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Learning Objectives in this Lesson

« Understand the capabilities of Java’s

concurrent collections
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Learning Objectives in this Lesson

« Understand the capabilities of Java’s
concurrent collections

« As well as how Java’s concurrent
collections overcome limitations with
Java’s synchronized collections




Overview of Java
Concurrent Collections




Overview of Java Concurrent Collections

 Java concurrent collections provide These are the concurrent-aware interfaces:
features that are optimized for the

needs of concurrent programs BlockingQueue
TransferQueue

BlockingDeque
ConcurrentMap
ConcurrentNavigableMap

Concurrent-aware classes include

LinkedBlockingQueue
ArrayBlockingQueue
PriorityBlockingQueue
DelayQueue
SynchronousQueue
LinkedBlockingDeque
LinkedTransferQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html



https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs

A concurrent collection is thread-
safe, but is not governed by only
a single exclusion lock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.htmil
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Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs
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This relationship is a guarantee that
memory writes in one thread are
visible when read by other threads.

See en.wikipedia.org/wiki/Happened-before
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Overview of Java Concurrent Collections

 Java concurrent collections provide

features that are optimized for the
needs of concurrent programs Producer
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« They avoid memory consistency Arragﬁ::g‘i“g
errors by defining a “happens-
before” relationship offer()
poll()
* e.g., between a thread that adds an put()
object to a collection with later thread(s) |take()

that access or remove that object
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—>§ Consumer

See docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html
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Overview of Java Concurrent Collections

 Java concurrent collections provide

features that are optimized for the
needs of concurrent programs Producer
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* They enable the desired behavior on put()
blocking queues that are empty or full take()

“\ take()
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—>§ Consumer

See tutorials.jenkov.com/java-util-concurrent/blockingqueue.html



http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

End of Java Concurrent
Collections: Introduction
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