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Learning Objectives in this Part of the Lesson
• Understand how Java CompletionService’s interface defines a framework for 

submitting async taks & handling their completion
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Learning Objectives in this Part of the Lesson
• Understand how Java CompletionService’s interface defines a framework for 

submitting async taks & handling their completion

• Know how to instantiate the Java
ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool

(Runtime

.getRuntime

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>

(mExecutorService);



4

Motivating the Java 
CompletionService Interface



5

• One problem with the ExecutorService implementation of the PrimeChecker
app is that the future submit() returned must be handled synchronously 

Motivating the Java CompletionService Interface

...

private class FutureRunnable

implements Runnable {

List<Future<PrimeCallable.PrimeResult>> 

mFutures;

MainActivity mActivity; ...

public void run() {

mFutures.forEach(future -> {

PrimeCallable.PrimeResult pr =                             

rethrowSupplier(future::get)

.get();   

...

This blocking problem is common w/the “synchronous future” processing model

future::get may block the 
thread, even if some other 

futures may have completed
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• CompletionService fixes this problem via an “async future” processing model 
that combines an executor with 
an (internal) blocking queue
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Two-way task results are stored in a completion queue & can be processed immediately

Motivating the Java CompletionService Interface



7

• CompletionService fixes this problem via an “async future” processing model 
that combines an executor with 
an (internal) blocking queue

ThreadPoolExecutor

WorkerThreads

execute() run()
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4.run()
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1+ client threads can submit tasks & 1+ client threads can process their results

Motivating the Java CompletionService Interface
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Overview of the Java 
CompletionService Interface
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Overview of the Java CompletionService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html
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• The CompletionService interface decouples async task 
invocation from the processing of completed task results

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html
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• The CompletionService interface decouples async task 
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Overview of the Java CompletionService Interface
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See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html
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This class contains both an 
Executor & a BlockingQueue

Overview of the Java CompletionService Interface
• The CompletionService interface decouples async task 

invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class
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Overview of the Java CompletionService Interface
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• The CompletionService interface decouples async task 
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

An Executor runs tasks 
in a pool of threads

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html
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Overview of the Java CompletionService Interface
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• The CompletionService interface decouples async task 
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Completed tasks are put blocking 
queue accessed via take()/poll()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html
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Overview of the Java CompletionService Interface
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• The CompletionService interface decouples async task 
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Extends FutureTask to queue 
a task when it’s “done”

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ExecutorCompletionService.java
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• CompletionService can implement the Proactor pattern

See en.wikipedia.org/wiki/Proactor_pattern

Overview of the Java CompletionService Interface

Supports demultiplexing & dispatching of event handlers 
that are triggered by the completion of async events

http://en.wikipedia.org/wiki/Proactor_pattern
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Instantiating the Java
ExecutorCompletionService
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Instantiating the Java ExecutorCompletionService
• ExecutorCompletionService implements CompletionService

& uses an executor to execute tasks placed on a blocking 
queue when they complete

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html
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https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html
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• A program typically creates an Executor (or ExecutorService) instance & then 
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Instantiating the Java ExecutorCompletionService
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• A program typically creates an Executor (or ExecutorService) instance & then 
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Create an executor service whose 
thread pool size matches the # of cores

Instantiating the Java ExecutorCompletionService
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• A program typically creates an Executor (or ExecutorService) instance & then 
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Associate ExecutorCompletion
Service with executor service

Instantiating the Java ExecutorCompletionService
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End of Java Executor 
CompletionService: 

Introduction


