Douglas C. Schmidt
@ d.schmidt@uanderhilt.edu
- www.dre.vanderhilt.edu/~schmidt

E 7 Institute for Software
Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Appreciate Java monitor
object usage considerations 1 will adopt Best Practices

I will adopt Best Practices

I will adogt Best Fractices

] wiell adopt Best Crachices

I will adopt Best Practices

1 will adopt Best Fractices

I will adopt Best Practices

I will adopt Best Bractices
] will adopt Best Brachices
I will adogt Best Fractices
I will adopt Best Crachices

Learning ObJectlves |n this Lesson

« Appreciate Java monitor
object usage considerations

« In particular, know common
traps & pitfalls of Java’s built-
in monitor objects

Usage Considerations of
Java Monitor Objects

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

Producer —>§ Consumer —>§
I [
I

: SimpleBlocking |

| puty | BoundedQueue take():

| _ —> |synchronized put() €———

synchronized take()
<<contains>>|1 1| <<contains>>

Wait Queue Entrance Queue
wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited

IIED)

Producer —>§ Consumer —>§

put()

SimpleBlocking
BoundedQueue |

—-—>

synchronized put() €———
synchronized take()

' ¢

<<contains>>|1 1| <<contains>>
Wait Queue Entrance Queue
wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objec

(S

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited, e.q.

* No non-blocking, timed, or Producer —>§ Consumer
interruptible synchronizers | |

I

: SimpleBlocking |

: put() BoundedQueue take():

— — — |synchronized put()
synchronized take()

<<contains>>|1

Wait Queue

wait()

notify()
notifyAll()

See lessons on “Java ReentrantLocks” for examples of these capabilities

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited, e.q.

Producer —>§

Consumer —>§

« Only one wait queue & one
entrance queue

BoundedQueue |

I
: SimpleBlocking
I
I

— — —> [synchronized put() €———
synchronized take()

¢

<<contains>>|1

¢

1| <<contains>>

Wait Queue

Entrance Queue

wait()

notify()
notifyAll()

See www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency

http://www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

- Monitor objects are limited, €.9. public class BuggyLock {

Object mMonObj = new Object() ;
boolean mLocked;

* Only one wait queue & one synchronized void lock() ({
entrance queue while (mLocked)
« May vyield “nested monitor synchronized (mMonObj)
lockout” { mMonObj.wait(); }

mLocked = true;
}

lock() is a synchronized method

synchronized void unlock () ({
mLocked = false;
synchronized (mMonOb3j)
{ mMonObj.notify(); }

}

See tutorials.jenkov.com/java-concurrency/nested-monitor-lockout.html

http://tutorials.jenkov.com/java-concurrency/nested-monitor-lockout.html

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited, e.q.

« Only one wait queue & one
entrance queue

« May vyield “nested monitor
lockout”

public class BuggyLock ({

Object mMonObj = new Object() ;
boolean mLocked;

synchronized wvoid lock () {
while (mLocked)

synchronized (mMonOb3j)

{ mMonObj.wait () /}
mLocked = true;

}

BuggylLock monitor lock is still
held here, so unlock() never runs!

synchronized wvoid unlock() {
mLocked = false;
synchronized (mMonOb3j)
{ mMonObj.notify(); }

}

10

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited, e.g. class LinkedBlockingQueue<E>
extends AbstractQueue<E>

implements BlockingQueue<E>,

. OnIy one wait queue & one /** Lock held by take, poll,
entrance queue etc */
private final ReentrantLock
takeLock =

new ReentrantLock() ;
« Doesn’t support “two lock

queue” optimizations /** Lock held by put, offer,
etc */
private final ReentrantLock
putLock =

new ReentrantLock() ;

See src/share/classes/java/util/concurrent/LinkedBlockingQueue.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/LinkedBlockingQueue.java

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

* Monitor objects are limited, e.q.

« Synchronized statements
only support scoped locking
synchronized (this) ({

// this lock is always
// released at the
// end of this block

}

Producer —>§

Consumer —>§

put()

SimpleBlocking
BoundedQueue |

— — —> [synchronized put() €———
synchronized take()

¢

<<contains>>|1

¢

1| <<contains>>

Wait Queue

Entrance Queue

wait()

notify()
notifyAll()

Scoped locking is inefficient for certain concurrent algorithms,
e.g., it may require redundant checks for internal state(s)

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

» Monitor objects are limited, e.q.

Producer —>§

Consumer —>§

BoundedQueue |

I
: SimpleBlocking
I
I

— — —> [synchronized put() €———

synchronized take()

« No support for sensible
timed waits...

<<contains>

g Wait Queue

¢

1| <<contains>>

Entrance Queue

nait() i
notity
notifyAll() ’

tryLock()
lockInterruptibly

See stackoverflow.com/questions/3397722/how-to-differentiate-

when-waitlong-timeout-exit-for-notify-or-timeout

http://stackoverflow.com/questions/3397722/how-to-differentiate-when-waitlong-timeout-exit-for-notify-or-timeout

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

« Choosing between notify()
& notifyAll() is tricky

See stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again

http://stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

« Choosing between notify()
& notifyAll() is tricky

Uniform Only one condition expression that
waiters wait() is waiting for is associated

with the monitor object & each
thread executes the same logic
when returning from wait()

One-in & A notify() on the monitor object
one-out enables at most one thread to
proceed

Conditions under which notify() can be used

15

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

« Choosing between notify()
& notifyAll() is tricky

Uniform Only one condition expression that

waiters wait() is waiting for is associated
with the monitor object & each
thread executes the same logic
when returning from wait()

One-in & A notify() on the monitor object
one-out enables at most one thread to
proceed

Conditions under which notify() can be used

16

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

« Choosing between notify()
& notifyAll() is tricky

 Use notify() when possible since
it's more efficient & avoids the
“Thundering Herd” problem..

See en.wikipedia.org/wiki/Thundering herd problem

https://en.wikipedia.org/wiki/Thundering_herd_problem

Usage Considerations of Java Monitor Objects

* Programmers must be aware of issues with Java monitor objects

« Choosing between notify()
& notifyAll() is tricky

« However, notifyAll() is often
needed since there’s just one
wait queue..

A monitor object may
need to wait for different
condition expression

Producer —>§ Consumer —>§

put()

SimpleBlocking
BoundedQueue |

synchronized put() €———
synchronized take()

' ¢

contains>>| 1 1| <<contains>>
Wait Queue Entrance Queue
wait()
notify()
notifyAll()

18

Usage Considerations of Java Monitor Objects

« Programmers must be aware of issues with Java monitor objects

» Fairness issues arise due to
the order in which waiting
threads are notified

Producer —>§ Consumer —>§

put()

SimpleBlocking
BoundedQueue |

synchronized put() €———
synchronized take()

<<contains>>

K

1 1| <<contains>>

Wait Queue Entrance Queue

wait()

notify()
notifyAll()

19

Usage Considerations of Java Monitor Objects

« Programmers must be aware of issues with Java monitor objects

» Fairness issues arise due to
the order in which waiting
threads are notified

 Monitor object’s implement
“haphazard notification”
to optimize performance

Producer —>§ Consumer —>§

put()

SimpleBlocking
BoundedQueue take() :

synchronized put() €———
synchronized take()

' ¢

<<contains>>|1 1| <<contains>>
Wait Queue Entrance Queue
wait()
notify()
notifyAll()

20

Usage Considerations of Java Monitor Objects

« Programmers must be aware of issues with Java monitor objects

Producer —>§ Consumer —>§
| |
+ Fairness issues arise due to : SimpleBlocking :
the order in which waiting | puty | BoundedQueue | .. |
e pu ake
threads are nOtIerd |_ - synchronized put() <—— _I
synchronized take()
<<contains>>|1 1| <<contains>>
» The Specific Notification pattern Wait Queue Entrance Queue
can be applied to control ordering | wait()
notify()
notifyAll()

See www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

Usage Considerations of Java Monitor Objects

« Programmers must be aware of issues with Java monitor objects

» Fairness issues arise due to
the order in which waiting
threads are notified

» The Specific Notification pattern

can be applied to control ordering | wait()
* i.e., programmatically choose a notifyAll()

particular thread to run from
a family of waiting threads

Producer —>§ Consumer —>§

SimpleBlocking
put() BoundedQueue take() :

— — —> [synchronized put() €———
synchronized take()

K

<<contains>>|1 1| <<contains>>

Wait Queue Entrance Queue

notify()

22

Usage Considerations of Java Monitor Objects

 In practice, you often need more than Java’s Java monitor mechanisms

« java.util.concurrent &
java.util.concurrent.locks

package Added in API level 1
java.util.concurrent.locks

Interfaces and classes providing a framework for locking and waiting for
conditions that is distinct from built-in synchronization and monitors.
The framework permits much greater flexibility in the use of locks and
conditions, at the expense of more awkward syntax.

The Lock interface supports locking disciplines that differ in semantics
(reentrant, fair, etc), and that can be used in non-block-structured
contexts including hand-over-hand and lock reordering algorithms. The
main implementation is ReentrantLock.

package Added in API level 1
java.util.concurrent

Utility classes commonly useful in concurrent programming. This package includes a few small
standardized extensible frameworks, as well as some classes that provide useful functionality and are
otherwise tedious or difficult to implement. Here are brief descriptions of the main components. See also

the java.util.concurrent.locks and java.util.concurrent.atomic packages.

See developer.android.com/reference/java/util/concurrent/package-summary.html

http://developer.android.com/reference/java/util/concurrent/package-summary.html

Usage Considerations of Java Monitor Objects

 In practice, you often need more than Java’s Java monitor mechanisms
« java.util.concurrent &

public class ArrayBlockingQueue<E>

java.util.concurrent.locks extends AbstractQueue<E>
* e.g., ReentrantLock & implements BlockingQueue<E>,
ConditionObject java.io.Serializable {

/** Main lock guarding access */
final ReentrantLock lock;

/** Condition for waiting takes */
private final Condition notEmpty;

Used to protect the /

OQKKTSRithWW /** Condition for waiting puts */
face conamions |— private final Condition notFull;

24

Usage Considerations of Java Monitor Objects

 In practice, you often need more than Java’s Java monitor mechanisms

Background_
/ Thread A
» Android concurrency Message
frameworks Queue Handler |
§\ Message
= Message Runnable
3 N
— Message Handler
Message \
Background_
Message Thread B
Message
/‘ Async <&
9
Message Ul Thread _>§/7 Task g
(main thread)

See developer.android.com/qguide/components/processes-and-threads.html# Threads

http://developer.android.com/guide/components/processes-and-threads.html#threads

Usage Considerations of Java Monitor Objects

 In practice, you often need more than Java’s Java monitor mechanisms

Background_.

/ Thread A &
« Android concurrency Message

frameworks Queue Handler |

« Message passing may avoid & | Message
need for monitor objects & \
synchronization altogether 5| | Message |[| Runnable
S N
S| |L.Message Handler
Message \
B Background_.
Message Thread B
\ ~Message
/‘ Async _¢
9
Message Ul Thread _>§ —| Task é
B (main thread)

See www.oreilly.com/library/view/efficient-android-threading/9781449364120/ch04.html

http://www.oreilly.com/library/view/efficient-android-threading/9781449364120/ch04.html

End of Java Monitor Objects:
Usage Considerations

27

