
Java Concurrent Collections:

Designing a Memoizer with 

ConcurrentHashMap

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand the capabilities of Java’s 
concurrent collections

• Recognize the capabilities of Java’s 
ConcurrentHashMap & BlockingQueue

• Know how to apply the Java Concurrent
HashMap class to design a “memoizer”

Learning Objectives in this Lesson

Memoizer caches function call results & returns cached results for same inputs



3

Overview of Memoizer



4

Overview of Memoization

See en.wikipedia.org/wiki/Memoization

• Memoization is optimization technique used to speed up programs

https://en.wikipedia.org/wiki/Memoization


5

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Memoizer

Overview of Memoization

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}



6

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Memoizer

Overview of Memoization

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}



7

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

Memoizer

Overview of Memoization

V computeIfAbsent(K key, Function func) {

1. If key doesn’t exist in cache perform a 

long-running function associated w/key 

& store the resulting value via the key

2. Return value associated with key

}



8

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

V computeIfAbsent(K key, Function func) {

1. If key already exists in cache 

return cached value associated w/key

}

Overview of Memoization

Memoizer



9

• Memoization is optimization technique used to speed up programs

• It caches the results of expensive function calls

• When the same inputs occur again the cached 
results are simply returned

V computeIfAbsent(K key, Function func) {

1. If key already exists in cache 

return cached value associated w/key

}

Overview of Memoization

Memoizer



10

Designing a Memoizer
with ConcurrentHashMap



11See PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

https://github.com/douglascraigschmidt/POSA/blob/master/ex/M4/Primes/PrimeExecutorService/app/src/main/java/vandy/mooc/prime/utils/Memoizer.java


12See jcip.net

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

Designing a Memoizer with ConcurrentHashMap

This class is based on “Java Concurrency in Practice” by Brian Goetz et al.

http://jcip.net/


13

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

Designing a Memoizer with ConcurrentHashMap



14

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func));

See docs.oracle.com/javase/8/docs/api/java/util/function/Function.html

https://docs.oracle.com/javase/8/docs/api/java/util/function/Function.html


15

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Use memoizer



16

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

Don’t use memoizer



17

func is identical, regardless of which branch is chosen

• Memoizer defines a cache that returns 
a value produced by applying a (long-
running) function to a key

• A value that’s been computed for a 
key is returned, rather than applying
the function to recompute it

• A memoizer can be used whenever 
a Function is expected

Designing a Memoizer with ConcurrentHashMap

Function<Long, Long> func =

doMemoization

? new Memoizer<>

(PrimeCheckers::isPrime,

new ConcurrentHashMap());

: PrimeCheckers::isPrime;

... 

new PrimeCallable(randomNumber, func)); ...

See upcoming lesson on “Java ExecutorCompletion
Service: Application to PrimeChecker App”



18

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Designing a Memoizer with ConcurrentHashMap

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html


19

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

See www.ibm.com/developerworks/java/library/j-jtp08223

Designing a Memoizer with ConcurrentHashMap

…
0 1 2 15

Hash
Bucket

Hash
Bucket

Hash
Bucket

Hash
Bucket

Segment
Locks

ConcurrentHashMap

Contention is low due to use of multiple locks

http://www.ibm.com/developerworks/java/library/j-jtp08223


20

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

Designing a Memoizer with ConcurrentHashMap

See codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap

SynchronizedMap

…
0 1 2 3 15

key-value

4

key-value

key-value

In contrast, a SynchronizedMap uses a single lock

https://codepumpkin.com/hashtable-vs-synchronizedmap-vs-concurrenthashmap


21

• Memoizer uses a ConcurrentHashMap
to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Designing a Memoizer with ConcurrentHashMap

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
ConcurrentHashMap.html#computeIfAbsent

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html#computeIfAbsent-K-java.util.function.Function-


22

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

See dig.cs.illinois.edu/papers/checkThenAct.pdf

return map.computeIfAbsent

(key, 

k -> mappingFunc(k));

http://dig.cs.illinois.edu/papers/checkThenAct.pdf


23

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache, e.g.

• This method implements “atomic 
check-then-act” semantics

• Here’s the equivalent sequence of 
non-atomic/-optimized Java code

See dig.cs.illinois.edu/papers/checkThenAct.pdf

V value = map.get(key);

if (value == null) { 

value = mappingFunc.apply(key);

if (value != null) map.put(key, value);

}

return value;

http://dig.cs.illinois.edu/papers/checkThenAct.pdf


24

Designing a Memoizer with ConcurrentHashMap
• Memoizer uses a ConcurrentHashMap

to minimize synchronization overhead

• A group of locks guard different 
subsets of the hash buckets

• apply() uses computeIfAbsent() to 
ensure a function only runs when 
key/value pair is added to cache

Memoizer

computeIfAbsent(pC1)

computeIfAbsent(pC1)

computeIfAbsent(pC2)

computeIfAbsent(pC1)

Only one computation per key is performed 
even if multiple threads simultaneously call 

computeIfAbsent() using the same key



25

End of Java Concurrent 
Collections: Designing a 

Memoizer with 
ConcurrentHashMap


