
2 On Distributed Systems

A distributed system is one in which the failure
of a computer you didn't even know existed

can render your own computer unusable.

Leslie Lamport

A distributed system is a computing system in which a number of
components cooperate by communicating over a network. The
explosive growth of the Internet and the World Wide Web in the mid-
1990’s moved distributed systems beyond their traditional
application areas, such as industrial automation, defense, and
telecommunication, and into nearly all domains, including e-
commerce, financial services, health care, government, and
entertainment. This chapter describes the key characteristics and
challenges of developing distributed systems and presents several key
software technologies that have emerged to resolve these challenges.

18 On Distributed Systems
2.1 Benefits of Distribution

Most computer software traditionally ran in stand-alone systems,
where the user interface, application ‘business’ processing, and
persistent data resided in one computer, with peripherals attached to
it by buses or cables. Few interesting systems, however, are still
designed this way. Instead, most computer software today runs in
distributed systems, where the interactive presentation, application
business processing, and data resources reside in loosely-coupled
computing nodes and service tiers connected together by networks.

The following diagram illustrates a three-tier distribution architecture
for a warehouse management process control system, whose pattern-
based design we discuss in depth in Part II, A Story, of this book. The
three tiers in this example are connected by a BROKER architecture
(237).

Infrastructure
Layer

Presentation
Layer

Business
Layer

Warehouse
Management
Implementation

Material
Flow Control
Implementation

Network

M
FC

In
te

rfa
ce

Server-Side
Broker

Client-Side
Broker

Warehouse Management
Client Proxy

Application ApplicationNorthbound
Gateway

Northbound
Gateway

Material Flow Control
Client Proxy

Application

Server-Side
Broker

Client-Side
Broker

Persistence
Client Proxy

Network

Persistence

Benefits of Distribution 19
The following properties of distributed systems make them
increasingly essential as the foundation of information and control
systems [Tan92]:

• Collaboration and connectivity. An important motivation for
distributed systems is their ability to connect us to vast quantities
of geographically distributed information and services, such as
maps, e-commerce sites, multimedia content, and encyclopedias.
The popularity of instant messaging and chat rooms on the
Internet highlights another motivation for distributed systems:
keeping in touch with family, friends, co-workers, and customers.

• Economics. Computer networks that incorporate PDAs, laptops,
PCs, and servers often offer a better price/performance ratio than
centralized mainframe computers. For example, they support
decentralized and modular applications that can share expensive
peripherals, such as high-capacity file servers and high-resolution
printers. Similarly, selected application components and services
can be delegated to run on nodes with specialized processing
attributes, such as high-performance disk controllers, large
amounts of memory, or enhanced floating-point performance.
Conversely, small simple applications can run on inexpensive
commodity hardware.

• Performance and scalability. Successful software typically collects
more users and requirements over time, so it is essential that the
performance of distributed systems can scale up to handle the
increased load and capabilities. Significant performance increases
can be gained by using the combined computing power of
networked computing nodes. In addition—at least in theory—
multiprocessors and networks can scale easily. For example,
multiple computation and communication service processing tasks
can be run in parallel on different nodes in a server farm.

• Failure tolerance. A key goal of distributed computing is to tolerate
partial system failures. For example, although all the nodes in a
network may be live, the network itself may fail. Likewise, an
endsystem in a network or a CPU in a multiprocessor system may
crash. Such failures should be handled gracefully without affecting
all—or unrelated—parts of the system. A common way to

20 On Distributed Systems
implement fault tolerance is to replicate services across multiple
nodes and/or networks. Replication helps minimize single points of
failure, which can improve system reliability in the face of partial
failures.

• Inherent distribution. Some applications are inherently distributed,
including telecommunication management network (TMN)
systems, enterprise business systems that span multiple divisions
in different regions of the world, peer-to-peer (P2P) content sharing
systems, and business-to-business (B2B) supply chain
management systems. Distribution is not optional in these types of
systems—it is essential to meet customer needs.

2.2 Challenges of Distribution

Despite the increasing ubiquity and importance of distributed
systems, developers of software for distributed systems face a number
of hard challenges [POSA2], including:

• Inherent complexities, which arise from fundamental domain
challenges: For example, components of a distributed system often
reside in separate address spaces on separate nodes, so inter-node
communication needs different mechanisms, policies, and
protocols than those used for intra-node communication in a
stand-alone systems. Likewise, synchronization and coordination
is more complicated in a distributed system since components may
run in parallel and network communication can be asynchronous
and non-deterministic. The networks that connect components in
distributed systems introduce additional forces, such as latency,
jitter, transient failures, and overload, with corresponding impact
on system efficiency, predictability, and availability [VKZ04].

• Accidental complexities, which arise from limitations with software
tools and development techniques, such as non-portable
programming APIs and poor distributed debuggers. Ironically,
many accidental complexities stem from deliberate choices made
by developers who favor low-level languages and platforms, such as
C and C-based operating system APIs and libraries, that scale up

Challenges of Distribution 21
poorly when applied to distributed systems. As the complexity of
application requirements increases, moreover, new layers of
distributed infrastructure are conceived and released, not all of
which are equally mature or capable, which complicates
development, integration, and evolution of working systems.

• Inadequate methods and techniques. Popular software analysis
methods and design techniques [Fow03b] [DWT04] [SDL05] have
focused on constructing single-process, single-threaded
applications with ‘best-effort’ QoS requirements. The development
of high-quality distributed systems—particularly those with
stringent performance requirements, such as video-conferencing
or air traffic control systems—has been left to the expertise of
skilled software architects and engineers. Moreover, it has been
hard to gain experience with software techniques for distributed
systems without spending much time wrestling with platform-
specific details and fixing mistakes by costly trial and error.

• Continuous re-invention and re-discovery of core concepts and
techniques. The software industry has a long history of recreating
incompatible solutions to problems that have already been solved.
There are dozens of general-purpose and real-time operating
systems that manage the same hardware resources. Similarly,
there are dozens of incompatible operating system encapsulation
libraries, virtual machines, and middleware that provide slightly
different APIs that implement essentially the same features and
services. If effort had instead been focused on enhancing a smaller
number of solutions, developers of distributed system software
would be able to innovate more rapidly by reusing common tools
and standard platforms and components.

22 On Distributed Systems
2.3 Technologies for Supporting Distribution

To address the challenge described above, therefore, three levels of
support for distributed computing were developed: ad hoc network
programming, structured communication, and middleware [Lea02]. At
the ad hoc network programming level reside interprocess
communication (IPC) mechanisms, such as shared memory, pipes,
and sockets [StRa05], that allow distributed components to connect
and exchange information. These IPC mechanisms help address a key
challenge of distributed computing: enabling components from
different address spaces to cooperate with one another.

Certain drawbacks arise, however, when developing distributed
systems only using ad hoc network programming support. For
instance, using sockets directly within application code tightly
couples this code to the socket API. Porting this code to another IPC
mechanism or redeploying components to different nodes in a
network thus becomes a costly manual programming effort. Even
porting this code to another version of the same operating system can
require code changes if each platform has slightly different APIs for
the IPC mechanisms [POSA2] [SH02]. Programming directly to an IPC
mechanism can also cause a paradigm mismatch, for example, local
communication uses object-oriented classes and method invocations,
whereas remote communication uses the function-oriented socket
API and message passing.

Some applications and their developers can tolerate the deficiencies
of ad hoc network programming. For example, traditional embedded
systems, such as controllers for automobile engines or power grids,
run in a homogeneous distributed environment whose initial
functional requirements, component configuration, and choice of IPC
mechanism rarely changes. Most other types of applications cannot
tolerate these deficiencies, however, since they apply run in a
heterogeneous computing environment and/or face continuous
requirement changes.

The next level of support for distributed computing is structured
communication, which overcomes limitations with ad hoc network
programming by not coupling application code to low-level IPC
mechanisms, but instead offering higher-level communication

Technologies for Supporting Distribution 23
mechanisms to distributed systems. Structured communication
encapsulates machine-level details, such as bits and bytes and
binary reads and writes. Application developers are therefore
presented with a programming model that embodies types and a
communication style closer to their application domain.

Historically significant examples of structured communication are
Remote Procedure Call (RPC) platforms, such as Sun RPC [Sun88]
and the Distributed Computing Environment (DCE) [RKF92]. RPC
platforms allow distributed applications to cooperate with one
another much like they would in a local environment: they invoke
functions on each other, pass parameters along with each invocation,
and receive results from the functions they called. The RPC platform
shields them from details of specific IPC mechanisms and low-level
operating system APIs. Other examples of structured communication
include PROFInet [WK01], which provides a run-time model for
industrial automation that defines several message-oriented
communication protocols, and ACE [SH02] [SH03], which provides
reusable C++ wrapper facades and frameworks that perform common
structured communication tasks across a range of OS platforms.

Despite its improvements over ad hoc network programming,
structured communication does not fully resolve the challenges
described above. In particular, components in a distributed system
that communicate via structured communication are still aware of
their peers’ remoteness—and sometimes even their location in the
network. While location awareness may suffice for certain types of
distributed systems, such as statically configured embedded systems
whose component deployment rarely changes, structured
communication does not fulfill the following the properties needed for
more complex distributed systems:

• Location-independence of components. Ideally, clients in a
distributed system should communicate with collocated or remote
services using the same programming model. Providing this degree
of location-independence requires the separation of code that deals
with remoting or location-specific details from client and service
application code. Even then, of course, distributed systems have
failure modes that local systems do not have [WWWK96].

24 On Distributed Systems
• Flexible component (re)deployment. The original deployment of an
application’s services to network nodes could become suboptimal
as hardware is upgraded, new nodes are incorporated, and/or new
requirements are added. A redeployment of distributed system
services may therefore be needed, ideally without breaking code
and or shutting down the entire system.

• Integration of legacy code. Few complex distributed systems are
developed from scratch. Instead, they are constructed from existing
elements or applications that may not have originally been
designed to integrate into a distributed environment—in fact, the
source code may not even be available. Reasons for integrating
legacy code include leveraging existing software components,
minimizing software certification costs, or reducing time-to-
market.

• Heterogeneous components. Distributed system integrators are
increasingly faced with the task of combining heterogeneous
enterprise distributed systems built using different off-the-shelf
technologies, rather than just integrating proprietary software
developed in-house. Moreover, with the advent of enterprise
application integration (EAI) [HoWo03] it has become necessary to
integrate components and applications written in different
programming languages into a single, coherent distributed system.
Once integrated, these heterogeneous components should perform
a common set of tasks properly.

Mastering these challenges requires more than structured
communication support for distributed systems. Instead it requires
dedicated middleware [ScSc02], which is distribution infrastructure
software that resides between an application and the operating
system, network, or database underneath it. Middleware provides the
properties described above so that application developers can focus
on their primary responsibility: implementing their domain-specific
functionality.

Technologies for Supporting Distribution 25
Realizing the need for middleware has motivated companies, such as
Microsoft, IBM, and Sun, and consortia, such as the Object
Management Group (OMG) and the World Wide Web Consortium
(W3C), to develop technologies for distributed computing. Below, we
describe a number of popular middleware technologies, including
distributed object computing, component middleware, publish/
subscribe middleware, and service-oriented architectures and Web
Services [Vin04a].

Distributed Object Computing Middleware

A key contribution to distributed system development was the
emergence of distributed object computing (DOC) middleware in the
late 1980s and early 1990s. DOC middleware represented the
confluence of two major information technologies: RPC-based
distributed computing systems and object-oriented design and
programming. Techniques for developing RPC-based distributed
systems, such as DCE [OG94], focused on integrating multiple
computers to act as a unified scalable computational resource.
Likewise, techniques for developing object-oriented systems focused
on reducing complexity by creating reusable frameworks and
components that reify successful patterns and software
architectures. DOC middleware therefore used object-oriented
techniques to distribute reusable services and applications efficiently,
flexibly, and robustly over multiple, often heterogeneous, computing
and networking elements.

CORBA 2.x [OMG03a] [OMG04a] and Java RMI [Sun04c] are
examples of DOC middleware technologies for building applications
for distributed systems. These technologies focus on interfaces,
which are contracts between clients and servers that define a
location-independent means for clients to view and access object
services provided by a server. Standard DOC middleware technologies
like CORBA also define communication protocols and object
information models to enable interoperability between heterogeneous
applications written in various languages running on various
platforms [HV99].

26 On Distributed Systems
Despite its maturity, performance, and advanced capabilities,
however, DOC middleware had various limitations, including:

• Lack of functional boundaries. The CORBA 2.x and Java RMI object
models treat all interfaces as client/server contracts. These object
models do not, however, provide standard assembly mechanisms
to decouple dependencies among collaborating object
implementations. For example, objects whose implementations
depend on other objects need to discover and connect to those
objects explicitly. To build complex distributed applications,
therefore, application developers must explicitly program the
connections among interdependent services and object interfaces,
which is extra work that can yield brittle and non-reusable
implementations.

• Lack of software deployment and configuratoin standards. There is
no standard way to distribute and start up object implementations
remotely in DOC middleware. Application administrators must
therefore resort to in-house scripts and procedures to deliver
software implementations to target machines, configure the target
machine and software implementations for execution, and then
instantiate software implementations to make them ready for
clients. Moreover, software implementations are often modified to
accommodate such ad hoc deployment mechanisms. The need of
most reusable software implementations to interact with other
software implementations and services further aggravates the
problem. The lack of higher-level software management standards
results in systems that are harder to maintain and software
component implementations that are much harder to reuse.

Component Middleware

Starting in the mid to late 1990s, component middleware evolved to
address the limitations of DOC middleware described above. In
particular, to address the lack of functional boundaries, component
middleware allows a group of cohesive component objects to interact
with each other through multiple provided and required interfaces
and defines standard runtime mechanisms needed to execute these
component objects in generic applications servers. To address the
lack of standard deployment and configuration mechanisms,

Technologies for Supporting Distribution 27
component middleware also often specifies the infrastructure to
package, customize, assemble, and disseminate components
throughout a distributed system.

Enterprise JavaBeans [Sun03] [Sun04a] and the CORBA Component
Model (CCM) [OMG02] [OMG04b] are examples of component
middleware that define the following general roles and relationships:

• A component is an implementation entity that exposes a set of
named interfaces and connection points that components use to
collaborate with each other. Named interfaces service method
invocations that other components call synchronously. Connection
points are joined with named interfaces provided by other
components to associate clients with their servers. Some
component models also offer event sources and event sinks, which
can be joined together to support asynchronous message passing.

• A container provides the server runtime environment for
component implementations. It contains various pre-defined hooks
and operations that give components access to strategies and
services, such as persistence, event notification, transaction,
replication, load balancing, and security. Each container defines a
collection of runtime strategies and policies, such as transaction,
persistence, security, and event delivery strategies, and is
responsible for initializing and providing runtime contexts for the
managed components. Component implementations often have
associated metadata written in XML that specify the required
container strategies and policies [OMG03b].

In addition to the building blocks outlined above, component
middleware also typically automates aspects of various stages in the
application development lifecycle, notably component
implementation, packaging, assembly, and deployment, where each
stage of the lifecycle adds information pertaining to these aspects via
declarative metadata [DBOSG05]. These capabilities enable
component middleware to create applications more rapidly and
robustly than their DOC middleware predecessors.

There are well-defined relationships between components and objects
in a component architecture [Szy02]. In general, components are
created at build time, may be loaded at runtime, and define the
implementation detail for runtime behavior. Likewise, objects are

28 On Distributed Systems
created at runtime, their type is packaged within a component, and
their runtime actions are what drives program behavior. Thus,
components get written, built and loaded, whereas objects get created
and interact.

Publish/Subscribe and Message-Oriented Middleware

RPC platforms, DOC middleware, and component middleware are all
based on a request/response communication model, where requests
flow from client to server and responses flow back from server to
client. However, certain types of distributed applications, particularly
those that react to external stimui and events, such as control
systems and online stock trading systems, are not well-suited certain
aspects of the request/response communication model. These
aspects include synchronous communication between the client and
server, which can underutilize the parallelism available in the
network and endsystems, designated communication, where the client
must know the identity of the server, which tightly couples it to a
particular recipient, and point-to-point communication, where a client
talks with just one server at a time, which can limit its ability to
convey its information to all interested recipients.

An alternative approach to structuring communication in certain
types of distributed systems is therefore to use message-oriented
middleware, which is supported by IBM’s MQ Series [IBM99], BEA’s
MessageQ [BEA06] and TIBCO’s Rendezvous, or publish/subscribe
middleware, which is supported by the Java Messaging Service (JMS)
[Sun04b], the Data Distribution Service (DDS) [OMG05b], and WS-
NOTIFICATION [OASIS06c] [OASIS06c]. The main benefits of
message-oriented middleware include its support for asynchronous
communication, where senders transmit data to receivers without
blocking to wait for a response. Many message-oriented middleware
platforms provide transactional properites, where messages are
reliably queued and/or persisted until consumers can pick them up.
Publish/subscribe middleware augments this capability with
anonymous communication, where publishers and subscribers are
loosely coupled and thus do not know about each other existence
since the address of the receiver is not conveyed along with the event
data, and group communication, where there can be multiple
subscribers who receive events sent by a publisher.

Technologies for Supporting Distribution 29
Publish/subscribe middleware typically allows applications to run on
separate nodes and write/read events to/from a global data space in
a distributed system. Applications can share information with others
by using this global data space to declare their intent to produce
events, which is often categorized into one or more topics of interest
to participants. Applications that want to access topics of interest—
or simply handle all messages on a particular queue—can declare
their intent to consume the events.

The elements of publish/subscribe middleware are separated into the
following roles:

• Publishers are sources of events, that is, they produce events on
certain topics that are then propagated through the system.
Depending on architecture implementation, publishers may need
to describe the type of events they generate a priori.

• Subscribers are the event sinks of the system, that is, they
consume data on topics of interest to them. Some architecture
implementations require subscribers to declare filtering
information for the events they require.

• Event channels are components in the system that propagate
events from publishers to subscribers. These channels can
propagate events across distribution domains to remote
subscribers. Event channels can perform various services, such as
filtering and routing, QoS enforcement, and fault management.

The events passed from publishers to consumers can be represented
in various ways, ranging from simple text messages to richly-typed
data structures. Likewise, the interfaces used to publish and
subscribe the events can be generic, such as send and recv methods
that exchange arbitrary dynamically typed XML messages in WS-
NOTIFICATION, or specialized, such as a data writer and data readers
that exchange statically typed event data in DDS.

30 On Distributed Systems
Service-Oriented Architectures and Web Services

Service-Oriented Architecture (SOA) is a style of organizing and
utilizing distributed capabilities that may be controlled by different
organizations or owners. It therefore provides a uniform means to
offer, discover, interact with and use capabilities of loosely coupled
[Kaye03] and interoperable software services to support the
requirements of the business processes and application users
[OASIS06a]. The term ‘SOA’ was originally coined in the mid-1990’s
[SN96] as a generalization of the interoperability middleware
standards available at the time, including RPC-, ORB-, and
messaging-based platforms.

The ubiquity of the World Wide Web (WWW) and the lessons learned
from earlier forms of middleware were leveraged to form the initial
version of SOAP [W3C03]. SOAP is a protocol for exchanging XML-
based [W3C06b] messages over a computer network, normally using
HTTP [FGMFB97]. Initially SOAP was intended as a platform-agnostic
protocol that could be used over the Web to allow interoperability with
various types of middleware, including CORBA, EJB, JMS, and
proprietary message-oriented middleware systems, such as IBM’s MQ
Series and TIBCO Rendezvous.

The introduction of SOAP spawned a popular new variant of SOA
called Web Services that is being standardized by the World Wide Web
Consortium (W3C). Web Services allow developers to package
application logic into services whose interfaces are described with the
Web Service Description Language (WSDL) [W3C06a]. WSDL-based
services are often accessed using standard higher-level Internet
protocols, such as SOAP over HTTP. Web Services can be used to
build an Enterprise Service Bus (ESB), which is a distributed
computing architecture that simplifies interworking between
disparate systems. Mule [Mule06] and Celtix [Celtix06] are open-
source examples of the ESB approach to melding groups of
heterogeneous systems into a unified distributed application.

Despite some highly publicized drawbacks [Bell06] [Vin04b], Web
Services have established themselves as the technology of choice for
most enterprise business applications. This does not mean, however,
that Web Services will completely displace earlier middleware
technologies, such as EJB and CORBA. Rather, Web Services

Technologies for Supporting Distribution 31
complements these earlier successful middleware technologies and
provides standard mechanisms for interoperability. For example, the
Microsoft Windows Communication Foundation (WCF) platform
[MMW06] and the Service Component Architecture (SCA) [SCA05]
being defined by IBM, BEA, IONA, and others combine aspects of
component-based development and Web technologies. Like
components, WCF and SCA platforms provide black-box functionality
that can be described and reused without concern for how a service
is implemented. Unlike traditional component technologies, however,
WCF and SCA are not accessed using the object model-specific
protocols defined by DCOM [Box97] [Thai99], Java RMI, or CORBA.
Instead, Web services are accessed using Web protocols and data
formats, such as HTTP and XML, respectively.

Since initial Web Services developments provided an RPC model that
exchanged XML messages over HTTP they were touted as
replacements for more complicated EJB components or CORBA
objects. When used for fine-grained distributed resource access,
however, the performance of Web Services is often several orders of
magnitude slower than DOC middleware due to its their use of plain-
text protocols, such as XML over HTTP [EPL02]. As a result, the use
of Web Services for performance-critical applications, such as
distributed real-time and embedded systems in aerospace, military,
financial services, and process control domains, is now considered
much less significant than using them for loosely-coupled document-
oriented applications, such as supply-chain management.

Rather than trying to replace older approaches, today’s Web Services
technologies are instead focusing on middleware integration, thereby
adding value to existing middleware platforms. WSDL allows
developers to abstractly describe Web Service interfaces while also
defining concrete bindings, such as the protocols and transports
required at runtime to access the services. By providing these
common communication mechanisms between diverse middleware
platforms, Web Services allow component reuse across an
organization’s entire application set, regardless of their
implementation technologies. For example, projects such as the
Apache Web Services Invocation Framework (WSIF) [Apache06],
Mule, and CeltiXfire, aim to allow applications to access Web Services
transparently via EJB, JMS, or the SCA. This move towards

32 On Distributed Systems
integration allows services implemented in these different
technologies to be integrated into an ESB and made available to a
variety of client applications. Middleware integration is thus a key
focus of Web Services applications for the foreseeable future [Vin03].
By focusing on integration, Web Services increases reuse and reduces
middleware lock-in, so developers can use the right middleware to
meet their needs without precluding interoperability with existing
systems.

2.4 Limitations with Middleware

Despite the many benefits of middleware described in this chapter, it
is not a panacea for distributed systems. All the middleware
technologies described above are primarily just ‘messengers’ between
elements in distributed applications, and sometimes the messages
just cannot be delivered despite heroic efforts from the middleware.
As a result, distributed applications must be prepared to handle
network failures and server crashes. Likewise, middleware cannot
magically solve problems resulting from poor deployment decisions,
which can significantly degrade system stability, predictability, and
scalability.

In other words, middleware is an important part of a distributed
system, but it cannot handle responsibilities that are application-
specific and thus beyond its scope. Distributed systems must
therefore be designed and validated carefully, even when middleware
allows them to be independent of the concrete location of other
components.

	2 On Distributed Systems
	2.1 Benefits of Distribution
	2.2 Challenges of Distribution
	2.3 Technologies for Supporting Distribution
	Distributed Object Computing Middleware
	Component Middleware
	Publish/Subscribe and Message-Oriented Middleware
	Service-Oriented Architectures and Web Services

	2.4 Limitations with Middleware

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

