Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Understand how Java CompletionService’s interface defines a framework for

submitting async taks & handling their completion <<Java Interface>>

£ CompletionService<V>

@ submit(Callable<V>)

@ take()
@ poll()
/ @ poll(long, TimeUnit)
<<Java Interface>> <<Java Class>>
€ Executor -executor (®ExecutorCompletionService<V>
< Jexecutor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) N _completion
= newTaskFor(Callable<V>) Queu‘i
@ submit(Callable<V>)
@ take() <<Java Interface>>
® poll() @ BlockingQueue<E>
@ poll(long, TimeUnit)
<<Java Class>> @ offer(E):boolean
(9 QueueingFuture on @ put(E):void
task: Future<vVs> < @ offer(E,long, TimeUnit):boolean
——— @ take()
& ?ueugnguture(RunnabIeFuture<V>) & poll(long, TimeUnit)
& done():voi

Learning Objectives in this Part of the Lesson

« Know how to instantiate the Java
ExecutorCompletionService

mExecutorService =
Executors.newFixedThreadPool
(Runtime
.getRuntime
.availableProcessors()) ;

mExecutorCompletionService =
new ExecutorCompletionService<>
(mExecutorService) ;

Motivating the Java
CompletionService Interface

Motivating the Java CompletionService Interface

« One problem with the ExecutorService implementation of the PrimeChecker
app is that the future submit() returned must be handled synchronously

private class FutureRunnable
implements Runnable ({
List<Future<PrimeCallable.PrimeResult>>
mFutures;
MainActivity mActivity;

future::get may block the
public void run() { thread, even if some other
mFutures. forEach (future -> { futures may have completed
PrimeCallable.PrimeResult pr =

rethrowSupplier (future: :get)
.get ()’

This blocking problem is common w/the “synchronous future” processing model

Motivating the Java CompletionService Interface

« CompletionService fixes this problem via an “async future” processing model
that combines an executor with ExecutorCompletionService
an (internal) blocking queue

I

submit() > [execute() run ()
. | Queueing N\
1.submit (task) kel Future 2.o0ffer ()
/ N é .
> eé D
- - Queueing égeé
- éé £ 9% _ Future
eé -, 7. take () Completion cor Tt
Queue Queueing WorkerThreads
Future \
2 ek Qv
Future
— WorkQueue 4.run() Future
/ 5.done ()
6.add ()
é.——/
/ _ ThreadPoolExecutor

Two-way task results are stored in a completion gueue & can be processed immediately

6

Motivating the Java CompletionService Interface

« CompletionService fixes this problem via an “async future” processing model
that combines an executor with ExecutorCompletionService

an (internal) blocking queue

L
submit() > [execute() run ()
. | Queueing AN
1.submit (task) take() Future 2.o0ffer ()
/ N é .
> eé
. > -
§ eg / Qgeijemg geé
r—> 7 uture
eg > 95 > 7. take () Completion '\
> = Queue Queueing WorkerThreads
Future \
3 oxe 0 [ovevens
- WorkQueue -run Future
5. done ()
6.add ()
é____-/
_ ThreadPoolExecutor

1+ client threads can submit tasks & 1+ client threads can process their results

7

Overview of the Java
CompletionService Interface

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task Gc;ﬁz_g‘:lesff::vefc;w
L] - - I I
invocation from the processing of completed task results .

@ submit(Callable<V>)
@ take()
@ poll()
@ poll(long, TimeUnit)
<<Java Interface>> S<ang ClEsese
€ Executor -executor (®ExecutorCompletionService<V>
- < Jexecutor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) N _completion
m newTaskFor(Callable<V>) ou o
@ submit(Callable<V>)
@ take() <<Java Interface>>
@ poll() @ BlockingQueue<E>
@ poll(long, TimeUnit)
<<Java Class>> @ offer(E):boolean
(9 QueueingFuture 0 @ put(E):void
Ftask: Future<V> N @ offer(E,long, TimeUnit):boolean
' o take()
fc(?ueu(?ing.Zuture(RunnableFuture<V>) & poll(long, TimeUnit)
< done():voi

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task e
. . . &3 CompletionService<V>
invocation from the processing of completed task results .

@ take()

« Implemented via the ExecutorCompletionService class o ool

@ poll(long, TimeUnit)

/
<<Java Interface>> S<lEng ClEsese
. e
€ Executor tor (®ExecutorCompletionService<V>
o executor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) _completion
m newTaskFor(Callable<V>) o0 o
@ submit(Callable<V>)
@ take() <<Java Interface>>
@ poll() € BlockingQueue<E>

@ poll(long, TimeUnit)

@ offer(E):boolean

<<Java Class>>
@ put(E):void

(9 QueueingFuture oun
Ftask: Future<V/> _ @ offer(E,long, TimeUnit):boolean
P : @ take()
a’QueueingFuture(RunnableFuture<V>) @ poll(long, TimeUnit)

< done():void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task
invocation from the processing of completed task results

- Implemented via the ExecutorCompletionService class

<<Java Interface>>
&3 Executor

-eXec

@ execute(Runnable):void

<<Java Class>>
(9 QueueingFuture

o task: Future<V/>

& QueueingFuture(RunnableFuture<V>)
< done():void

utor (& ExecutorCompletionService<V>

<<Java Class>>

o executor: Executor
= completionQueue: BlockingQueue<Future<V>>

& ExecutorCompletionService(Executor) N
= newTaskFor(Callable<V>)
@ submit(Callable<V>)

@ take()

@ poll()

@ poll(long, TimeUnit)

<<Java Interface>>
£ CompletionService<V>

@ submit(Callable<V>)
@ take()

@ poll()
@ poll(long, TimeUnit)

-completion
Queue

<<Java Interface>>
€3 BlockingQueue<E>

This class contains both an
Executor & a BlockingQueue

@ offer(E):boolean

@ put(E):void

@ offer(E,long, TimeUnit):boolean
@ take()

@ poll(long, TimeUnit)

11

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task e
. . . &3 CompletionService<V>
invocation from the processing of completed task results .

@ take()

« Implemented via the ExecutorCompletionService class o ool

@ poll(long, TimeUnit)
<<Java Class>> /7

-executor (®ExecutorCompletionService<V>

<<Java Interface>>

& Executor
o executor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) N .
-completion
= newTaskFor(Callable<V>) Queue
An Executor runs tasks @ submit(Callable<V/>)

na ,000/ of threads ® take() <<Java Interface>>
el & BlockingQueue<E>

@ poll(long, TimeUnit)

@ offer(E):boolean

<<Java Class>>
@ put(E):void

(9 QueueingFuture

Ftask: Future<V> 0.n o offer(E,long, TimeUnit):boolean
— @ take()
a’QueueingFuture(RunnableFuture<V>) o poll(long, TimeUnit)

< done():void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task e
. . . &3 CompletionService<V>
invocation from the processing of completed task results .

@ take()

« Implemented via the ExecutorCompletionService class o ool

@ poll(long, TimeUnit)
<<Java Class>> /7

<<Java Interface>>) .
€ Executor -executor (®ExecutorCompletionService<V>
<S— F executor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) N .
-completion

= newTaskFor(Callable<V>) Queue
@ submit(Callable<V>)
@ take() <<Java Interface>>
@ poll() € BlockingQueue<E>

@ poll(long, TimeUnit)

@ offer(E):boolean

<<Java Class>>
(9 QueueingFuture

@ put(E):void

Frask Futore<vs 4 Completed tasks are put blocking |§ e ofter(E long, TimeUnit):boolean
: @ take()

& QueueingFuture(RunnableFuture<V>) C7U€U€ accessed V/'a takE()/pO//() @ poll(long, TimeUnit)

< done():void

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

Overview of the Java CompletionService Interface

« The CompletionService interface decouples async task
invocation from the processing of completed task results

- Implemented via the ExecutorCompletionService class

<<Java Interface>>
&3 Executor

-executor (®ExecutorCompletionService<V>

<<Java Class>>

<7

@ execute(Runnable):void

o executor: Executor
= completionQueue: BlockingQueue<Future<V>>

<<Java Class>>
(9 QueueingFuture

o task: Future<V/>

& QueueingFuture(RunnableFuture<V>)
< done():void

& ExecutorCompletionService(Executor) N
= newTaskFor(Callable<V>)
@ submit(Callable<V>)

@ take()

@ poll()

<<Java Interface>>
£ CompletionService<V>

@ submit(Callable<V>)
@ take()

@ poll()
@ poll(long, TimeUnit)

-completion
Queue

<<Java Interface>>
€3 BlockingQueue<E>

@ poll(long, TimeUnit)

Extends Futurelask to gueue
a task when it’s "done”

@ offer(E):boolean

@ put(E):void

@ offer(E,long, TimeUnit):boolean
@ take()

@ poll(long, TimeUnit)

See src/share/classes/java/util/concurrent/ExecutorCompletionService.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ExecutorCompletionService.java

Overview of the Java CompletionService Interface

« CompletionService can implement the Proactor pattern

Supports demultiplexing & dispatching of event handlers
that are triggered by the completion of async events

A client

Start event
% processing
|

|
| [=
/@2 handle event
| event loop '
[
|
I ?@? Proactor handle event r
| v |
Send | demux events ‘
service
request | asyncread |<— — — — — -
event I]
| Operating async write <= — — — — -
I System [

Completion Handlers

<<Java Interface>>
£ CompletionService<V>

@ submit(Callable<V>)
@ take()

@ poll()
@ poll(long, TimeUnit)

async_read ();

process data ();

. async_write ();
fi

end

handle_event (Event event)
begin ## Process the received event
if (event.type == REQUEST)
Read request asynchronously
and return control.

elsif (event.type == READ COMPLETE)
Process event, deliver results

asynchronously, and return control.

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

See en.wikipedia.org/wiki/Proactor pattern

http://en.wikipedia.org/wiki/Proactor_pattern

Instantiating the Java
ExecutorCompletionService

16

Instantiating the Java ExecutorCompletionService

<<Java Interface>>

« ExecutorCompletionService implements CompletionService _ _
. £ CompletionService<V>
& uses an executor to execute tasks placed on a blocking ~ —_—-— = =

queue when they complete o take()
@ poll()
/ @ poll(long, TimeUnit)
<<Java Interface>> <<Java Class>>
€ Executor -executor (®ExecutorCompletionService<V>
<S— F executor: Executor
@ execute(Runnable):void = completionQueue: BlockingQueue<Future<V>>
& ExecutorCompletionService(Executor) N .
-completion
= newTaskFor(Callable<V>) Queue
@ submit(Callable<V>)
@ take() <<Java Interface>>
@ poll() @ BlockingQueue<E>
@ poll(long, TimeUnit)
<<Java Class>> @ offer(E):boolean
(9 QueueingFuture . @ put(E):void

Ftask: Future<V> ” @ offer(E,long, TimeUnit):boolean

— @ take()

a’QueueingFuture(RunnableFuture<V>) & poli(long, TimeUnit)

< done():void

See docs.orade.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

Instantiating the Java ExecutorCompletionService

« A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =
Executors.newFixedThreadPool (Runtime.getRuntime ()
.availableProcessors()) ;

mExecutorCompletionService =
new ExecutorCompletionService<> (mExecutorService) ;

18

Instantiating the Java ExecutorCompletionService

« A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =
Executors.newFixedThreadPool (Runtime.getRuntime ()
.availableProcessors()) ;

Create an executor service whose
thread pool size matches the # of cores

mExecutorCompletionService =
new ExecutorCompletionService<> (mExecutorService) ;

19

Instantiating the Java ExecutorCompletionService

« A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =
Executors.newFixedThreadPool (Runtime.getRuntime ()
.availableProcessors()) ;

Associate ExecutorCompletion
Service with executor service

mExecutorCompletionService =
new ExecutorCompletionService<> (mExecutorService) ;

20

End of Java Executor
CompletionService:
Introduction

21

