Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA



mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Lesson

« Understand the capabilities of Java’s

concurrent collections

=<interfaces==
Map<kys [F-——-----

_— = -

— | HashMap<K,V=> {]—l

Queue<E>

<<interfaces:

PriorityQueue<E>

ConcurrentLinkedQueue<E:>

LinkedList<E>

LinkedHashMap<K,V>

WeakHashMap<K,V=

IdentityHashMap<K, V=

EnumMap<K,¥:>

Hashtable<K, V>

<<interface=> -
ConcurrentMap<K V> I

ConcurrentHashMap<K,V=

<<interface==
BlockingQueue<E>

SynchronousQueue<E:> -

ArrayBlockingQueue<E=> |} —

LinkedBlockingQueue<E=§- —

PriorityBlockingQueue<E:>

DelayQueue<E>

2



Learning Objectives in this Lesson

« Understand the capabilities of Java’s
concurrent collections

« As well as how Java’s concurrent
collections overcome limitations with
Java’s synchronized collections




Overview of Java
Concurrent Collections




Overview of Java Concurrent Collections

 Java concurrent collections provide These are the concurrent-aware interfaces:
features that are optimized for the

needs of concurrent programs BlockingQueue
TransferQueue

BlockingDeque
ConcurrentMap
ConcurrentNavigableMap

Concurrent-aware classes include

LinkedBlockingQueue
ArrayBlockingQueue
PriorityBlockingQueue
DelayQueue
SynchronousQueue
LinkedBlockingDeque
LinkedTransferQueue
CopyOnWriteArrayList
CopyOnWriteArraySet
ConcurrentHashMap

See docs.oracle.com/javase/tutorial/essential/concurrency/collections.html



https://docs.oracle.com/javase/tutorial/essential/concurrency/collections.html

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs

A concurrent collection is thread-
safe, but is not governed by only
a single exclusion lock

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.htmil



https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html

Overview of Java Concurrent Collections

 Java concurrent collections provide
features that are optimized for the
needs of concurrent programs

Thread A

Thread B

'Everythung

before the
uniock on M i
» lock M
* They avoid memory consistency l e =
. W everything -
errors by defining a “happens- afterthe | ¥
before” relationship B i o
j=y
¥

This relationship is a guarantee that
memory writes in one thread are
visible when read by other threads.

See en.wikipedia.org/wiki/Happened-before



https://en.wikipedia.org/wiki/Happened-before

Overview of Java Concurrent Collections

 Java concurrent collections provide

features that are optimized for the
needs of concurrent programs Producer

\
_>§ \\ offer()

N

« They avoid memory consistency Arragﬁ::g‘i“g
errors by defining a “happens-
before” relationship offer()
poll()
* e.g., between a thread that adds an put()
object to a collection with later thread(s) |take()

that access or remove that object

\\ offer()

\

—>§ Consumer

See docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html



https://docs.oracle.com/javase/tutorial/essential/concurrency/memconsist.html

Overview of Java Concurrent Collections

 Java concurrent collections provide

features that are optimized for the
needs of concurrent programs Producer
. \
_>§ \ \\\{take()
ArrayBlocking
Queue

offer()

. . poll()

* They enable the desired behavior on put()
blocking queues that are empty or full take()

“\ take()

\

—>§ Consumer

See tutorials.jenkov.com/java-util-concurrent/blockingqueue.html



http://tutorials.jenkov.com/java-util-concurrent/blockingqueue.html

End of Java Concurrent
Collections: Introduction

10



