
Java ReentrantReadWriteLock:

Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand the structure & functionality

of the Java ReentrantReadWriteLock
class

• Know the key methods in Java
ReentrantReadWriteLock

• Recognize how to apply Java
ReentrantReadWriteLock in practice

• Appreciate Java ReentrantReadWrite
Lock usage considerations

3

ReentrantReadWriteLock
Usage Considerations

4

Shared
Resource

TW
TW

TR

TR

TR

TR

TR

TR

TR

ReentrantReadWriteLock Usage Considerations

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

• ReentrantReadWriteLock enables
higher levels of concurrency when
accessing shared “read-only” data
compared with a ReentrantLock

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReadWriteLock.html

5

Shared
Resource

TW
TW

TR

TR

TR

TR

TR

TR

TR

ReentrantReadWriteLock Usage Considerations
• ReentrantReadWriteLock enables

higher levels of concurrency when
accessing shared “read-only” data
compared with a ReentrantLock

• May improve performance if data
are read from much more often than
written to on multi-core systems

6

• However, ReentrantReadWriteLock
has several limitations

See javaspecialists.eu/talks/jfokus13/PhaserAndStampedLock.pdf

ReentrantReadWriteLock Usage Considerations

http://javaspecialists.eu/talks/jfokus13/PhaserAndStampedLock.pdf
file://///localhost/upload.wikimedia.org/wikipedia/commons/4/43/Punishment_sisyph.jpg

7

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic” & thus assume
contention will always occur

ReentrantReadWriteLock Usage Considerations

Half-
Empty

8

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic” & thus assume
contention will always occur

• In contrast, StampedLock has
an “optimistic” read mode &
generally performs better

ReentrantReadWriteLock Usage Considerations

Half-
Full

See upcoming lesson on “Java StampedLock”

9

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic”

• Can starve readers or writers,
depending on their priority

ReentrantReadWriteLock Usage Considerations

See en.wikipedia.org/wiki/Readers-writer_lock

http://en.wikipedia.org/wiki/Readers-writer_lock

10

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic”

• Can starve readers or writers,
depending on their priority

• Java 5 (readers priority) & 6+
(writers priority) semantics differ

ReentrantReadWriteLock Usage Considerations

See www.javaspecialists.eu/archive/Issue165.html

http://www.javaspecialists.eu/archive/Issue165.html

11

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic”

• Can starve readers or writers,
depending on their priority

• Can be tedious & error-prone
to program

ReentrantReadWriteLock Usage Considerations

12

• However, ReentrantReadWriteLock
has several limitations

• Both read & write locks are
“pessimistic”

• Can starve readers or writers,
depending on their priority

• Can be tedious & error-prone
to program

ReentrantReadWriteLock Usage Considerations

See earlier lessons on “Java ReentrantLock” & “Java Semaphore”

Common
Traps &
Pitfalls

Acquiring
a lock &
then not
releasing

it

Accessing
a resource

w/out
holding a
lock for it

Holding a
lock for a
long time
without

needing it

Releasing
a lock

that was
never

acquired

13

• Profiling is essential to see if a
ReentrantReadWriteLock is suited
for a particular use-case

See www2.rdrop.com/~paulmck/scalability/paper/mutexprimpat.pdf

ReentrantReadWriteLock Usage Considerations

http://www2.rdrop.com/~paulmck/scalability/paper/mutexprimpat.pdf

14

ReentrantReadWriteLock Usage Considerations

See www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

• Profiling is essential to see if a
ReentrantReadWriteLock is suited
for a particular use-case

• ReentrantReadWriteLock’s overhead
is nearly always greater than any
benefits it provides..

http://www.takipiblog.com/java-8-stampedlocks-vs-readwritelocks-and-synchronized

15

End of Java Reentrant
ReadWriteLock: Usage

Considerations

