The Specific Notification Pattermn:
“Fair’ Semaphore Semantics

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Be aware of the semantics of “fair”
semaphores

.F FEA AL ?

x aie -s;n

Pl

e

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

An Overview of Fair
Semaphore Semantics

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order | avalang.Object

java.util.concurrent.Semaphore
£ P fL ﬁ: b £ p

k \ nh -g

Class Semaphore

All Implemented Interfaces:

Serializable

.‘

| “ I' public class Semaphore
extends Object

f —~ | implements Serializable
A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Semaphore.html

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

FIFO ordering applies to
internal points of execution
within semaphore methods

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

« FIFO ordering applies to
internal points of execution
within semaphore methods

* e.g., one thread can invoke
acquire() before another, but
reach the ordering point
after the other

Class Semaphore

java.lang.Object
java.util.concurrent.Semaphore

All Implemented Interfaces:

Serializable

public class Semaphore
extends Object
implements Serializable

A counting semaphore. Conceptually, a semaphore maintains
a set of permits. Each acquire() blocks if necessary until a
permit is available, and then takes it. Each release() adds a
permit, potentially releasing a blocking acquirer. However,
no actual permit objects are used; the Semaphore just keeps
a count of the number available and acts accordingly.

Semaphores are often used to restrict the number of threads
than can access some (physical or logical) resource. For
example, here is a class that uses a semaphore to control
access to a pool of items:

Overview of Fair Semaphore Semantics

« Threads calling acquire() on a
“fair” semaphore obtain permits
in “first-in, first-out” (FIFO) order

« The Specific Notification
pattern provides an effective
model for implementing fair
semaphore semantics

Specific Notification

Java Thread Synchronization

Tom Cargill
Consultant

Box 69 Louisville, CO 80027
www.sni.net/~cargill

Abstract

Java supports thread synchronization by means of monitor-
like primitives. The weak semantics of Java's signaling
mechanism provides little contrel over the order in which
threads acquire resources, which encourages the use of the
Haphazard Notificatton pattern, in which an arbitrary
thread is selected from a set of threads competing for a
resource. For synchronization problems in which such
arbitrary selection of threads is unacceptable, the Specific
Notification pattern may be nsed to designate exactly which
thread should proceed. Specific Notification provides an
explicit mechanism for thread selection and scheduling.

0. Introduction

To study Java's threads, I first tackled
some of the classic exercises, like the
“Dining Philosophers™ and the “Readers
and Writers.” The sclutions that I
obtained were reascnable, but I felt
uncomfortable with the degree to which
I had to depend on serendipitous
treatment with respect to contention for
locks and notifications. The solutions
were free of deadlock, but were not fair
in all circumstances. I thought I might

threads could have active requests
outstanding with an WNTFP server. The
fondamental correctness of this class
depended on waiting threads being
reactivated in exactly the right order to
receive their responses from the server.
In coding this class I applied the Specific
MNotification mechanism described
below. With new insight, I retumed to
the earlier exercises and found that
Specific Notification provided complete
solutions to those problems. I therefore
propose the Specific Notification pattern.

See www.dre.vanderbilt.edu/~schmidt/PDF/

specific-notification.pdf (especially Listing 3)

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

End of the Specific
Notification Pattern: Fair
Semaphore Semantics

