to delete it
 }

If one create custom own data structures, it's also very useful to pass
auto_ptrs to and from functions as function parameters. The auto_ptrs
will return values because they ‘own’ or control the objects they point to
and will correctly delete them when no longer needed. Thus no pointers are
left dangling and memory is freed up efficiently.

 Notes

13 – Utilities Page 340

13.3 The raw storage iterator

Raw storage iterators are used for efficiency when performing operations
like copying existing container elements to regions of un-initialized memory,
such as that obtained by the STL predefined algorithms
get_temporary_buffer and return_temporary_buffer. It can also be
used to iterate over un-initialized memory, initializing it with the results from
any user defined algorithm. Here is the STL template:

#include <memory>
template <typename OutputIterator, typename T>
 class raw_storage_iterator : public output_iterator {
public:
 explicit raw_storage_iterator (OutputIterator);
 raw_storage_iterator<OutputIterator, t>& operator*();
 raw_storage_iterator<OutputIterator, T>&
 operator= (const T&);
 raw_storage_iterator<OutputIterator>& operator++();
 raw_storage_iterator<OutputIterator> operator++ (int);
};

 Notes

13 – Utilities Page 341

13.4 Some Relational Operators

Inside the <utility> header, there are several useful general templates.
Among them are necessary constants for multiple C++ environments, four
relational operators and the pair template class.

template <typename T>
inline bool operator!=(const T& x, const T& y) {
 return !(x == y);
}

template <typename T>
inline bool operator>(const T& x, const T& y) {
 return y < x;
}

template <typename T>
inline bool operator<=(const T& x, const T& y) {
 return !(y < x);
}

template <typename T>
inline bool operator>=(const T& x, const T& y) {
 return !(x < y);
}

 Notes

13 – Utilities Page 342

The four templates above require that the equality operator, ==, be defined.
Functors can use them to work on any datatype, even a class object.

Appendix – Resources Page 343

 Appendix
Resources

Unit topics: Page
 A ... Optimization 344
 B ... Extensions 349
 C ... Books 354
 D .. Websites 355
 E ... Exercises 356

 Notes

Appendix – Resources Page 344

Appendix A Optimization

Lacking in the STL:

 There is no tree collection, but one can use a set or multiset, which are

implemented as trees.

 There are no multidimensional arrays, but a vector can hold other

vectors as elements and there’s also a Multi-Array class in Boost.

 There are no graphs, but one way to implement graphing is to have a

map holding other maps or you can use the Boost Graph Library (BGL).

 There are no sparse arrays; this is a type of array where most of the

entries are zero. The basic idea when storing sparse arrays is to only
store the non-zero entries. This can save memory and processing time.
The data can be compressed if the position and value of only non-zero
data is stored. There’s also a sparse matrix library in Boost.

 There were originally no hash tables, but they can be constructed as a

vector (or deque) that holds lists (or even sets) as elements. C++11
has extended the STL to add hash tables in the form of unordered
associative containers.

 Notes

Appendix – Resources Page 345

General Efficiency Tips:

 Wrap the STL so that functions can be specialized with custom error

handling routines

 Use partial specialization (void*) to avoid code bloat

 Evaluate different STL implementations to use the best one for one

and use the latest version

 Use functors instead of callbacks

 Use pre-compiled headers and external header guards

Containers’ Efficiency

 Pass containers by (const) reference, not by value!

 Use a custom container that doesn't call individual object destructors

 Use custom allocators

 Consider using a vector instead of a list for better cache coherency

 Remove and insert elements at the ends of container rather than in

the middle

 Notes:

Appendix – Resources Page 346

 Treat non empty vectors as contiguous memory arrays

 Use vector.reserve() but be aware of vector.capacity() vs.

vector.size()

 Use std::vector<T>(c).swap(c) to shrink vector to fit and free

memory

 Use map::insert instead of map::operator[]

 vector[i] is faster than vector::at(i) because there is no error

checking

 For small numbers of objects, vector in combination with sort can be

faster than map

 Unordered associative containers (based on hashing) can sometimes

be faster than ordered map containers

 forward_list singly-linked list containers can be faster and more

space efficient than the standard list container (see Boost and C++11
for examples).

 Use vector<bool> or bitset<N> for compact bit list storage, but be

aware of the limitations of vector<bool>

 Notes:

Appendix – Resources Page 347

Functors and Efficiency

 Use inline methods to avoid space used by empty objects

 Optimize contained object copy constructors and destructors

 Hand optimize string implementation so that string reference count is

stored in string-allocated memory instead of in the string object

Iterator Efficiency

 Use pre-increment instead of post-increment when using STL

iterators

 Use iterators instead of [] operator access for speed on vectors and

deques

 Hoist c.end() out of for() loops when container end doesn't change

 Cache the iterator dereference in loops

 Understand the rules of iterator invalidation

 Pass iterators by value

 Notes:

Appendix – Resources Page 348

Algorithm Usage

 Know what algorithms are available, both in STL and in Boost.

 Use std::swap() or container.swap() to swap objects and/or

containers to simplify exception safety

 Use template specialization to optimize algorithms for common

objects, e.g., std::copy(char*, char*)

 Notes:

Appendix – Resources Page 349

Appendix B Extensions

ropes

A rope is a scalable string implementation: it is designed for efficient
operations that involve the string as a whole. Operations such as
assignment, concatenation, and substring take time that is nearly
independent of the length of the string. Unlike C strings, ropes are a
reasonable representation for very long strings such as edit buffers or mail
messages. The rope class, along with crope (char rope) and wrope (wide
char rope) are SGI extensions; they are not part of the C++ standard.

Advantages of rope

 Much faster concatenation and substring operations involving long
strings; this time can be viewed as constant for most applications. It is
reasonable to use a rope to represent a file inside a text editor.

 Potentially much better space usage. Minor modifications of a rope can
share memory with the original. Ropes are allocated in small chunks,
significantly reducing memory fragmentation problems introduced by
large blocks.

 Assignment is a pointer assignment. Unlike "reference-counted copy-on-
write" implementations, this remains largely true even if one of the
copies is subsequently slightly modified. It is very inexpensive to
checkpoint old versions of a string, e.g. in an edit history.

 One can view a function producing characters as a rope. Thus a piece
of a rope may be a 100MByte file, which is read only when that section

 Notes:

Appendix – Resources Page 350

of the string is examined. Concatenating a string to the end of such a file
does not involve reading the file.

Disadvantages of rope

 Single character replacements in a rope are expensive. A character

update requires time roughly logarithmic in the length of the string. It is
implemented as two substring operations followed by two
concatenations.

 A rope can be examined a character at a time through a const_iterator

in amortized constant time, as in vector<char>. However if the string is
long this operation is slower for a rope by a significant constant factor
even if little processing is done on each character. Non-const iterators
involve additional checking and are hence a bit slower still.

 The size of their iterators is not small so, so copying them, though not

tremendously expensive, is not a trivial operation.

Avoid post-incrementing iterators; use pre-increment whenever possible.
Why? This is because post incrementing, when applied to a class type
(and ropes are classes), always has to create a temporary object to effect
the correct return value. This means that a copy constructor is invoked
including memory allocation if the class contains pointer objects…this uses
more memory and time than a pre-increment operator does.

 Notes:

Appendix – Resources Page 351

Heterogeneous Containers

Because STL was designed as a generic framework rather than an object-
oriented one, it doesn't store objects of different types as elements in the
same container – except for pairs. In general, a container that would allow
this is called a heterogeneous container. Databases are often such
containers. What if one want to create a media database and fill it with
various types of music related files. One will use pointers in the container.

How does this work? To fill a heterogeneous container with pointers to
different objects, simply pass the result of a new expression to the
appropriate member function. For example:

void fill(vector < multimedia_file *> & v)
{
 v.push_back(new mp3_file ("hello world") ;
 v.push_back(new wav_file ("got_boring_mail") ;
);

The pointers inserted into v are of different types: one is of type mp3_file*
and the second is of type wav_file*. One access the objects whose pointers
are stored in the container as one would access an ordinary element. The
only difference is that one use the -> notation.

 Notes:

Appendix – Resources Page 352

Smarter pointers
The STL offers several types of pointers that hold a ‘state’ , work with raw
data, and clean up after themselves. But they don’t cover everything.

Boost’s library
The smart pointer library provides five smart pointer class templates. These
templates are designed to complement the std::auto_ptr template.
They are examples of the "resource acquisition is initialization" idiom
described in Bjarne Stroustrup's "The C++ Programming Language. This is
what they offer:

scoped_ptr Provides sole ownership of single objects & non-copyable.
scoped_array Provides sole ownership of arrays & non-copyable
shared_ptr The owned object can be shared with several pointers
shared_array Array ownership shared with several pointers
weak_ptr Non-owner pointer of an object shared_ptr owns
intrusive_ptr Shared ownership of objects with reference count
unique_ptr auto_ptr done right!

SourceForge’s ptr_vector
 Implemented as a wrapper for the STL vector<T*> that cuts one level

of indirection for iterators and member functions.
 Lets one treat a vector of pointers as if it were a vector of values,

iterators iterate over pointed-to objects, not pointers
 Iterators are stable: ptr_vector iterators remain valid when the

ptr_vector container expands – unlike what happens in a vector

http://www.boost.org/libs/smart_ptr/scoped_ptr.htm
http://www.boost.org/libs/smart_ptr/scoped_array.htm
http://www.boost.org/libs/smart_ptr/shared_ptr.htm
http://www.boost.org/libs/smart_ptr/weak_ptr.htm
http://www.boost.org/libs/smart_ptr/intrusive_ptr.html

 Notes:

Appendix – Resources Page 353

 ptr_vector member functions [] operator, at(), <front() and <back()
refer to the pointed to objects, not pointers

Appendix – Resources Page 354

Appendix C Books

 Alexander Stepanov and Meng Lee: The Standard Template Library. HP Laboratories Technical

Report 95-11(R.1), November 14, 1995. (Revised version of A. A. Stepanov and M. Lee: The
Standard Template Library, Technical Report X3J16/94-0095, WG21/N0482, ISO Programming
Language C++ Project, May 1994.)

 Nicolai M. Josuttis: The C++ Standard Library: A Tutorial and Reference. Addison-Wesley. ISBN 0-

201-37926-0.

 Scott Meyers: Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library.

Addison-Wesley. ISBN 0-201-74962-9.

 David R. Musser, Gillmer J. Derge, and Atul Saini: STL Tutorial and Reference Guide: C++

Programming with the Standard Template Library (2nd Edition) (Hardcover - Mar 27, 2001)

 David Vandevoorde and Nicolai M. Josuttis: C++ Templates: The Complete Guide. Addison-Wesley

Professional 2002. ISBN 0-201-73484-2.

 Matthew H. Austern: Generic Programming and the STL, Reading, MA: Addison-Wesley, ISBN

0201309564

 Matthew Wilson: Extending STL – will be published by Addison-Wesley, in 2007.

Appendix – Resources Page 355

Appendix D Websites

C++ Standard Template Library

http://cppreference.com/cppstl.html

More great STL websites http://www.sgi.com/tech/stl, http://www.stlport.org/, http:///www.boost.org/.
Multiplatform C++ Standard
Library

http://stlport.sourceforge.net/

C++ function templates

http://www.cplusplus.com/doc/tutorial/templates.html

C++ class templates

http://www.codersource.net/cpp_class_templates.html

Questions about C++ templates

http://www.comeaucomputing.com/techtalk/templates/#terms

C++ Standard Template Library

http://www.msoe.edu/eecs/ce/courseinfo/stl/

C++ STL tutorial

http://www.josuttis.com/libbook/idx.html

Excellent list of what is in STL

http://www.gotapi.com/index.html

Great place to learn about
valarray

http://www.dinkumware.com/manuals/?manual=compleat&page=valarray.html

C++ tutorial http://www.oopweb.com/CPP/Files/CPP.html
Proposed extensions to the STL

http://en.wikipedia.org/wiki/Technical_Report_1#Smart_Pointers

GNU allocator http://gcc.gnu.org/onlinedocs/libstdc++/20_util/allocator.html
C++ links of all kinds http://www-h.eng.cam.ac.uk/help/tpl/languages/C++.html
C++ tutorial http://safari.oreilly.com/059600298X?tocview=true

Appendix E Exercises Page 356

Appendix E Exercises
 1. .. Lab 1 - Template for Fun 357
 2 .. Lab 2 – Now a Vector into Space 358
 3 .. Lab 3 - Clear the Deck 359
 4 ... Lab 4 - Set the Table 360
 5 .. Lab 5 - A Stack of Dirty Dishes 361
 6 .. Lab 6 -Nice Functions if one can Get Them 362
 7 .. Lab 7 - Find this if you can 363
 8 .. Lab 8 - Fun with auto_ptr 364

Appendix E Exercises Page 357

Lab 1: Template for Fun (ctions)

In this exercise one will create a custom template container class, give it several template functions, and
write a small program that instantiates the class, uses its functions and displays output.

1. Imagine one are going to need an array to hold some data of the same type, but one may need it for

integers today, double or float data tomorrow and chars another day. So one decide to create a
template class, whose datatype can be defined later; that is, when a program uses the class rather
than defined now. Create several constructors, including one that takes only a datatype, a default
constructor, and one that takes both a datatype and an initial size.

2. In addition, one want the collection to be able to grow as data is added to it and shrink if elements

are removed. Plus one want it provide fast access and be memory efficient. Allow it to grow and
shrink at both ends and be accessible at any element. So create template functions to add, remove
and modify member data. Also write a function to tell how many elements the container object has.

3. Then write a program that creates 2 of these objects, adds at least 4 elements to each container,

and performs at least 3 member functions on each of them. Finally print out (display) results along
with sensible messages telling the user what was done.

Appendix E Exercises Page 358

Lab 2: Now a vector into space!

In this exercise one will create two vectors, of the same datatype, add data to each of them, and then
swap them using the vector swap function. One will write a small program that instantiates the vectors,
uses their functions and displays output.

Appendix E Exercises Page 359

Lab 3: Clear the deck!

Now we are going to use a predefined STL template sequential container class, deque. These are
doubly-linked lists and are efficient at adding and removing elements at both ends of the collection, but
are less efficient in adding or removing in other positions of the collection. We have also talked a little
about iterators, which are defined with each STL class. Notice that the deque has a bidirectional iterator
defined.

Create a program that instantiates a deque and an iterator. Use a deque member function to show us
the deque is empty. Now using the iterator, add at least 10 values to the deque - one can add them to
either end – use push_back() or push_front() member functions. Next, display the first and last values in
the deque along with messages telling us what values these are (in other words, the first element etc).
Now show us that the deque is no longer empty using a member function.

After this add 3 members at the third, seventh and ninth positions and display the entire deque with
messages telling us where one added the new members. Access element 7 directly and display its value
along with an appropriate message telling us what element it is.

Now try to access an out of range element, but handle it in a try/catch block since the STL does not do
error checking. Finally, use a member function to clear out the deque of all elements and show that it is
empty, and display a message telling us that “now the deck is empty.”

Appendix E Exercises Page 360

Lab 4: Set the Table

This exercise gives one experience using associative containers. The set or multiset containers allow
one to access elements by key. Here the order one added the elements to the container does not
determine their position like it does in sequential containers. So one are going to add some char data to
a set and then print out how it is sorted.

So create a set called Letters to store a collection of chars, along with an iterator. Prove that the set is
empty using a member function and displaying its results.

Now add at least 10 letters including M, but not including the letter S. Add them in non-alphabetic order
so one can see that the container will ‘order’ the values for one. Display the set’s contents using its
iterator to walk through the set and show the set’s size using the member function.

Next find and remove the letter M, showing us the resulting set afterward. Then insert the letter S using
a member function and display the set again.

Now insert the values ‘1’ – ‘5’ as chars into the set. Display the set in a table form, each value on its own
line along with a message after the char displayed…For example: A Apples are good.

Appendix E Exercises Page 361

Lab 5: A Stack of dirty dishes

This exercise will use a container adaptor: we want to adapt a deque into a stack.

Create a deque and fill it with 12 integers using the rule 2y + y where y is the loop index and y starts at
5. Check that one have values in the deque now by displaying its values in order.

Next use this deque to create a stack, using the stack constructor that takes an existing container and
creates a stack from it. Display the stack using its member functions. What is its size? Is it empty? Add 5
more elements to the stack. Display its size.

Now take off 7 elements, displaying the stack after each one is removed. What is the size now? Can
one access the element being removed from the pop() member function?

Appendix E Exercises Page 362

Lab 6: Nice Functions if one can Get Them

In this exercise one will first create a custom functor to see why this concept is useful, and then one will
use it with a few predefined STL functors. One will need to define operator () for the class so it can act
as a function.

Create a functor to test whether a value passed to it is within a range. This functor must be constructed
with two values that are the range to be used later for testing. Then later when the functor is passed a
value it checks whether that value is within its range and returns either true or false. Here is a sample
function one can use for operator().

bool operator()(const T& t)
{ return ! (t < beginRange) && t < endRange; }

Now create a program to use the custom functor. In this program, first create a vector and fill it up with
15 values by using some simple method such as a loop that does a calculation using the rand function
or in some other way.

srand (time(NULL));
int getRandom = rand() % 10 + 1;

Then use the functor to check if the values fall within the range. Display output telling what the program
is doing.

Appendix E Exercises Page 363

Lab 7: Find this if you can

In this exercise we will use several simple algorithms.

The find algorithm can be applied to many containers. It searches all the elements or a sub-range,
looking for an element that is "equal to" a specified value; the equality operator (==) must be defined for
the type of the container's elements.

The sort algorithm will put the elements of a container in ascending order using the < operator.

For this exercise, create a vector of ‘double’ data and fill it up with at least 10 members NOT in order.
Display its contents and show it is not empty.

Then use sort to order it. Now display what the collection looks like in order.

Next, select a value, and use the find algorithm to find it in the vector.

Appendix E Exercises Page 364

Lab 8: Fun with auto_ptr

The <memory> header file contains a smart pointer class, auto_ptr. This is a useful class help stop
memory leaks due to class destructors not being called or not cleaning up memory correctly. It works
with only single values or objects; not with arrays.

To declare an auto_ptr object, one will give in a datatype being pointed to. Now one don’t need to call
delete; when the auto_ptr myintPtr goes out of scope, it deletes itself. And if one assign it to another
auto_ptr, it returns to null instead of hanging around still pointing to that value or object it was pointing to.
And one can dereference it just like any pointer:

auto_ptr<int> myIntPtr(new int);
*myIntPtr = 10;

One can also use a class with auto_ptr. Let’s say I create a Circle class, which has data members x and
y to represent its origin’s coordinates:

auto_ptr<Circle> myCirclePtr(new Circle);
Circle -> origin.x = 2.0;
Circle -> origin.y = 3.0;

Create a simple class and give it at least 2 data members. Then create a program using the class and
work with it via an auto_ptr. Create a class using an auto_ptr, give the class’ data members values using
the auto_ptr, and then display what is going on.

	Using this manual while in class
	#include <iostream>
	#include <vector>
	using namespace std;
	int main() {
	vector< vector<int> > myVec2D; // create 2D int vector
	vector<int> oneVec, twoVec; // create two int vectors
	oneVec.push_back(1); oneVec.push_back(2); oneVec.push_back(3);
	twoVec.push_back(4); twoVec.push_back(5); twoVec.push_back(6);
	myVec2D.push_back(oneVec); myVec2D.push_back(twoVec);
	cout << endl << "Using Iterator:" << endl;
	for(vector< vector<int> >::iterator iter2D= myVec2D.begin(); iter2D!= myVec2D.end(); ++iter2D)
	for(vector<int>::iterator iter =iter2D->begin(); iter!=iter2D->end(); ++iter)
	cout << *iter << endl;
	cout << endl << "Using subscript operators:" << endl;
	for (size_t i = 0; i < myVec2D.size (); ++i)
	for (size_t j = 0; j < myVec2D[i].size (); ++j)
	cout << myVec2D[i][j] << endl;
	cout << endl << "Using range-based for loop:" << endl;
	// C++11 version
	for (auto inner_vec : myVec2D)
	for (auto i : inner_vec)
	cout << i << endl;
	return 0;
	}

