
Java ExecutorCompletionService:

Introduction

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Understand how Java CompletionService’s interface defines a framework for

submitting async taks & handling their completion

-completion

Queue

0..n

-executor

3

Learning Objectives in this Part of the Lesson
• Understand how Java CompletionService’s interface defines a framework for

submitting async taks & handling their completion

• Know how to instantiate the Java
ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool

(Runtime

.getRuntime

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>

(mExecutorService);

4

Motivating the Java
CompletionService Interface

5

• One problem with the ExecutorService implementation of the PrimeChecker
app is that the future submit() returned must be handled synchronously

Motivating the Java CompletionService Interface

...

private class FutureRunnable

implements Runnable {

List<Future<PrimeCallable.PrimeResult>>

mFutures;

MainActivity mActivity; ...

public void run() {

mFutures.forEach(future -> {

PrimeCallable.PrimeResult pr =

rethrowSupplier(future::get)

.get();

...

This blocking problem is common w/the “synchronous future” processing model

future::get may block the
thread, even if some other

futures may have completed

6

• CompletionService fixes this problem via an “async future” processing model
that combines an executor with
an (internal) blocking queue

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

1.submit(task)

7.take()

Queueing

Future

Two-way task results are stored in a completion queue & can be processed immediately

Motivating the Java CompletionService Interface

7

• CompletionService fixes this problem via an “async future” processing model
that combines an executor with
an (internal) blocking queue

ThreadPoolExecutor

WorkerThreads

execute() run()

3.take()

4.run()

5.done()

Future

Future

Future

Future

Completion

Queue

Queueing

Future

WorkQueue

Queueing

Future

Queueing

Future

2.offer()

ExecutorCompletionService

submit()

take()

6.add()

1.submit(task)

7.take()

Queueing

Future

1+ client threads can submit tasks & 1+ client threads can process their results

Motivating the Java CompletionService Interface

8

Overview of the Java
CompletionService Interface

9

Overview of the Java CompletionService Interface

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

-completion

Queue

0..n

-executor

• The CompletionService interface decouples async task
invocation from the processing of completed task results

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletionService.html

10

• The CompletionService interface decouples async task
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Overview of the Java CompletionService Interface

-completion

Queue

0..n

-executor

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

11

-completion

Queue

0..n

-executor

This class contains both an
Executor & a BlockingQueue

Overview of the Java CompletionService Interface
• The CompletionService interface decouples async task

invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

12See docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

Overview of the Java CompletionService Interface

-completion

Queue

0..n

-executor

• The CompletionService interface decouples async task
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

An Executor runs tasks
in a pool of threads

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Executor.html

13

Overview of the Java CompletionService Interface

-completion

Queue

0..n

-executor

• The CompletionService interface decouples async task
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Completed tasks are put blocking
queue accessed via take()/poll()

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/BlockingQueue.html

14See src/share/classes/java/util/concurrent/ExecutorCompletionService.java

Overview of the Java CompletionService Interface

-completion

Queue

0..n

-executor

• The CompletionService interface decouples async task
invocation from the processing of completed task results

• Implemented via the ExecutorCompletionService class

Extends FutureTask to queue
a task when it’s “done”

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/concurrent/ExecutorCompletionService.java

15

• CompletionService can implement the Proactor pattern

See en.wikipedia.org/wiki/Proactor_pattern

Overview of the Java CompletionService Interface

Supports demultiplexing & dispatching of event handlers
that are triggered by the completion of async events

http://en.wikipedia.org/wiki/Proactor_pattern

16

Instantiating the Java
ExecutorCompletionService

17

Instantiating the Java ExecutorCompletionService
• ExecutorCompletionService implements CompletionService

& uses an executor to execute tasks placed on a blocking
queue when they complete

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

-completion

Queue

0..n

-executor

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ExecutorCompletionService.html

18

• A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Instantiating the Java ExecutorCompletionService

19

• A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Create an executor service whose
thread pool size matches the # of cores

Instantiating the Java ExecutorCompletionService

20

• A program typically creates an Executor (or ExecutorService) instance & then
associates it with a new ExecutorCompletionService

mExecutorService =

Executors.newFixedThreadPool(Runtime.getRuntime()

.availableProcessors());

mExecutorCompletionService =

new ExecutorCompletionService<>(mExecutorService);

Associate ExecutorCompletion
Service with executor service

Instantiating the Java ExecutorCompletionService

21

End of Java Executor
CompletionService:

Introduction

