
Java Monitor Objects:

Usage Considerations

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Appreciate Java monitor
object usage considerations

Learning Objectives in this Lesson

3

• Appreciate Java monitor
object usage considerations

• In particular, know common
traps & pitfalls of Java’s built-
in monitor objects

Learning Objectives in this Lesson

4

Usage Considerations of
Java Monitor Objects

5

Usage Considerations of Java Monitor Objects
• Programmers must be aware of issues with Java monitor objects

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

6

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

7

tryLock()
lockInterruptibly

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

See lessons on “Java ReentrantLocks” for examples of these capabilities

8See www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

http://www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency

9See tutorials.jenkov.com/java-concurrency/nested-monitor-lockout.html

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

• May yield “nested monitor
lockout”

public class BuggyLock {

Object mMonObj = new Object();

boolean mLocked;

synchronized void lock() {

while(mLocked)

synchronized(mMonObj)

{ mMonObj.wait(); }

mLocked = true;

}

synchronized void unlock() {

mLocked = false;

synchronized(mMonObj)

{ mMonObj.notify(); }

} ...

lock() is a synchronized method

Usage Considerations of Java Monitor Objects

http://tutorials.jenkov.com/java-concurrency/nested-monitor-lockout.html

10

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

• May yield “nested monitor
lockout”

public class BuggyLock {

Object mMonObj = new Object();

boolean mLocked;

synchronized void lock() {

while(mLocked)

synchronized(mMonObj)

{ mMonObj.wait(); }

mLocked = true;

}

synchronized void unlock() {

mLocked = false;

synchronized(mMonObj)

{ mMonObj.notify(); }

} ...

BuggyLock monitor lock is still
held here, so unlock() never runs!

Usage Considerations of Java Monitor Objects

11See src/share/classes/java/util/concurrent/LinkedBlockingQueue.java

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

• May yield “nested monitor
lockout”

• Doesn’t support “two lock
queue” optimizations

Usage Considerations of Java Monitor Objects

class LinkedBlockingQueue<E>

extends AbstractQueue<E>

implements BlockingQueue<E>,

...

/** Lock held by take, poll,

etc */

private final ReentrantLock

takeLock =

new ReentrantLock();

/** Lock held by put, offer,

etc */

private final ReentrantLock

putLock =

new ReentrantLock();

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/LinkedBlockingQueue.java

12

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

• Synchronized statements
only support scoped locking

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

synchronized(this) {

...

// this lock is always

// released at the

// end of this block

}

Scoped locking is inefficient for certain concurrent algorithms,
e.g., it may require redundant checks for internal state(s)

13

tryLock()
lockInterruptibly

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited, e.g.

• No non-blocking, timed, or
interruptible synchronizers

• Only one wait queue & one
entrance queue

• Synchronized statements
only support scoped locking

• No support for sensible
timed waits…

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

See stackoverflow.com/questions/3397722/how-to-differentiate-
when-waitlong-timeout-exit-for-notify-or-timeout

Usage Considerations of Java Monitor Objects

http://stackoverflow.com/questions/3397722/how-to-differentiate-when-waitlong-timeout-exit-for-notify-or-timeout

14See stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

Usage Considerations of Java Monitor Objects

http://stackoverflow.com/questions/37026/java-notify-vs-notifyall-all-over-again

15

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

Usage Considerations of Java Monitor Objects

Uniform
waiters

Only one condition expression that
wait() is waiting for is associated
with the monitor object & each
thread executes the same logic
when returning from wait()

One-in &
one-out

A notify() on the monitor object
enables at most one thread to
proceed

Conditions under which notify() can be used

16

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

Usage Considerations of Java Monitor Objects

Uniform
waiters

Only one condition expression that
wait() is waiting for is associated
with the monitor object & each
thread executes the same logic
when returning from wait()

One-in &
one-out

A notify() on the monitor object
enables at most one thread to
proceed

Conditions under which notify() can be used

17

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Use notify() when possible since
it’s more efficient & avoids the
“Thundering Herd” problem..

Usage Considerations of Java Monitor Objects

See en.wikipedia.org/wiki/Thundering_herd_problem

https://en.wikipedia.org/wiki/Thundering_herd_problem

18

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Use notify() when possible since
it’s more efficient & avoids the
“Thundering Herd” problem..

• However, notifyAll() is often
needed since there’s just one
wait queue..

Usage Considerations of Java Monitor Objects

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

A monitor object may
need to wait for different

condition expression

19

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Fairness issues arise due to
the order in which waiting
threads are notified

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

20

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Fairness issues arise due to
the order in which waiting
threads are notified

• Monitor object’s implement
“haphazard notification”
to optimize performance

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

21

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Fairness issues arise due to
the order in which waiting
threads are notified

• Monitor object’s implement
“haphazard notification”
to optimize performance

• The Specific Notification pattern
can be applied to control ordering

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

See www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/specific-notification.pdf

22

• Programmers must be aware of issues with Java monitor objects

• Monitor objects are limited

• Choosing between notify()
& notifyAll() is tricky

• Fairness issues arise due to
the order in which waiting
threads are notified

• Monitor object’s implement
“haphazard notification”
to optimize performance

• The Specific Notification pattern
can be applied to control ordering

• i.e., programmatically choose a
particular thread to run from
a family of waiting threads

Producer

put() take()

Consumer

Synchronized
Queue

SimpleBlocking
BoundedQueue

synchronized put()
synchronized take()

<<contains>> 1 <<contains>>1

Wait Queue Entrance Queue

wait()
notify()
notifyAll()

Usage Considerations of Java Monitor Objects

23See developer.android.com/reference/java/util/concurrent/package-summary.html

• In practice, you often need more than Java’s Java monitor mechanisms

• java.util.concurrent &
java.util.concurrent.locks

Usage Considerations of Java Monitor Objects

http://developer.android.com/reference/java/util/concurrent/package-summary.html

24

• In practice, you often need more than Java’s Java monitor mechanisms

• java.util.concurrent &
java.util.concurrent.locks

• e.g., ReentrantLock &
ConditionObject

public class ArrayBlockingQueue<E>

extends AbstractQueue<E>

implements BlockingQueue<E>,

java.io.Serializable {

...

/** Main lock guarding access */

final ReentrantLock lock;

/** Condition for waiting takes */

private final Condition notEmpty;

/** Condition for waiting puts */

private final Condition notFull;

...

Used to protect the
object state from
race conditions

Usage Considerations of Java Monitor Objects

25

• In practice, you often need more than Java’s Java monitor mechanisms

• java.util.concurrent &
java.util.concurrent.locks

• Android concurrency
frameworks

See developer.android.com/guide/components/processes-and-threads.html#Threads

Async

Task

L
o

o
p

e
r Message

Message

Message

Message

Message

Message

Queue

UI Thread
(main thread)

Message

Runnable

Message

Background

Thread A

Handler

Handler

Background

Thread B

Usage Considerations of Java Monitor Objects

http://developer.android.com/guide/components/processes-and-threads.html#threads

26

• In practice, you often need more than Java’s Java monitor mechanisms

• java.util.concurrent &
java.util.concurrent.locks

• Android concurrency
frameworks

• Message passing may avoid
need for monitor objects &
synchronization altogether

Async

Task

L
o

o
p

e
r Message

Message

Message

Message

Message

Message

Queue

UI Thread
(main thread)

Message

Runnable

Message

Background

Thread A

Handler

Handler

Background

Thread B

Usage Considerations of Java Monitor Objects

See www.oreilly.com/library/view/efficient-android-threading/9781449364120/ch04.html

http://www.oreilly.com/library/view/efficient-android-threading/9781449364120/ch04.html

27

End of Java Monitor Objects:
Usage Considerations

