
Java “Happens-Before” Relationships:

Examples

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

• Understand what “happens-before” relationships
mean in Java

• Recognize how Java Thread methods
support “happens-before” relationships

Learning Objectives in this Part of the Lesson

3

• Understand what “happens-before” relationships
mean in Java

• Recognize how Java Thread methods
support “happens-before” relationships

• Know how Java collections support
“happens-before” relationships

Learning Objectives in this Part of the Lesson

ConcurrentHashMap

…
0 1 2 15

Hash
Bin

Hash
Bin

Hash
Bin

Hash
Bin

Bin
Locks

4

Java Thread “Happens-
Before” Relationships

5

• Methods in the Java Thread class establish “happen-
before” relationships

Java Thread “Happens-Before” Relationships

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

6

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

Java Thread “Happens-Before” Relationships

See www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

7

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

8

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

Create & start threadB
from within threadA

Java Thread “Happens-Before” Relationships

9

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

This lambda expression plays the
role of the run() hook method!

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

10

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

threadA’s call to the threadB.start() method (&
associated changes it made to any shared state) will

“happen before” threadB’s run() hook method is called

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

11

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

Likewise, the state of threadB will be consistent &
visible before the run() hook method begins to execute

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

12

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

• The termination of a thread “happens-before” a
join() with the terminated thread

Java Thread “Happens-Before” Relationships

13

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

• The termination of a thread “happens-before” a
join() with the terminated thread

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

threadB.join();

Java Thread “Happens-Before” Relationships

14

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

• The termination of a thread “happens-before” a
join() with the terminated thread

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

threadB.join();

threadB terminates after its lambda
expression run() processing completes

15

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

• The termination of a thread “happens-before” a
join() with the terminated thread

threadA waiting on join() only resumes
its processing after threadB terminates

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

threadB.join();

16

• Methods in the Java Thread class establish “happen-
before” relationships

• Starting a thread “happens-before” the run() hook
method of the thread is called

• The termination of a thread “happens-before” a
join() with the terminated thread

After join() returns threadA must see all changes made to
shared state by threadB that “happened before” it exited

Java Thread “Happens-Before” Relationships

Thread threadB =

new Thread(() ->

System.out.println

("hello world"));

threadB.start();

...

threadB.join();

17

Java Collections “Happens-
Before” Relationships

18

Java Collections “Happens-Before” Relationships

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html#MemoryVisibility

19

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Java Collections “Happens-Before” Relationships

See www.logicbig.com/tutorials/core-java-tutorial/
java-multi-threading/happens-before.html

e.g., a ReentrantLock or exiting a
synchronized method/statement

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

20

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Java Collections “Happens-Before” Relationships

// Thread B

class ArrayBlockingQueue<E>

... { ...

public E take() ... {

final ReentrantLock lock

= this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

// Thread A

class ArrayBlockingQueue<E>

... { ...

public void put(E e) ... {

...

final ReentrantLock lock =

this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

}

21

Consider the put() & take() methods in ArrayBlockingQueue

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Java Collections “Happens-Before” Relationships

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject”

// Thread B

class ArrayBlockingQueue<E>

... { ...

public E take() ... {

final ReentrantLock lock

= this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

// Thread A

class ArrayBlockingQueue<E>

... { ...

public void put(E e) ... {

...

final ReentrantLock lock =

this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

}

22

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Java Collections “Happens-Before” Relationships

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject”

// Thread B

class ArrayBlockingQueue<E>

... { ...

public E take() ... {

final ReentrantLock lock

= this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

// Thread A

class ArrayBlockingQueue<E>

... { ...

public void put(E e) ... {

...

final ReentrantLock lock =

this.lock;

lock.lockInterruptibly();

try { ...

} finally {

lock.unlock();

}

}

Actions prior to "releasing" the ReentrantLock must happen-
before actions subsequent to a successful "acquiring" of this lock

23

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

• Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Java Collections “Happens-Before” Relationships

Map<String, String> concurrentMap = new ConcurrentHashMap<>();

// Thread t1

concurrentMap.put("key", "value");

// Thread t2

String value = concurrentMap.get("key");

See upcoming lesson on “Java Concurrent Collections”

24

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

• Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Java Collections “Happens-Before” Relationships

Consider a ConcurrentHashMap that supports concurrent
retrievals & high expected concurrency for updates

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Map<String, String> concurrentMap = new ConcurrentHashMap<>();

// Thread t1

concurrentMap.put("key", "value");

// Thread t2

String value = concurrentMap.get("key");

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

25

Map<String, String> concurrentMap = new ConcurrentHashMap<>();

// Thread t1

concurrentMap.put("key", "value");

// Thread t2

String value = concurrentMap.get("key");

• Methods in java.util.concurrent package classes also establish “happen-
before” relationships

• The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

• Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Placing a “key/value” element into a ConcurrentHashMap must
happen-before accessing or removing this element from the map

Java Collections “Happens-Before” Relationships

26

• Java’s class libraries are responsible
for ensuring these “happens-before”
relationships are preserved

Java Collections “Happens-Before” Relationships

27

• Java’s class libraries are responsible
for ensuring these “happens-before”
relationships are preserved

Java Collections “Happens-Before” Relationships

You don’t need to understand all the nitty-gritty details of Java’s memory
model – you just need to understand how to use synchronizers properly!

28

End of “Happens-Before”
Relationships: Examples

