
Object-Oriented Patterns & Frameworks

Dr. Douglas C. Schmidt

 d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of EECS
Vanderbilt University
Nashville, Tennessee

mailto:d.schmidt@vanderbilt.edu
http://www.cs.wustl.edu/~schmidt/bio.html

Pattern & Framework Tutorial Douglas C. Schmidt

2

Goals of this Presentation
Show by example how patterns & frameworks can help to

• Codify good OO software design &
implementation practices

– distill & generalize experience

– aid to novices & experts alike

• Give design structures explicit names

– common vocabulary

– reduced complexity

– greater expressivity

• Capture & preserve design &
implementation knowledge

– articulate key decisions succinctly

– improve documentation

• Facilitate restructuring/refactoring

– patterns & frameworks are interrelated

– enhance flexibility, reuse, & productivity

1 1
Proxy

service

Service

service

AbstractService

service

Client

class Reactor {
public:
 /// Singleton access point.
 static Reactor *instance (void);

 /// Run event loop.
 void run_event_loop (void);

 /// End event loop.
 void end_event_loop (void);

 /// Register @a event_handler
 /// for input events.
 void register_input_handler
 (Event_Handler *eh);

 /// Remove @a event_handler
 /// for input events.
 void remove_input_handler
 (Event_Handler *eh);

Pattern & Framework Tutorial Douglas C. Schmidt

3

Leaf
Nodes

Binary
Nodes

Unary
Node

Tutorial Overview
Part I: Motivation & Concepts

– The issue

– What patterns & frameworks are

– What they’re good for

– How we develop & categorize them

Part II: Case Study

– Use patterns & frameworks to build an
expression tree application

– Demonstrate usage & benefits

Part III: Wrap-Up

– Life beyond the GoF book, observations,
caveats, concluding remarks, & additional
references

Pattern & Framework Tutorial Douglas C. Schmidt

4

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation

Pattern & Framework Tutorial Douglas C. Schmidt

5

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation

• But OOD is more than just drawing diagrams

• Good draftsmen are not necessarily
good architects!

Pattern & Framework Tutorial Douglas C. Schmidt

6

Part I: Motivation & Concepts
• OOD methods emphasize design notations

• Fine for specification & documentation

• But OOD is more than just drawing diagrams

• Good draftsmen are not necessarily
good architects!

• Good OO designers rely on lots of experience

• At least as important as syntax

• Most powerful reuse combines design & code reuse

• Patterns: Match problem
to design experience

• Frameworks: Reify patterns within a domain
context

s->getData()

Observer

update

ConcreteObserver

update

doSomething

state = X;

notify();

Subject

attach

detach

notify

setData

getData

state

observerList

for all observers

in observerList do

 update();

*

Pattern & Framework Tutorial Douglas C. Schmidt

7

Recurring Design Structures
Well-designed OO systems exhibit recurring structures that promote

– Abstraction

– Flexibility

– Modularity

– Elegance

Therein lies valuable design knowledge

Problem: capturing, communicating,
applying, & preserving this

knowledge without undue time,
effort, & risk

Pattern & Framework Tutorial Douglas C. Schmidt

8

A Pattern…

• Abstracts & names a recurring design
structure

• Comprises class and/or object

 Dependencies

 Structures

 Interactions

 Conventions

• Specifies the design structure explicitly

• Is distilled from actual design
experience

Presents solution(s) to common (software) problem(s) arising within a context

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

Pattern & Framework Tutorial Douglas C. Schmidt

9

Four Basic Parts of a Pattern

1. Name

2. Problem (including ―forces‖ &
―applicability‖)

3. Solution (both visual & textual
descriptions)

4. Consequences & trade-offs of
applying the pattern

Key characteristics of patterns include:

• Language- & implementation-independent

• ―Micro-architecture,‖ i.e., ―society of objects‖

• Adjunct to existing methodologies (RUP, Fusion, SCRUM, etc.)

The Proxy Pattern

1 1
Proxy

service

Service

service

AbstractService

service

Client

Pattern & Framework Tutorial Douglas C. Schmidt

10

Example: Observer

Pattern & Framework Tutorial Douglas C. Schmidt

11

Intent

define a one-to-many dependency between objects so that when one
object changes state, all dependents are notified & updated

Applicability

– an abstraction has two aspects, one dependent on the other

– a change to one object requires changing untold others

– an object should notify unknown other objects

Structure

Observer object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

12

Modified UML/OMT Notation

Pattern & Framework Tutorial Douglas C. Schmidt

13

class ProxyPushConsumer : public // …

 virtual void push (const CORBA::Any &event) {

 for (std::vector<PushConsumer>::iterator i

 (consumers.begin ()); i != consumers.end (); i++)

 (*i).push (event);

 }

CORBA Notification Service
example using C++

Standard Template Library
(STL) iterators (which is an

example of the Iterator
pattern from GoF)

class MyPushConsumer : public // ….

 virtual void push

 (const CORBA::Any &event) { /* consume the event. */ }

Observer object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

14

Consequences

+ modularity: subject & observers may vary
independently

+ extensibility: can define & add any number
of observers

+ customizability: different observers offer
different views of subject

– unexpected updates: observers don’t know
about each other

– update overhead: might need hints or filtering

Implementation

– subject-observer mapping

– dangling references

– update protocols: the push & pull models

– registering modifications of interest explicitly

Observer object behavioral
Known Uses

– Smalltalk Model-View-
Controller (MVC)

– InterViews (Subjects &
Views,
Observer/Observable)

– Andrew (Data Objects &
Views)

– Smart phone event
frameworks (e.g.,
Symbian, Android, iPhone)

– Pub/sub middleware (e.g.,
CORBA Notification
Service, Java Message
Service, DDS)

– Mailing lists

Pattern & Framework Tutorial Douglas C. Schmidt

15

Design Space for GoF Patterns

Scope: domain over which a pattern applies

Purpose: reflects what a pattern does

√

√
√

√
√

√ √
√

√
√

√
√

√
√

√
√

√

Pattern & Framework Tutorial Douglas C. Schmidt

16

GoF Pattern Template (1st half)

Intent

short description of the pattern & its purpose

Also Known As

Any aliases this pattern is known by

Motivation

motivating scenario demonstrating pattern’s use

Applicability

circumstances in which pattern applies

Structure

graphical representation of pattern using modified UML notation

Participants

participating classes and/or objects & their responsibilities

Pattern & Framework Tutorial Douglas C. Schmidt

17

GoF Pattern Template (2nd half)

...

Collaborations

how participants cooperate to carry out their responsibilities

Consequences

the results of application, benefits, liabilities

Implementation

pitfalls, hints, techniques, plus language-dependent issues

Sample Code

sample implementations in C++, Java, C#, Python, Smalltalk, C, etc.

Known Uses

examples drawn from existing systems

Related Patterns

discussion of other patterns that relate to this one

Pattern & Framework Tutorial Douglas C. Schmidt

18

Benefits & Limitations of Patterns

Benefits

• Design reuse

• Uniform design vocabulary

• Enhance understanding,
restructuring, & team communication

• Basis for automation

• Transcends language-centric
biases/myopia

• Abstracts away from many
unimportant details

Limitations

• Require significant tedious &
error-prone human effort to
handcraft pattern
implementations design reuse

• Can be deceptively simple
uniform design vocabulary

• May limit design options

• Leaves important
(implementation) details
unresolved

 Addressing the limitations of patterns requires more than just design reuse

Pattern & Framework Tutorial Douglas C. Schmidt

19

Overview of Frameworks

Application-specific
functionality

• Frameworks exhibit
―inversion of control‖ at
runtime via callbacks

Networking Database

GUI

• Frameworks provide
integrated domain-specific
structures & functionality

Mission
Computing E-commerce

Scientific
Visualization

• Frameworks are
―semi-complete‖
applications

Pattern & Framework Tutorial Douglas C. Schmidt

20

Legacy embedded systems have historically been:

• Stovepiped

• Proprietary

• Brittle & non-adaptive

• Expensive

• Vulnerable

Consequence: Small
HW/SW changes have
big (negative) impact
on system QoS &
maintenance

Motivation for Frameworks

Application

Software

Application

Software

Application

Software

Application

Software

Proprietary &
Stovepiped

Application &
Infrastructure

Software

Standard/COTS
Hardware &
Networks

http://www.takeourword.com/images/persistence-of-memory.jpg

Pattern & Framework Tutorial Douglas C. Schmidt

21

Product

Variant 1

Product

Variant 4

Product

Variant 2

Product

Variant 3

• Frameworks factors out many reusable general-purpose & domain-specific
services from traditional DRE application responsibility

• Essential for product-line architectures (PLAs)

• Product-lines & frameworks offer many configuration opportunities

• e.g., component distribution/deployment, OS, protocols, algorithms, etc.

Motivation for Frameworks

Product-Line
Architecture-based

Application &
Framework
Software

Standard/COTS
Hardware &
Networks

Pattern & Framework Tutorial Douglas C. Schmidt

22

Categories of OO Frameworks
• White-box frameworks are reused by subclassing, which usually requires

understanding the implementation of the framework to some degree

• Black-box framework is reused by parameterizing & assembling framework
objects, thereby hiding their implementation from users

• Each category of OO framework uses different sets of patterns, e.g.:

Many frameworks fall in between white-box & black-box categories

– White-box frameworks rely heavily
on inheritance-based patterns, such
as Template Method & State

– Black-box frameworks reply
heavily on object
composition patterns, such
as Strategy & Decorator

Pattern & Framework Tutorial Douglas C. Schmidt

23

• Framework characteristics
are captured via Scope,
Commonalities, &
Variabilities (SCV) analysis

• This process can be
applied to identify
commonalities &
variabilities in a domain
to guide development of
a framework

• Applying SCV to Android smartphones

• Scope defines the domain & context of
the framework

• Component architecture, object-
oriented application frameworks, &
associated components, e.g., GPS,
Network, & Display

Reusable Architecture
Framework

Reusable Application
Components

Commonality & Variability Analysis in Frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

24

Applying SCV to an Android Framework

• Commonalities describe the attributes that are common across all
members of the framework

• Common object-oriented frameworks & set of component types

• e.g., Activities, Services, Content Providers, & Display components

• Common middleware
infrastructure

• e.g., Intents
framework, Binder,
etc.

Pattern & Framework Tutorial Douglas C. Schmidt

25

•Variabilities describe the attributes unique to the different members of
the framework

• Product-dependent component implementations, e.g., Motorola, HTC,
Samsug

• Product-dependent component connections

• Product-dependent
component assemblies
(e.g., CDMA vs. GSM
in different countries)

• Different hardware,
OS, & network/bus
configurations

Applying SCV to an Android Framework

Pattern & Framework Tutorial Douglas C. Schmidt

26

Comparing Reuse Techniques
Class Library (& STL) Architecture

ADTs

Strings

Locks

IPC
Math

LOCAL
INVOCATIONS APPLICATION-

SPECIFIC
FUNCTIONALITY

EVENT
LOOP

GLUE
CODE

Files

GUI

• A class is an implementation unit in an OO
programming language, i.e., a reusable type
that often implements patterns

• Classes in class libraries are typically passive

Framework Architecture ADTs

Locks

Strings

Files

INVOKES

• A framework is an integrated set of
classes that collaborate to form a reusable
architecture for a family of applications

• Frameworks implement pattern
languages

Reactor

GUI

DATABASE

NETWORKING

APPLICATION-
SPECIFIC
FUNCTIONALITY

CALL
BACKS

 Middleware Bus

Component & Service-Oriented Architecture

• A component is an encapsulation unit with
one or more interfaces that provide clients
with access to its services

• Components can be deployed & configured
via assemblies

Naming

Locking Logging

Events

Pattern & Framework Tutorial Douglas C. Schmidt

27

Taxonomy of Reuse Techniques

Class
Libraries

Frameworks

Macro-level Meso-level Micro-level

Borrow caller’s
thread

Inversion of
control

Borrow caller’s
thread

Domain-specific or

Domain-independent

Domain-specific Domain-
independent

Stand-alone
composition entities

―Semi-
complete‖

applications

Stand-alone
language entities

Components

Pattern & Framework Tutorial Douglas C. Schmidt

28

Benefits of Frameworks

Communication

Services

OS-Access

Layer

Broker

Component

Repository

Component

Configurator

Proxy Proxy

Broker

Admin

Controllers

Admin

Views

AdminClient
Picking

Controllers

Picking

Views

PickingClient

Broker

Logging

Handler
ThreadPool

*

Reactor

Broker

Scheduler/

ActivationList

Service

Request

Service

Request

Service

Request

WarehouseRepHalfX

Distribution

Infrastructure

Concurrency

Infrastructure

Thin UI Clients

• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of software

Pattern & Framework Tutorial Douglas C. Schmidt

29

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;
import org.apache.tomcat.util.StringManager;
import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

/**
 * Core implementation of a server session
 *
 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]
 */

public class ServerSession {

 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");
 private Hashtable values = new Hashtable();
 private Hashtable appSessions = new Hashtable();
 private String id;
 private long creationTime = System.currentTimeMillis();;
 private long thisAccessTime = creationTime;
private int inactiveInterval = -1;

 ServerSession(String id) {
 this.id = id;
 }

 public String getId() {
 return id;
 }

 public long getCreationTime() {
 return creationTime;
 }

 public ApplicationSession getApplicationSession(Context context,
 boolean create) {
 ApplicationSession appSession =
 (ApplicationSession)appSessions.get(context);

 if (appSession == null && create) {

 // XXX
 // sync to ensure valid?

 appSession = new ApplicationSession(id, this, context);
 appSessions.put(context, appSession);
 }

 // XXX
 // make sure that we haven't gone over the end of our
 // inactive interval -- if so, invalidate & create
 // a new appSession

 return appSession;
 }

 void removeApplicationSession(Context context) {
 appSessions.remove(context);
 }

Benefits of Frameworks
• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of software

• Implementation reuse

• e.g., by amortizing software
lifecycle costs & leveraging
previous development &
optimization efforts

Pattern & Framework Tutorial Douglas C. Schmidt

30

• Design reuse

• e.g., by guiding application
developers through the steps
necessary to ensure successful
creation & deployment of software

• Implementation reuse

• e.g., by amortizing software
lifecycle costs & leveraging
previous development &
optimization efforts

• Validation reuse

• e.g., by amortizing the efforts of
validating application- & platform-
independent portions of software,
thereby enhancing software
reliability & scalability

Benefits of Frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

31

• Frameworks are powerful, but can be hard to use effectively (& even
harder to create) for many application developers

• Commonality & variability analysis requires significant domain
knowledge & OO design/implementation expertise

• Significant time required to evaluate applicability & quality of a
framework for a particular domain

• Debugging is tricky due to inversion of control

• V&V is tricky due to ―late binding‖

• May incur performance degradations due to extra (unnecessary) levels
of indirection

www.cs.wustl.edu/ ~schmidt/PDF/Queue-04.pdf

Limitations of Frameworks

Many frameworks limitations can be addressed with knowledge of patterns!

Pattern & Framework Tutorial Douglas C. Schmidt

32

Using Frameworks Effectively

Observations

• Since frameworks are powerful—but but hard to develop & use
effectively by application developers—it’s often better to use &
customize COTS frameworks than to develop in-house frameworks

• Classes/components/services are easier for application developers to
use, but aren’t as powerful or flexible as frameworks

Successful projects are
therefore often

organized using the
―funnel‖ model

Pattern & Framework Tutorial Douglas C. Schmidt

33

Stages of Pattern & Framework Awareness

Pattern & Framework Tutorial Douglas C. Schmidt

34

Part II: Case Study: Expression Tree Application

 Goals

• Develop an object-oriented expression tree evaluator program using
patterns & frameworks

• Demonstrate commonality/variability analysis in the
context of a concrete application example

• Illustrate how OO frameworks can be
combined with the generic programming
features of C++ & STL

• Compare/contrast OO & non-OO
approaches

Leaf
Nodes

Binary
Nodes

Unary
Node

Pattern & Framework Tutorial Douglas C. Schmidt

35

Leaf
Nodes

Binary
Nodes

Unary
Node

 • Expression trees consist of nodes containing operators & operands

• Operators have different precedence levels, different associativities, &
different arities, e.g.:

• Multiplication takes precedence over addition

• The multiplication operator has two
arguments, whereas unary minus
operator has only one

• Operands can be integers, doubles,
variables, etc.

• We'll just handle integers in this
application

• Application can be extended easily

Overview of Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

36 See www.dre.vanderbilt.edu/~schmidt/qualcomm-india/tree-traversal.zip

Leaf
Nodes

Binary
Nodes

Unary
Node

• Trees may be ―evaluated‖ via different traversal orders

• e.g., in-order, post-order, pre-order, level-order

• The evaluation step may perform various operations, e.g.:

• Print the contents of the expression tree

• Return the ―value" of the expression tree

• Generate code

• Perform semantic analysis &
optimization

• etc.

Overview of Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

37

Using the Expression Tree Application

% tree-traversal

> 1+4*3/2

7

> (8/4) * 3 + 1

7

^D

% tree-traversal -v

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]

quit

> format in-order

> expr 1+4*3/2

> eval post-order

7

> quit

• By default, the expression tree application can run in ―succinct mode,‖ e.g.:

• You can also run
the expression
tree application
in ―verbose
mode,‖ e.g.:

Pattern & Framework Tutorial Douglas C. Schmidt

38

How Not to Design an Expression Tree Application
A typical algorithmic-based solution for implementing expression trees uses a
C struct/union to represent the main data structure

typedef struct Tree_Node {
 enum { NUM, UNARY, BINARY } tag_;

 short use_; /* reference count */
 union {

 char op_[2];
 int num_;

 } o;
#define num_ o.num_

#define op_ o.op_
 union {

 struct Tree_Node *unary_;
 struct { struct Tree_Node *l_, *r_;} binary_;

 } c;
#define unary_ c.unary_

#define binary_ c.binary_
} Tree_Node;

Pattern & Framework Tutorial Douglas C. Schmidt

39

Here’s the memory layout & class diagram for a struct Tree_Node:

How Not to Design an Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

40

A typical algorithmic implementation uses a switch statement & a recursive
function to build & evaluate a tree, e.g.:

void print_tree (Tree_Node *root) {

 switch (root->tag_)

 case NUM: printf (“%d”, root->num_); break;

 case UNARY:

 printf ("(%s”, root->op_[0]);

 print_tree (root->unary_);

 printf (")"); break;

 case BINARY:

 printf ("(");

 print_tree (root->binary_.l_); // Recursive call

 printf (“%s”, root->op_[0]);

 print_tree (root->binary_.r_); // Recursive call

 printf (")"); break;

 default:

 printf ("error, unknown type ");

}

How Not to Design an Expression Tree Application

Pattern & Framework Tutorial Douglas C. Schmidt

41

Limitations with the Algorithmic Approach
• Little or no use of encapsulation:

implementation details available to
clients

• Incomplete modeling of the
application domain, which results in

• Tight coupling between
nodes/edges in union
representation

• Complexity being in algorithms
rather than the data structures,
e.g., switch statements are used to
select between various types of
nodes in the expression trees

• Data structures are ―passive‖
functions that do their work
explicitly

• The program organization makes it
hard to extend

• e.g., Any small changes will
ripple through entire
design/implementation

• Easy to make mistakes switching
on type tags

• Wastes space by making worst-
case assumptions wrt structs &
unions

Pattern & Framework Tutorial Douglas C. Schmidt

42

An OO Alternative Using Patterns & Frameworks
• Start with OO modeling of the ―expression tree‖ application domain

• Conduct commonality/variability analysis (CVA) to determine stable
interfaces & points of variability

• Apply patterns to guide design/implementation of framework

• Integrate with C++ STL algorithms/containers where appropriate

Leaf
Nodes

Binary
Nodes

Unary
Node

• Model a tree as a collection of
nodes

• Nodes are represented in an
inheritance hierarchy that
captures the particular properties
of each node

• e.g., precedence levels, different
associativities, & different arities

Pattern & Framework Tutorial Douglas C. Schmidt

43

Design Problems & Pattern-Oriented Solutions

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)

Expression tree structure Composite

Encapsulating variability &
simplifying memory
management

Bridge

Tree printing & evaluation Iterator & Visitor

Consolidating user
operations

Command

Ensuring correct protocol
for commands

State

Consolidating creation of
Variabilities

Abstract Factory
& Factory
Method

Parsing expressions &
creating expression tree

Interpreter &
Builder

Pattern & Framework Tutorial Douglas C. Schmidt

44

Design Problems & Pattern-Oriented Solutions

None of these patterns are restricted to expression tree applications…

Leaf
Nodes

Binary
Nodes

Unary
Node

Design Problem Pattern(s)

Driving the application
event flow

Reactor

Supporting multiple
operation modes

Template Method
& Strategy

Centralizing global
objects effectively

Singleton

Implementing STL
iterator semantics

Prototype

Eliminating loops via the
STL std::for_each()

algorithm

Adapter

Provide no-op commands Null Object

Pattern & Framework Tutorial Douglas C. Schmidt

45

Managing Global Objects Effectively

Goals:

– Centralize access to
objects that should be
visible globally, e.g.:

– command-line options
that parameterize the
behavior of the program

– The object (Reactor)
that drives the main
event loop

Constraints/forces:

– Only need one instance
of the command-line
options & Reactor

– Global variables are
problematic in C++

% tree-traversal -v

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]

quit

> format in-order

> expr 1+4*3/2

> eval post-order

7

> quit

% tree-traversal

> 1+4*3/2

7

Verbose mode

Succinct mode

Pattern & Framework Tutorial Douglas C. Schmidt

46

Solution: Centralize Access to Global Instances
Rather than using global variables, create a central access point to global
instances, e.g.:

int main (int argc, char *argv[])

{

 // Parse the command-line options.

 if (!Options::instance ()->parse_args (argc, argv))

 return 0;

 // Dynamically allocate the appropriate event handler

 // based on the command-line options.

 Expression_Tree_Event_Handler *tree_event_handler =

 Expression_Tree_Event_Handler::make_handler

 (Options::instance ()->verbose ());

 // Register event handler with the reactor.

 Reactor::instance ()->register_input_handler

 (tree_event_handler);

 // ...

Pattern & Framework Tutorial Douglas C. Schmidt

47

Singleton object creational

Intent

ensure a class only ever has one instance & provide a global point of access

Applicability

– when there must be exactly one instance of a class, & it must be
accessible from a well-known access point

– when the sole instance should be extensible by subclassing, & clients
should be able to use an extended instance without modifying their code

Structure

If (uniqueInstance == 0)

 uniqueInstance = new Singleton;

return uniqueInstance;

Pattern & Framework Tutorial Douglas C. Schmidt

48

Consequences

+ reduces namespace pollution

+ makes it easy to change your mind &
allow more than one instance

+ allow extension by subclassing

– same drawbacks of a global if misused

– implementation may be less efficient
than a global

– concurrency pitfalls strategy creation &
communication overhead

Implementation

– static instance operation

– registering the singleton instance

– deleting singletons

Known Uses

– Unidraw's Unidraw object

– Smalltalk-80 ChangeSet,
the set of changes to code

– InterViews Session object

See Also

– Double-Checked Locking
Optimization pattern from
POSA2

– ―To Kill a Singleton‖
www.research.ibm.com/
designpatterns/pubs/
ph-jun96.txt

Singleton object creational

Pattern & Framework Tutorial Douglas C. Schmidt

49

Expression Tree Structure
Goals:

– Support ―physical‖ structure of expression tree

• e.g., binary/unary operators & operators

– Provide ―hook‖ for enabling arbitrary operations on tree nodes

• Via Visitor pattern

Constraints/forces:

– Treat operators & operands
uniformly

– No distinction between
one & many

Leaf
Nodes

Unary
Node

Pattern & Framework Tutorial Douglas C. Schmidt

50

Solution: Recursive Structure

Leaf
Nodes

Binary
Nodes

Unary
Node

• Model a tree as a recursive
collection of nodes

• Nodes are represented in an
inheritance hierarchy that captures
the particular properties of each
node

• e.g., precedence levels, different
associativities, & different arities

• Binary nodes recursively contain
two other nodes; unary nodes
recursively contain one other node

Pattern & Framework Tutorial Douglas C. Schmidt

51

Composite Builder

Interpreter

Expression_Tree_

Context
Expression_Tree

Interpreter

Interpreter_Context

Symbol

Operator Unary_Operator Number

Substract Add Negate

Multiply Divide

Component_Node

Composite_

Binary_Node

Composite_

Unary_Node
Leaf_Node

Composite_

Substract_Node

Composite_

Add_Node

Composite_

Negate_Node

Composite_

Multiply_Node

Composite_

Divide_Node

Overview of Tree Structure & Creation Patterns

<< create >>

<< use >>

<< create >>

<< create >>

Pattern & Framework Tutorial Douglas C. Schmidt

52

Component_Node

Abstract base class for composable expression tree node objects

Interface:

Subclasses:

Leaf_Node, Composite_Unary_Node, Composite_Binary_Node, etc.

virtual ~Component_Node (void)=0
virtual int item (void) const

virtual Component_Node * left (void) const
virtual Component_Node * right (void) const

virtual void accept (Visitor &visitor) const

Commonality: base class interface is used by all nodes in an expression
tree

Variability: each subclass defines state & method implementations that
are specific for the various types of nodes

http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComponent__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classVisitor.html

Pattern & Framework Tutorial Douglas C. Schmidt

53

Component_Node Hierarchy

Note the inherent recursion in this hierarchy

 i.e., a Composite_Binary_Node is a Component_Node & a
Composite_Binary_Node also has Component_Nodes!

Pattern & Framework Tutorial Douglas C. Schmidt

54

Composite object structural

Intent

treat individual objects & multiple, recursively-composed objects
uniformly

Applicability

objects must be composed recursively,

and no distinction between individual & composed elements,

and objects in structure can be treated uniformly

Structure e.g., Component_Node

e.g., Composite_Unary_Node,
Composite_Binary_Node, etc.

e.g., Leaf_Node

Pattern & Framework Tutorial Douglas C. Schmidt

55

Consequences

+ uniformity: treat components the same
regardless of complexity

+ extensibility: new Component subclasses work
wherever old ones do

– overhead: might need prohibitive numbers of
objects

– Awkward designs: may need to treat leaves as
lobotomized composites

Implementation

– do Components know their parents?

– uniform interface for both leaves & composites?

– don’t allocate storage for children in Component
base class

– responsibility for deleting children

Known Uses

– ET++ Vobjects

– InterViews Glyphs,
Styles

– Unidraw Components,
MacroCommands

– Directory structures
on UNIX & Windows

– Naming Contexts in
CORBA

– MIME types in SOAP

Composite object structural

Pattern & Framework Tutorial Douglas C. Schmidt

56

Parsing Expressions & Creating Expression Tree

Goals:

– Simplify & centralize the creation of all
nodes in the composite expression tree

– Extensible for future types of
expression orderings

Constraints/forces:

– Don’t recode existing
clients

– Add new expressions
without recompiling

Leaf
Nodes

Unary
Node

―in-order‖ expression = -5*(3+4)

―pre-order‖ expression = *-5+34

―post-order‖ expression = 5-34+*

―level-order‖ expression = *-+534

Pattern & Framework Tutorial Douglas C. Schmidt

57

Solution: Build Parse Tree Using Interpreter

• Each make_tree() method in the appropriate state object uses an

interpreter to create a parse tree that corresponds to the expression input

• This parse tree is then traversed to build each node in the corresponding
expression tree

Interpreter

Interpreter_Context
In_Order_

Uninitialized_

State

make_tree()

Pattern & Framework Tutorial Douglas C. Schmidt

58

Interpreter
Parses expressions into parse tree & generate corresponding expression tree

Interface:

Commonality: Provides a common interface for parsing expression input &
building expression trees

Variability: The structure of the expression trees can vary depending on the
format & contents of the expression input

 Interpreter (void)
virtual ~Interpreter (void)

Expression
_Tree

 interpret (Interpreter_Context &context,
 const std::string &input)

Interpreter_Context (void)

 ~Interpreter_Context (void)
int get (std::string variable)

void set (std::string variable, int value)
void print (void)
void reset (void)

 Symbol (Symbol *left,
 Symbol *right)

virtual ~Symbol (void)
virtual int precedence (void)=0

virtual Component_Node * build (void)=0

uses

creates

http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classInterpreter__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classSymbol.html

Pattern & Framework Tutorial Douglas C. Schmidt

59

Interpreter class behavioral

Structure

Intent

Given a language, define a representation for its grammar along with an
interpreter that uses the representation to interpret sentences in the
language

Applicability

– When the grammar is simple & relatively stable

– Efficiency is not a critical concern

Pattern & Framework Tutorial Douglas C. Schmidt

60

Consequences

+ Simple grammars are easy to change & extend, e.g.,
all rules represented by distinct classes in an orderly
manner

+ Adding another rule adds another class

– Complex grammars are hard to implement &
maintain, e.g., more interdependent rules yield more
interdependent classes

Implementation

• Express the language rules, one per class

• Alternations, repetitions, or sequences expressed as
nonterminal expresssions

• Literal translations expressed as terminal expressions

• Create interpret method to lead the context through
the interpretation classes

Interpreter class behavioral

Known Uses

• Text editors &Web
browsers use
Interpreter to lay
out documents &
check spelling

• For example, an
equation in TeX is
represented as a
tree where internal
nodes are
operators, e.g.
square root, &
leaves are
variables

Pattern & Framework Tutorial Douglas C. Schmidt

61

Builder object creational

Intent

Separate the construction of a complex object from its representation so
that the same construction process can create different representations

Applicability

– Need to isolate knowledge of the creation of a complex object from its
parts

– Need to allow different implementations/interfaces of an object's parts

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

62

Builder object creational
Consequences

+ Can vary a product's internal representation

+ Isolates code for construction &
representation

+ Finer control over the construction process

Implementation

• The Builder pattern is basically a Factory
pattern with a mission

• A Builder pattern implementation exposes
itself as a factory, but goes beyond the
factory implementation in that various
implementations are wired together

Known Uses

• ACE Service Configurator
framework

Pattern & Framework Tutorial Douglas C. Schmidt

63

Composite Builder

Interpreter

Expression_Tree_

Context
Expression_Tree

Interpreter

Interpreter_Context

Symbol

Operator Unary_Operator Number

Substract Add Negate

Multiply Divide

Component_Node

Composite_

Binary_Node

Composite_

Unary_Node
Leaf_Node

Composite_

Substract_Node

Composite_

Add_Node

Composite_

Negate_Node

Composite_

Multiply_Node

Composite_

Divide_Node

Summary of Tree Structure & Creation Patterns

<< create >>

<< use >>

<< create >>

<< create >>

Pattern & Framework Tutorial Douglas C. Schmidt

64

Visitor
Iterator

Bridge

Expression_Tree Component_Node Visitor

Evaluation_Visitor

std::stack

Print_Visitor
Expression_Tree_

Iterator

Expression_Tree_

Iterator_Impl

Pre_Order_Expression_

Tree_Iterator_Impl

In_Order_Expression_

Tree_Iterator_Impl

Post_Order_Expression_

Tree_Iterator_Impl

Level_Order_Expression_

Tree_Iterator_Impl
LQueue

Overview of Tree Traversal Patterns

<< create >>

<< accept >>

Pattern & Framework Tutorial Douglas C. Schmidt

65

Encapsulating Variability &
Simplifying Memory Managment

Goals

– Hide many sources of variability in expression tree construction & use

– Simplify C++ memory management, i.e., minimize use of new/delete in
application code

Constraints/forces:

– Must account for the fact that STL algorithms & iterators have ―value
semantics‖

– Must ensure that exceptions don’t cause memory leaks

for (Expression_Tree::iterator iter = tree.begin ();
 iter != tree.end ();
 ++iter)
 (*iter).accept (print_visitor);

Pattern & Framework Tutorial Douglas C. Schmidt

66

Solution: Decouple Interface & Implementation(s)

Expression_Tree

• Create a public interface class (Expression_Tree) used by clients & a
private implementation hierarchy (rooted at Component_Node) that

encapsulates variability

• The public interface class can perform reference counting of
implementation object(s) to automate memory management

• An Abstract Factory can produce the right implementation (as seen later)

Pattern & Framework Tutorial Douglas C. Schmidt

67

Expression_Tree

 Expression_Tree (void)
 Expression_Tree (Component_Node *root)
 Expression_Tree (const Expression_Tree &t)

void operator= (const Expression_Tree &t)
 ~Expression_Tree (void)

Component_Node * get_root (void)
bool is_null (void) const

const int item (void) const
Expression_Tree left (void)
Expression_Tree right (void)

iterator begin (const std::string &traversal_order)
iterator end (const std::string &traversal_order)

const_iterator begin (const std::string &traversal_order) const
const_iterator end (const std::string &traversal_order) const

Interface for Composite pattern used to contain all nodes in expression tree

Commonality: Provides a common interface for expression tree operations

Variability: The contents of the expression tree nodes can vary depending
on the expression

Interface:

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html

Pattern & Framework Tutorial Douglas C. Schmidt

68

Bridge object structural

Intent

Separate a (logical) abstraction interface from its (physical)
implementation(s)

Applicability

– When interface & implementation should vary independently

– Require a uniform interface to interchangeable class hierarchies

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

69

Consequences

+abstraction interface & implementation are independent

+ implementations can vary dynamically

+Can be used transparently with STL algorithms & containers

– one-size-fits-all Abstraction & Implementor interfaces

Implementation

• sharing Implementors & reference counting

• See reusable Refcounter template class (based on STL/boost
shared_pointer)

• creating the right Implementor (often use factories)

Known Uses

• ET++ Window/WindowPort

• libg++ Set/{LinkedList, HashTable}

• AWT Component/ComponentPeer

Bridge object structural

Pattern & Framework Tutorial Douglas C. Schmidt

70

Tree Printing & Evaluation
Goals:

– Create a framework for
performing algorithms that
affect nodes in a tree

Constraints/forces:

– support multiple algorithms
that can act on the expression
tree

– don’t tightly couple algorithms
with expression tree structure

– e.g., don’t have ―print‖ &
―evaluate‖ methods in the
node classes

Leaf
Nodes

Binary
Nodes

Unary
Node

Algo 1: Print all
the values of the
nodes in the tree

Algo 2: Evaluate
the ―yield‖ of the
nodes in the tree

Pattern & Framework Tutorial Douglas C. Schmidt

71

Solution: Encapsulate Traversal

Leaf
Nodes

Unary
Node

Expression_Tree_Iterator Expression_Tree_Iterator_Impl

Level_Order_Expression_Tree_Iterator_Impl Pre_Order_Expression_Tree_Iterator_Impl

In_Order_Expression_Tree_Iterator_Impl Post_Order_Expression_Tree_Iterator_Impl

Iterator

– encapsulates a traversal algorithm
without exposing representation
details to callers

e.g.,

– ―in-order iterator‖ = -5*(3+4)

– ―pre-order iterator‖ = *-5+34

– ―post-order iterator‖ = 5-34+*

– ―level-order iterator‖ = *-+534

Note use of the Bridge pattern to encapsulate variability

Pattern & Framework Tutorial Douglas C. Schmidt

72

Expression_Tree_Iterator

 Expression_Tree_Iterator
 (const Expression_Tree_Iterator &)
 Expression_Tree_Iterator
 (Expression_Tree_Iterator_Impl *)

Expression_Tree operator * (void)
const Expression_Tree operator * (void) const

Expression_Tree_Iterator & operator++ (void)
Expression_Tree_Iterator operator++ (int)

bool operator== (const Expression_Tree_Iterator &rhs)
bool operator!= (const Expression_Tree_Iterator &rhs)

Interface:

Commonality: Provides a common interface for expression tree iterators
that conforms to the standard STL iterator interface

Variability: Can be configured with specific expression tree iterator
algorithms via the Bridge & Abstract Factory patterns

Interface for Iterator pattern that traverses all nodes in tree expression

See Expression_Tree_State.cpp for example usage

http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator__Impl.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html

Pattern & Framework Tutorial Douglas C. Schmidt

73

Expression_Tree_Iterator_Impl

Interface:

Commonality: Provides a common interface for implementing expression
tree iterators that conforms to the standard STL iterator interface

Variability: Can be subclasses to define various algorithms for accessing
nodes in the expression trees in a particular traversal order

Implementation of the Iterator pattern that is used to define the various
iterations algorithms that can be performed to traverse the expression tree

 Expression_Tree_Iterator_Impl (const
Expression_Tree &tree)

virtual ~Expression_Tree_Iterator_Impl (void)
virtual Expression_Tree operator * (void) =0

virtual const Expression_Tree operator * (void) const =0
virtual void operator++ (void)=0
virtual bool operator== (const

Expression_Tree_Iterator_Impl &rhs) const =0
virtual bool operator!= (const

Expression_Tree_Iterator_Impl &rhs) const =0
virtual Expression_Tree_Iterator_Impl * clone (void)=0

C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classExpression__Tree__Iterator.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html
C:/temp/WOOD/html/classExpression__Tree__Iterator__Impl.html

Pattern & Framework Tutorial Douglas C. Schmidt

74

Iterator object behavioral
Intent

access elements of a aggregate (container) without exposing its
representation

Applicability

– require multiple traversal algorithms over an aggregate

– require a uniform traversal interface over different aggregates

– when aggregate classes & traversal algorithm must vary independently

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

75

Comparing STL Iterators with GoF Iterators

for (Expression_Tree::iterator iter = tree.begin (”Level Order”);
 iter != tree.end (”Level Order”);
 ++iter)
 (*iter).accept (print_visitor);

In contrast, ―GoF iterators have ―pointer semantics‖, e.g.:

iterator *iter;

for (iter = tree.createIterator (”Level Order”);
 iter->done () == false;
 iter->advance ())
 (iter->currentElement ())->accept (print_visitor);

delete iter;

STL iterators have ―value-semantics‖, e.g.:

Bridge pattern simplifies use of STL iterators in expression tree application

Pattern & Framework Tutorial Douglas C. Schmidt

76

Consequences

+ flexibility: aggregate & traversal are independent

+ multiple iterators & multiple traversal algorithms

– additional communication overhead between
iterator & aggregate

– This is particularly problematic for iterators in
concurrent or distributed systems

Implementation

• internal versus external iterators

• violating the object structure’s encapsulation

• robust iterators

• synchronization overhead in multi-threaded
programs

• batching in distributed & concurrent programs

Known Uses

• C++ STL iterators

• JDK Enumeration,
Iterator

• Unidraw Iterator

Iterator object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

77

Visitor
• Defines action(s) at each step of traversal & avoids wiring action(s) in nodes

• Iterator calls nodes’s accept(Visitor) at each node, e.g.:

void Leaf_Node::accept (Visitor &v) { v.visit (*this); }

• accept() calls back on visitor using ―static polymorphism‖

Commonality: Provides a common accept() method for all expression
tree nodes & common visit() method for all visitor subclasses

Variability: Can be subclassed to define
specific behaviors for the visitors & nodes

Interface:
virtual void visit (const Leaf_Node &node)=0
virtual void visit (const Composite_Negate_Node &node)=0
virtual void visit (const Composite_Add_Node &node)=0
virtual void visit (const Composite_Subtract_Node &node)=0
virtual void visit (const Composite_Divide_Node &node)=0
virtual void visit (const Composite_Multiply_Node &node)=0

http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Negate__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Add__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Subtract__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Divide__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classLeaf__Node.html
http://www.cs.wustl.edu/~schmidt/expr-tree/classComposite__Multiply__Node.html

Pattern & Framework Tutorial Douglas C. Schmidt

78

Print_Visitor

• Prints character code or value for each node

• Can be combined with any traversal algorithm, e.g.:

class Print_Visitor : public Visitor {

public:

 virtual void visit (const Leaf_Node &);

 virtual void visit (const Add_Node &);

 virtual void visit (const Divide_Node &);

 // etc. for all relevant Component_Node subclasses

};

Print_Visitor print_visitor;
for (Expression_Tree::iterator iter =
 tree.begin (”post-order”);
 iter != tree.end (”post-order”);
 ++iter)
 (*iter).accept (print_visitor); // calls visit (*this);

See Expression_Tree_State.cpp for example usage

Pattern & Framework Tutorial Douglas C. Schmidt

79

Print_Visitor Interaction Diagram
• The iterator controls the order in which accept() is called on each node in

the composition

• accept() then ―visits‖ the node to perform the desired print action

 accept(print_visitor)

 accept(print_visitor)

 print_visitor Leaf_Node (5) Composite_Negate_Node

cout<< node.item ();

 cout<< ‘-’

Pattern & Framework Tutorial Douglas C. Schmidt

80

Evaluation_Visitor

Leaf
Nodes

Unary
Node

• This class serves as a visitor for
evaluating nodes in an expression
tree that is being traversed using
a post-order iterator

– e.g., 5-34+*

• It uses a stack to keep track of the post-
order expression tree value that has
been processed thus far during the
iteration traversal, e.g.:

1. S = [5] push(node.item())

2. S = [-5] push(-pop())

3. S = [-5, 3] push(node.item())

4. S = [-5, 3, 4] push(node.item())

5. S = [-5, 7] push(pop()+pop())

6. S = [-35] push(pop()*pop())

class Evaluation_Visitor :

 public Visitor { /* ... */ };

Pattern & Framework Tutorial Douglas C. Schmidt

81

 accept(eval_visitor)

 accept(eval_visitor)

 eval_visitor Leaf_Node (5) Composite_Negate_Node

stack_.push(node.item ());

Evaluation_Visitor Interaction Diagram

• The iterator controls the order in which accept() is called on each node in
the composition

• accept() then ―visits‖ the node to perform the desired evaluation action

 stack_.push(-stack_.pop());

Pattern & Framework Tutorial Douglas C. Schmidt

82

Visitor object behavioral
Intent

Centralize operations on an object structure so that they can vary
independently but still behave polymorphically

Applicability

– when classes define many unrelated operations

– class relationships of objects in the structure rarely change, but the
operations on them change often

– algorithms keep state that’s updated during traversal

Structure

Note ―static polymorphism‖ based on method overloading by type

Pattern & Framework Tutorial Douglas C. Schmidt

83

Consequences

+ flexibility: visitor algorithm(s) & object structure are independent

+ localized functionality in the visitor subclass instance

– circular dependency between Visitor & Element interfaces

– Visitor brittle to new ConcreteElement classes

Implementation

• double dispatch

• general interface to elements of object structure

Known Uses

• ProgramNodeEnumerator in Smalltalk-80 compiler

• IRIS Inventor scene rendering

• TAO IDL compiler to handle different backends

Visitor object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

84

Visitor
Iterator

Bridge

Expression_Tree Component_Node Visitor

Evaluation_Visitor

std::stack

Print_Visitor
Expression_Tree_

Iterator

Expression_Tree_

Iterator_Impl

Pre_Order_Expression_

Tree_Iterator_Impl

In_Order_Expression_

Tree_Iterator_Impl

Post_Order_Expression_

Tree_Iterator_Impl

Level_Order_Expression_

Tree_Iterator_Impl
LQueue

Summary of Tree Traversal Patterns

<< create >>

<< accept >>

Pattern & Framework Tutorial Douglas C. Schmidt

85

Command

AbstractFactory

Expression_Tree_Command_

Factory_Impl

Expression_Tree_

Command_Factory

Expression_Tree_

Event_Handler

Expression_Tree_

Command

<< create >>
Concrete_Expression_Tree_

Command_Factory_Impl

Expression_Tree_

Command_Impl

Format_Command Expr_Command

Print_Command

Eval_Command

Set_Command Quit_Command Macro_Command

*

Null_Command

Expression_Tree_

Context

1

Overview of Command & Factory Patterns

Pattern & Framework Tutorial Douglas C. Schmidt

86

Consolidating User Operations
Goals:

– support execution of
user operations

– support macro
commands

– support undo/redo

Constraints/forces:

– scattered operation
implementations

– Consistent memory
management

% tree-traversal -v

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]

quit

> format in-order

> expr 1+2*3/2

> print in-order

1+2*3/2

> print pre-order

+1/*232

> eval post-order

4

> quit

Pattern & Framework Tutorial Douglas C. Schmidt

87

Solution: Encapsulate Each Request w/Command
 A Command encapsulates Command may

 implement the operations
itself, or

 delegate them to other
object(s)

 an operation (execute())

 an inverse operation (unexecute())

 a operation for testing reversibility
(boolean reversible())

 state for (un)doing the operation

Expression_Tree_Command_Impl

Expr_Command Macro_Command

Expression_Tree_Command

Format_Command Quit_Command Print_Command Eval_Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Pattern & Framework Tutorial Douglas C. Schmidt

88

Expression_Tree_Command

 Expression_Tree_Command
(Expression_Tree_Command_Impl *=0)
 Expression_Tree_Command (const
Expression_Tree_Command &)

Expression_Tree_Command & operator= (const Expression_Tree_Command &)
 ~Expression_Tree_Command (void)

bool execute (void)
 bool unexecute (void)

Interface for Command pattern used to define a command that performs
an operation on the expression tree when executed

Interface:

Commonality: Provides a common interface for expression tree
commands

Variability: The implementations of the expression tree commands can
vary depending on the operations requested by user input

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

Pattern & Framework Tutorial Douglas C. Schmidt

89

List of Commands = Execution History

future past

cmd

execute()

cmd

unexecute()

past future

Undo: Redo:

cmd

unexecute()

cmd

unexecute()

Pattern & Framework Tutorial Douglas C. Schmidt

90

Command object behavioral
Intent

Encapsulate the request for a service

Applicability

– to parameterize objects with an action to perform

– to specify, queue, & execute requests at different times

– for multilevel undo/redo

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

91

Consequences

+ abstracts executor of a service

+ supports arbitrary-level undo-redo

+ composition yields macro-commands

– might result in lots of trivial command
subclasses

– excessive memory may be needed to
support undo/redo operations

Implementation

• copying a command before putting it
on a history list

• handling hysteresis

• supporting transactions

Command object behavioral

Known Uses

• InterViews Actions

• MacApp, Unidraw Commands

• JDK’s UndoableEdit,
AccessibleAction

• Emacs

• Microsoft Office tools

Pattern & Framework Tutorial Douglas C. Schmidt

92

Consolidating Creation of Variabilities
Goals:

– Simplify & centralize the creation of all
variabilities in the expression tree
application to ensure semantic compatibility

– Be extensible for future variabilities

Expression_Tree_Command_Impl

Expr_Command Macro_Command

Expression_Tree_Command

Format_Command Quit_Command Print_Command Eval_Command

Expression_Tree_Iterator Expression_Tree_Iterator_Impl

Level_Order_Expression_Tree_Iterator_Impl Pre_Order_Expression_Tree_Iterator_Impl

In_Order_Expression_Tree_Iterator_Impl Post_Order_Expression_Tree_Iterator_Impl

Constraints/forces:

– Don’t recode
existing clients

– Add new variabilities
without recompiling

Pattern & Framework Tutorial Douglas C. Schmidt

93

Solution: Abstract Object Creation
Instead of

Expression_Tree_Command command

 = new Print_Command ();

Use

Expression_Tree_Command command

 = command_factory.make_command (“print”);

where command_factory is an instance of Expression_Tree_Command_Factory
or anything else that makes sense wrt our goals

Expression_Tree_Command_Factory_Impl

Concrete_Expression_Tree_

Command_Factory_Impl

Expression_Tree_Command_Factory

Pattern & Framework Tutorial Douglas C. Schmidt

94

Expression_Tree_Command_Factory

 Expression_Tree_Command_Factory
 (Expression_Tree_Context &tree_context)
 Expression_Tree_Command_Factory
 (const Expression_Tree_Command_Factory &f)

void operator= (const Expression_Tree_Command_Factory &f)
 ~Expression_Tree_Command_Factory (void)

Expression_Tree_Command make_command (const std::string &s)
Expression_Tree_Command make_format_command (const std::string &)
Expression_Tree_Command make_expr_command (const std::string &)
Expression_Tree_Command make_print_command (const std::string &)
Expression_Tree_Command make_eval_command (const std::string &)
Expression_Tree_Command make_quit_command (const std::string &)
Expression_Tree_Command make_macro_command (const std::string &)

Interface for Abstract Factory pattern used to create appropriate command
based on string supplied by caller

Interface:

Commonality: Provides a common interface to create commands

Variability: The implementations of the expression tree command
factory methods can vary depending on the requested commands

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command__Factory.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

Pattern & Framework Tutorial Douglas C. Schmidt

95

Factory Structure

Expression_Tree_Command_

Factory_Impl

Concrete_Expression_Tree_

Command_Factory_Impl

make_format_command()

make_expr_command()

make_print_command()

make_eval_command()

make_macro_command()

make_quit_command()

Expression_Tree_Command_Impl

Print_Command

Expression_Tree_Command

Macro_Command

Format_Command

Expr_Command

Eval_Command

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Expression_Tree_Command_

Factory

Quit_Command

Pattern & Framework Tutorial Douglas C. Schmidt

96

Factory Method class creational

Intent

Provide an interface for creating an object, but leave choice of object’s
concrete type to a subclass

Applicability

when a class cannot anticipate the objects it must create or a class
wants its subclasses to specify the objects it creates

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

97

Consequences

+By avoiding to specify the class name of the
concrete class &the details of its creation the
client code has become more flexible

+The client is only dependent on the interface

- Construction of objects requires one additional
class in some cases

Implementation

• There are two choices here

• The creator class is abstract & does not implement creation
methods (then it must be subclassed)

• The creator class is concrete & provides a default
implementation (then it can be subclassed)

• Should a factory method be able to create different variants? If so
the method must be equipped with a parameter

Factory Method class creational

Known Uses

• InterViews Kits

• ET++
WindowSystem

• AWT Toolkit

• The ACE ORB (TAO)

• BREW

• UNIX open() syscall

Pattern & Framework Tutorial Douglas C. Schmidt

98

Abstract Factory object creational

Intent

create families of related objects without specifying subclass names

Applicability

when clients cannot anticipate groups of classes to instantiate

Structure

See Uninitialized_State_Factory &
Expression_Tree_Event_Handler for Factory pattern variants

Pattern & Framework Tutorial Douglas C. Schmidt

99

Consequences

+ flexibility: removes type (i.e., subclass)
dependencies from clients

+ abstraction & semantic checking: hides
product’s composition

– hard to extend factory interface to create new
products

Implementation

• parameterization as a way of controlling interface size

• configuration with Prototypes, i.e., determines who
creates the factories

• abstract factories are essentially groups of factory
methods

Abstract Factory object creational

Known Uses

– InterViews Kits

– ET++
WindowSystem

– AWT Toolkit

– The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

100

Command

AbstractFactory

Expression_Tree_Command_

Factory_Impl

Expression_Tree_

Command_Factory

Expression_Tree_

Event_Handler

Expression_Tree_

Command

<< create >>
Concrete_Expression_Tree_

Command_Factory_Impl

Expression_Tree_

Command_Impl

Format_Command Expr_Command

Print_Command

Eval_Command

Set_Command Quit_Command Macro_Command

*

Null_Command

Expression_Tree_

Context

1

Summary of Command & Factory Patterns

Pattern & Framework Tutorial Douglas C. Schmidt

101

State

Expression_Tree_

Context

Expression_Tree_

State

Uninitialized_

State

Pre_Order_

Uninitialized_State

Pre_Order_

Initialized_State

Post_Order_

Uninitialized_State

Post_Order_

Initialized_State

In_Order_

Uninitialized_State

In_Order_

Initialized_State

Level_Order_

Uninitialized_State

Level_Order_

Initialized_State

Interpreter
<< use >>

Overview of State Pattern

Pattern & Framework Tutorial Douglas C. Schmidt

102

Ensuring Correct Protocol for Commands
Goals:

– Ensure that users
follow the correct
protocol when entering
commands

Constraints/forces:

– Must consider context
of previous commands
to determine protocol
conformance, e.g.,

– format must be called

first

– expr must be called
before print or eval

– Print & eval can be

called in any order

% tree-traversal -v

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]

quit

> format in-order

> print in-order

Error: Expression_Tree_State::print called
in invalid state

Protocol violation

Pattern & Framework Tutorial Douglas C. Schmidt

103

Solution: Encapsulate Command History as States
 • The handling of a user command depends on the history of prior

commands

• This history can be represented as a state machine

Uninitialized
State

*_Order_
Uninitialized

State
*_Order_
Initialized

State

format()

make_tree()

print() eval()

make_tree()

format()

quit()

Pattern & Framework Tutorial Douglas C. Schmidt

104

Solution: Encapsulate Command History as States

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Expression_Tree_Context

• The state machine can be encoded using various subclasses that enforce
the correct protocol for user commands

Pattern & Framework Tutorial Douglas C. Schmidt

105

Expression_Tree_Context
Interface for State pattern used to ensure that commands are invoked
according to the correct protocol

Interface:

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

void format (const std::string &new_format)
void make_tree (const std::string &expression)
void print (const std::string &format)
void evaluate (const std::string &format)

Expression_Tree_State * state (void) const
void state (Expression_Tree_State *new_state)

Expression_Tree & tree (void)
void tree (const Expression_Tree &new_tree)

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html

Pattern & Framework Tutorial Douglas C. Schmidt

106

Expression_Tree_State
Implementation of the State pattern that is used to define the various
states that affect how users operations are processed

Interface:

Commonality: Provides a common interface for ensuring that expression
tree commands are invoked according to the correct protocol

Variability: The implementations—& correct functioning—of the
expression tree commands can vary depending on the requested
operations & the current state

virtual void format (Expression_Tree_Context &context,
 const std::string &new_format)

virtual void make_tree (Expression_Tree_Context &context,
 const std::string &expression)

virtual void print (Expression_Tree_Context &context,
 const std::string &format)

virtual void evaluate (Expression_Tree_Context &context,
 const std::string &format)

http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__State.html
http://www.dre.vanderbilt.edu/~schmidt/expr-tree/classExpression__Tree__Context.html

Pattern & Framework Tutorial Douglas C. Schmidt

107

State object behavioral
Intent

Allow an object to alter its behavior when its internal state changes—the
object will appear to change its class

Applicability

– When an object must change its behavior at run-time depending on
which state it is in

– When several operations have the same large multipart conditional
structure that depends on the object's state

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

108

Consequences

+ It localizes state-specific behavior &
partitions behavior for different states

+ It makes state transitions explicit

+ State objects can be shared

– Can result in lots of subclasses that
are hard to understand

Implementation

• Who defines state transitions?

• Consider using table-based alternatives

• Creating & destroying state objects

Known Uses

• The State pattern & its
application to TCP connection
protocols are characterized in:
Johnson, R.E. & J. Zweig.
―Delegation in C++. Journal of
Object-Oriented Programming,‖
4(11):22-35, November 1991

• Unidraw & Hotdraw drawing
tools

State object behavioral

Pattern & Framework Tutorial Douglas C. Schmidt

109

State

Expression_Tree_

Context

Expression_Tree_

State

Uninitialized_

State

Pre_Order_

Uninitialized_State

Pre_Order_

Initialized_State

Post_Order_

Uninitialized_State

Post_Order_

Initialized_State

In_Order_

Uninitialized_State

In_Order_

Initialized_State

Level_Order_

Uninitialized_State

Level_Order_

Initialized_State

Interpreter
<< use >>

Summary of State Pattern

Pattern & Framework Tutorial Douglas C. Schmidt

110

Strategy

Reactor Singleton

Overview of Application Structure Patterns

Expression_Tree_

Command_Factory

Expression_Tree_

Event_Handler

Expression_Tree_

Command

Expression_Tree_

Context

Verbose_Expression_

Tree_Event_Handler

Macro_Expression_

Tree_Event_Handler

<< create >>

Event_Handler Options Reactor

Pattern & Framework Tutorial Douglas C. Schmidt

111

Driving the Application Event Flow
Goals:

– Decouple expression tree application from
the context in which it runs

– Support inversion of control

Constraints/forces:

– Don’t recode existing
clients

– Add new event handles
without recompiling

STL
algorithms

Reactor

GUI

DATABASE

NETWORKING

EXPRESSION
 TREE
FUNCTIONALITY CALL

BACKS

INVOKES

Pattern & Framework Tutorial Douglas C. Schmidt

112

Solution: Separate Event Handling from
Event Infrastructure

Reactor

register_handler()

remove_handler()

run_event_loop()

end_event_loop()

• Create a reactor to detect input on various sources of events & then
demux & dispatch the events to the appropriate event handlers

• Create concrete event handlers that perform the various operational
modes of the expression tree application

• Register the concrete event handlers with the reactor

• Run the reactor’s event loop to drive the application event flow

Pattern & Framework Tutorial Douglas C. Schmidt

113

Reactor & Event Handler
An object-oriented event demultiplexor & dispatcher of event handler
callback methods in response to various types of events

Interface:

Commonality: Provides a common interface for managing & processing
events via callbacks to abstract event handlers

Variability: Concrete implementations of the Reactor & Event_Handlers
can be tailored to a wide range of OS demuxing mechanisms &
application-specific concrete event handling behaviors

 ~Reactor (void)
void run_event_loop (void)
void end_event_loop (void)
void register_input_handler (Event_Handler *event_handler)
void remove_input_handler (Event_Handler *event_handler)

static Reactor * instance (void)

 virtual void ~Event_Handler (void) =0
virtual void delete_this (void)
virtual void handle_input (void)=0

uses

http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classReactor.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classEvent__Handler.html

Pattern & Framework Tutorial Douglas C. Schmidt

114

Reactor Interactions

: Main Program : Exression_Tree
Event Handler

: Reactor : Synchronous
Event

Demultiplexer

register_handler()

get_handle()

handle_events() select()

handle_event()

Handle

Handles

Handles

Con. Event
Handler Events

service()

event

1. Initialize
phase

2. Event
handling
phase

Observations

• Note inversion of control

• Also note how long-running event handlers can
degrade the QoS since callbacks steal the reactor’s
thread!

 See main.cpp for example of using Reactor to drive event loop

Pattern & Framework Tutorial Douglas C. Schmidt

115

Reactor object behavioral
Intent

allows event-driven applications to demultiplex & dispatch service
requests that are delivered to an application from one or more clients

Applicability

– Need to decouple event handling from event
detecting/demuxing/dispatching

– When multiple sources of events must be handled in a single thread

Structure

Handle
owns

dispatches
*

notifies *

*

handle set

 Reactor

 handle_events()

register_handler()

remove_handler()

Event Handler

handle_event ()

get_handle()

Concrete Event
Handler A

handle_event ()

get_handle()

Concrete Event
Handler B

handle_event ()

get_handle()

Synchronous

Event Demuxer

 select ()

<<uses>>

Pattern & Framework Tutorial Douglas C. Schmidt

116

Consequences

+ Separation of concerns & portability

+ Simplify concurrency control

– Non-preemptive

Implementation

• Decouple event demuxing
mechanisms from event dispatching

• Handle many different types of
events, e.g., input/output events,
signals, timers, etc.

Reactor object behavioral

Known Uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• X Windows Xt

• ACE & The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

117

Supporting Multiple Operation Modes
Goals:

– Minimize effort required
to support multiple
modes of operation

– e.g., verbose &
succinct

Constraints/forces:

– support multiple
operational modes

– don’t tightly couple the
operational modes with
the program structure
to enable future
enhancements

% tree-traversal -v

format [in-order]

expr [expression]

print [in-order|pre-order|post-order|level-order]

eval [post-order]

quit

> format in-order

> expr 1+4*3/2

> eval post-order

7

> quit

% tree-traversal

> 1+4*3/2

7

Verbose mode

Succinct mode

Pattern & Framework Tutorial Douglas C. Schmidt

118

Solution: Encapsulate Algorithm Variability

Expression_Tree_Event_Handler

handle_input()

prompt_user()

get_input()

make_command()

execute_command()

Event_Handler

Verbose_Expression_

Tree_Event_Handler

prompt_user()

make_command()

Macro_Command_

Expression_Tree_

Event_Handler

prompt_user()

make_command()

void handle_input (void) { // template method

 prompt_user (); // hook method

 std::string input;

 if (get_input (input) == false) // hook method

 Reactor::instance ()->end_event_loop ();

 Expression_Tree_Command command

 = make_command (input); // hook method

 if (!execute_command (command)) // hook method

 Reactor::instance ()->end_event_loop ();

}

Expression_Tree_Command make_command

 (const std::string &input) {

 return

 command_factory_.make_macro_command (input);

}

Expression_Tree_Command make_command

 (const std::string &input) {

 return

 command_factory_.make_command (input);

}

Implement algorithm once in base class & let subclasses define variant parts

Pattern & Framework Tutorial Douglas C. Schmidt

119

Expression_Tree_Event_Handler
Provides an abstract interface for handling input events associated with the
expression tree application

Interface:

Commonality: Provides a common interface for handling user input
events & commands

Variability: Subclasses implement various operational modes, e.g.,
verbose vs. succinct mode

virtual void handle_input (void)
static Expression_Tree_Event_Handler * make_handler (bool verbose)

virtual void prompt_user (void)=0
virtual bool get_input (std::string &)

virtual Expression_Tree_Command make_command
 (const std::string &input)=0

virtual bool execute_command
 (Expression_Tree_Command &)

Note make_handler() factory method variant

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Event__Handler.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Command.html

Pattern & Framework Tutorial Douglas C. Schmidt

120

Template Method class behavioral
Intent

Provide a skeleton of an algorithm in a method, deferring some steps to
subclasses

Applicability

– Implement invariant aspects of an algorithm once & let subclasses define
variant parts

– Localize common behavior in a class to increase code reuse

– Control subclass extensions

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

121

Template Method class behavioral
Consequences

+ Leads to inversion of control (―Hollywood principle‖: don't call us – we'll
call you)

+ Promotes code reuse

+ Lets you enforce overriding rules

– Must subclass to specialize behavior (cf. Strategy pattern)

Implementation

• Virtual vs. non-virtual template method

• Few vs. lots of primitive operations (hook method)

• Naming conventions (do_*() prefix)

Known Uses

• InterViews Kits

• ET++ WindowSystem

• AWT Toolkit

• ACE & The ACE ORB (TAO)

Pattern & Framework Tutorial Douglas C. Schmidt

122

Strategy object behavioral

Intent

define a family of algorithms, encapsulate each one, & make them
interchangeable to let clients & algorithms vary independently

Applicability

– when an object should be configurable with one of many algorithms,

– and all algorithms can be encapsulated,

– and one interface covers all encapsulations

Structure

Pattern & Framework Tutorial Douglas C. Schmidt

123

Consequences

+ greater flexibility, reuse

+ can change algorithms dynamically

– strategy creation & communication
overhead

– inflexible Strategy interface

– semantic incompatibility of multiple
strategies used together

Implementation

• exchanging information between a
Strategy & its context

• static strategy selection via
parameterized types

Strategy object behavioral

Known Uses

• InterViews text formatting

• RTL register allocation &
scheduling strategies

• ET++SwapsManager
calculation engines

• The ACE ORB (TAO) Real-
time CORBA middleware

See Also

• Bridge pattern (object
structural)

Pattern & Framework Tutorial Douglas C. Schmidt

124

Comparing Strategy with Template Method
Strategy

+ Provides for clean separation
between components
through interfaces

+ Allows for dynamic
composition

+ Allows for flexible mixing &
matching of features

– Has the overhead of
forwarding

– Suffers from the identity
crisis

– Leads to more fragmentation

Template Method

+ No explicit forwarding necessary

– Close coupling between subclass(es) &
base class

– Inheritance hierarchies are static &
cannot be reconfigured at runtime

– Adding features through subclassing
may lead to a combinatorial explosion

– Beware of overusing inheritance–
inheritance is not always the best
choice

– Deep inheritance hierarchy (6 levels &
more) in your application is a red flag

Strategy is commonly used for blackbox frameworks

Template Method is commonly used for whitebox frameworks

Pattern & Framework Tutorial Douglas C. Schmidt

125

Strategy

Reactor Singleton

Summary of Application Structure Patterns

Expression_Tree_

Command_Factory

Expression_Tree_

Event_Handler

Expression_Tree_

Command

Expression_Tree_

Context

Verbose_Expression_

Tree_Event_Handler

Macro_Expression_

Tree_Event_Handler

<< create >>

Event_Handler Options Reactor

Pattern & Framework Tutorial Douglas C. Schmidt

126

Implementing STL Iterator Semantics
Goals:

– Ensure the proper semantics of post-increment operations for STL-based
Expression_Tree_Iterator objects

Constraints/forces:

– STL pre-increment operations are easy to implement since they simply
increment the value & return *this, e.g.,

 iterator &operator++ (void) { ++...; return *this; }

– STL post-increment operations are more complicated, however, since must
make/return a copy of the existing value of the iterator before
incrementing its value, e.g.,

 iterator &operator++ (int) {

 iterator temp = copy_*this; ++...; return temp;

 }

– Since our Expression_Tree_Iterator objects use the Bridge pattern
it is tricky to implement the ―copy_*this‖ step above in a generic way

Pattern & Framework Tutorial Douglas C. Schmidt

127

Solution: Clone a New Instance From a
Prototypical Instance

Expression_Tree_Iterator

 operator++ (int)

Expression_Tree_Iterator_Impl

clone()

Level_Order_Expression_Tree_Iterator_Impl

clone()

Pre_Order_Expression_Tree_Iterator_Impl

clone()

In_Order_Expression_Tree_Iterator_Impl

clone()

Post_Order_Expression_Tree_Iterator_Impl

clone()

iterator

Expression_Tree_Iterator::operator++ (int)

{

 iterator temp (impl_->clone ());

 ++(*impl_);

 return temp;

}

impl_

Note use of Bridge pattern to encapsulate
variability & simplify memory management

Pattern & Framework Tutorial Douglas C. Schmidt

128

Expression_Tree_Iterator_Impl
Implementation of Iterator pattern used to define various iterations
algorithms that can be performed to traverse an expression tree

 Expression_Tree_Iterator_Impl
 (const Expression_Tree &tree)

virtual Component_Node * operator * (void)=0
 void operator++ (void)=0

virtual bool operator== (const Expression_Tree_
 Iterator_Impl &) const=0

virtual bool operator!= (const Expression_Tree_
 Iterator_Impl &) const=0

virtual Expression_Tree_Iterator_Impl * clone (void)=0

Interface:

Commonality: Provides a common interface for expression tree iterator
implementations

Variability: Each subclass implements the clone() method to return a

deep copy of itself

As a general rule it’s better to say ++iter than iter++

http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree.html
http://www.dre.vanderbilt.edu/~schmidt/html/classComponent__Node.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html
http://www.dre.vanderbilt.edu/~schmidt/html/classExpression__Tree__Iterator__Impl.html

Pattern & Framework Tutorial Douglas C. Schmidt

129

Prototype object creational

Intent

Specify the kinds of objects to create using a prototypical instance &
create new objects by copying this prototype

Applicability

– when a system should be independent of how its products are
created, composed, & represented

– when the classes to instantiate are specified at run-time; or

 Structure

Pattern & Framework Tutorial Douglas C. Schmidt

130

Consequences

+ can add & remove classes at runtime by
cloning them as needed

+ reduced subclassing minimizes/eliminates
need for lexical dependencies at run-time

– every class that used as a prototype must
itself be instantiated

– classes that have circular references to
other classes cannot really be cloned

Implementation

– Use prototype manager

– Shallow vs. deep copies

– Initializing clone internal state within a
uniform interface

Prototype object creational

Known Uses

– The first widely known
application of the Prototype
pattern in an object-oriented
language was in ThingLab

– Coplien describes idioms
related to the Prototype
pattern for C++ & gives
many examples & variations

– Etgdb debugger for ET++

– The music editor example is
based on the Unidraw
drawing framework

Pattern & Framework Tutorial Douglas C. Schmidt

131

Part III: Wrap-Up

Pattern & Framework Tutorial Douglas C. Schmidt

132

Life Beyond GoF Patterns

www.cs.wustl.edu/~schmidt/PDF/ieee-patterns.pdf

Pattern & Framework Tutorial Douglas C. Schmidt

133

• Stand-alone patterns are point solutions to relatively bounded problems that
arise within specific contexts

• e.g., see the PLoPD books

• Any significant software design inevitably includes many patterns, however,
which means that a stand-alone pattern unusual in practice

• A common presentation of multiple patterns is in the form of a pattern
collection

• e.g., the GoF & POSA1 books

Overview of Pattern Collections

http://www.amazon.com/gp/product/images/0201433044/ref=dp_image_0?ie=UTF8&n=283155&s=books
http://www.amazon.com/exec/obidos/tg/detail/-/0201607344/

Pattern & Framework Tutorial Douglas C. Schmidt

134

Overview of Pattern Relationships
• Patterns representing the foci for discussion, point solutions, or localized

design ideas can be used in isolation with some success

• Patterns are generally gregarious, however, in that they form relationships
with other patterns

• Four of the most common types of pattern relationships include:

1. Patterns complements, where
one pattern provides the missing
ingredient needed by another or
where one pattern contrasts with
another by providing an alternative
solution to a related problem

2. Pattern compounds capture
recurring subcommunities of patterns
that are common & identifiable
enough that they can be treated
as a single decision in response to
a recurring problem

3. Pattern sequences generalize
the progression of patterns & the
way a design can be established
by joining predecessor patterns
to form part of the context of
each successive pattern

4. Pattern languages define a
vocabulary for talking about
software development problems
& provide a process for the
orderly resolution of these
problems

Pattern & Framework Tutorial Douglas C. Schmidt

135

Overview of Pattern Complements
• One pattern provides missing ingredient needed by another—or where one

pattern competes with another by providing an alternative solution to a
related problem—to make resulting designs more complete & balanced, e.g.:

• Disposal Method complements Factory Method by addressing object
destruction & creation, respectively, in the same design

• Batch Method competes with Iterator by accessing the elements of an
aggregate in bulk, reducing roundtrip network costs

Pattern & Framework Tutorial Douglas C. Schmidt

136

Overview of Pattern Compounds
• Pattern compounds capture recurring subcommunities of patterns that are

common & identifiable enough that they can be treated as a single
decision in response to a recurring problem

• For example, Batch Iterator brings together two complementary patterns,
Iterator & Batch Method, to address the problem of remotely accessing
the elements of aggregates with large numbers of elements

• A Batch Iterator refines the position-based traversal of an Iterator with a
Batch Method for bulk access of many, but not all, elements

Pattern & Framework Tutorial Douglas C. Schmidt

137

Overview of Pattern Sequences
• Pattern sequences generalize the progression of patterns & the way a design

can be established by joining predecessor patterns to form the context of
each successive pattern

• A pattern sequence captures
the unfolding of a design or
situation, pattern-by-pattern

• e.g., POSA2 & POSA4 present
pattern sequences for
communication middleware

Pattern & Framework Tutorial Douglas C. Schmidt

138

Overview of Pattern Sequences
• Pattern sequences generalize the progression of patterns & the way a design

can be established by joining predecessor patterns to form the context of
each successive pattern

• A pattern sequence captures
the unfolding of a design or
situation, pattern-by-pattern

• e.g., POSA3 presents
pattern sequences for
resource management

Resource

Lifecycle

Manager

Caching

Pooling

Leasing

Evictor

Partial

Acquisition

Lazy

Acquisition

Coordinator

Lookup

Eager

Acquisition
Performance

Scalability

Consistency

Stability

Flexibility

Predictability

Pattern & Framework Tutorial Douglas C. Schmidt

139

Overview of Pattern Languages
• Pattern languages define a vocabulary for talking about software development

problems & provide a process for the orderly resolution of these problems

• For example, the POSA4 pattern
language for distributed
computing includes 114 patterns
grouped into 13 problem areas

• Each problem area addresses a
specific technical topic related
to building distributed systems

• POSA5 describes key concepts
of pattern languages

Pattern & Framework Tutorial Douglas C. Schmidt

140

Observations on Applying Patterns & Frameworks
Patterns & frameworks support

• design/implementation at a more
abstract level

– treat many class/object interactions
as a unit

– often beneficial after initial design

– targets for class refactorings

• Variation-oriented
design/implementation

– consider what design aspects are
variable

– identify applicable pattern(s)

– vary patterns to evaluate tradeoffs

– repeat

Patterns are applicable in all
stages of the OO lifecycle

– analysis, design, & reviews

– realization & documentation

– reuse & refactoring

Patterns often equated
with OO languages, but
many also apply to C

Pattern & Framework Tutorial Douglas C. Schmidt

141

Pattern & framework design even harder than OO design!

Don’t apply patterns & frameworks blindly

• Added indirection can yield increased complexity, cost

• Understand patterns to learn how to better develop/use
frameworks

Resist branding everything a pattern

• Articulate specific benefits

• Demonstrate wide applicability

• Find at least three existing examples from code other than your
own!

Caveats to Keep in Mind

Pattern & Framework Tutorial Douglas C. Schmidt

142

Concluding Remarks

• Patterns & frameworks promote

– Integrated design &
implementation reuse

– uniform design vocabulary

– understanding, restructuring,
& team communication

– a basis for automation

– a ―new‖ way to think about
software design &
implementation

There’s much more to
patterns than just the

GoF, however!!!!

Pattern & Framework Tutorial Douglas C. Schmidt

143

Pattern References
Books

Timeless Way of Building, Alexander, ISBN 0-19-502402-8

A Pattern Language, Alexander, 0-19-501-919-9

Design Patterns, Gamma, et al., 0-201-63361-2 CD version 0-201-63498-8

Pattern-Oriented Software Architecture, Vol. 1, Buschmann, et al.,
0-471-95869-7

Pattern-Oriented Software Architecture, Vol. 2, Schmidt, et al.,
0-471-60695-2

Pattern-Oriented Software Architecture, Vol. 3, Jain & Kircher,
0-470-84525-2

Pattern-Oriented Software Architecture, Vol. 4, Buschmann, et al.,
0-470-05902-8

Pattern-Oriented Software Architecture, Vol. 5, Buschmann, et al.,
0-471-48648-5

Pattern & Framework Tutorial Douglas C. Schmidt

144

Pattern References (cont’d)

More Books

Analysis Patterns, Fowler; 0-201-89542-0

Concurrent Programming in Java, 2nd ed., Lea, 0-201-31009-0

Pattern Languages of Program Design
Vol. 1, Coplien, et al., eds., ISBN 0-201-60734-4
Vol. 2, Vlissides, et al., eds., 0-201-89527-7
Vol. 3, Martin, et al., eds., 0-201-31011-2
Vol. 4, Harrison, et al., eds., 0-201-43304-4

 Vol. 5, Manolescu, et al., eds., 0-321-32194-4

AntiPatterns, Brown, et al., 0-471-19713-0

Applying UML & Patterns, 2nd ed., Larman, 0-13-092569-1

Pattern Hatching, Vlissides, 0-201-43293-5

The Pattern Almanac 2000, Rising, 0-201-61567-3

Pattern & Framework Tutorial Douglas C. Schmidt

145

Pattern References (cont’d)

Even More Books

Small Memory Software, Noble & Weir, 0-201-59607-5

Microsoft Visual Basic Design Patterns, Stamatakis, 1-572-31957-7

Smalltalk Best Practice Patterns, Beck; 0-13-476904-X

The Design Patterns Smalltalk Companion, Alpert, et al.,
0-201-18462-1

Modern C++ Design, Alexandrescu, ISBN 0-201-70431-5

Building Parsers with Java, Metsker, 0-201-71962-2

Core J2EE Patterns, Alur, et al., 0-130-64884-1

Design Patterns Explained, Shalloway & Trott, 0-201-71594-5

The Joy of Patterns, Goldfedder, 0-201-65759-7

The Manager Pool, Olson & Stimmel, 0-201-72583-5

Pattern & Framework Tutorial Douglas C. Schmidt

146

Pattern References (cont’d)

Early Papers

―Object-Oriented Patterns,‖ P. Coad; Comm. of the ACM, 9/92

―Documenting Frameworks using Patterns,‖ R. Johnson; OOPSLA ’92

―Design Patterns: Abstraction & Reuse of Object-Oriented Design,‖
Gamma, Helm, Johnson, Vlissides, ECOOP ’93

Articles

Java Report, Java Pro, JOOP, Dr. Dobb’s Journal,
Java Developers Journal, C++ Report

How to Study Patterns
http://www.industriallogic.com/papers/learning.html

Pattern & Framework Tutorial Douglas C. Schmidt

147

Pattern-Oriented Conferences

PLoP 2010: Pattern Languages of Programs
October 2009, Collocated with OOPSLA

EuroPLoP 2010, July 2010, Kloster Irsee, Germany

…

See hillside.net/conferences/ for
up-to-the-minute info

http://hillside.net/conferencesnavigation.htm

Pattern & Framework Tutorial Douglas C. Schmidt

148

Mailing Lists

patterns@cs.uiuc.edu: present & refine patterns

patterns-discussion@cs.uiuc.edu: general discussion

gang-of-4-patterns@cs.uiuc.edu: discussion on Design Patterns

siemens-patterns@cs.uiuc.edu: discussion on
Pattern-Oriented Software Architecture

ui-patterns@cs.uiuc.edu: discussion on user interface patterns

business-patterns@cs.uiuc.edu: discussion on patterns for
business processes

ipc-patterns@cs.uiuc.edu: discussion on patterns for distributed
systems

See http://hillside.net/patterns/mailing.htm for an up-to-date list.

http://hillside.net/patterns/mailing.htm

