Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

<<Java Class==

& Thread

&' yield()-void
& currentThread(): Thread

« Recognize how Java Thread methods

\\ n H H
support “happens-before” relationships s e
& sleep(long,int)-void
Thread A . & Thread()
& Thread(Runnable)
Thread B @ Thread(String)
@ start()-void
» @ run()void
Everything = exit():void
before the l @ interrupt{)-void
uniock on M... & interrupted()-boolean
@ isInterrupted():boolean
-visible to o isAlive():-boolean
S m & setPriority(int)-void
after the - L
lock on M unlock M o getPriority{):int
2 & join(long)-void
j=y join{long.int)-void
¥ & join()-void

& setDaemon(boolean)void
& isDaemon():boolean

Learning Objectives in this Part of the Lesson

« Know how Java collections support
“happens-before” relationships

-

\

)

—

YOy M) (

—_—

E B B LBi':(B
—_ — . ocks —
0 1 15
Hash Hash I\-I‘ash Hash
Bin Bin Bin Bin

~

J

ConcurrentHashMap

Java Thread "Happens-
Before” Relationships

Java Thread “"Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships @ Thread

& yield()void

Tienadih =~ ° = & currentThread(): Thread
& sleep(long)void

1 Thread B & sleep(long.int)-void

@ Thread()

@ Thread(Runnable)
Everything @ Thread(String)

before the o
unlock on M l @ start()void

unlock M > lock M @ run()-void

_visible to = gxit[}:vuid |
everything m @ interrupt()-void
afterthe & & interrupted():boolean

lock on M uniock M @ isInterrupted():boolean
Y & isAlive()boolean
& setPriority(int)-void
o getPriority():int
 join(long)-void
& join{long.int)-void
& join()-void
& setDaemon(boolean):void
& isDaemon()-boolean

y

=a

— |l Mz
=

See docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Thread.html

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships © Thread
o . \\ _ " E}S‘j-fiE|I:|I:}I'-.-'EIiE|
Starting a thread hap_pens before” the run() hook o cumentThroad] Thread
method of the thread is called & sleep(long)-void
& sleep(long.int):-void
Thread A Thread B & Thread()
........... @ Thread(Runnable)
Thread threadB = new Thread(..); public void run{){ @ Thread(String)
0OCCO0ZCO0oC f}fﬂ______..—gtatement 1; @ S’[EI‘II:III".-'EIin
threadB.start(); -— @ run()void
...........) = exit()void
threadB.start() @ interrupt()-void

happened before all & interrupted()-boolean

@ isInterrupted():boolean

& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

statements in run

See www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread threadB =
new Thread(() ->

System.out.println
("hello world"))

threadB.start() ;

<< lava Class=>

(9 Thread

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-

before” relationships

« Starting a thread “happens-before” the run() hook

method of the thread is called

Thread threadB =

new Thread(() ->

System.out.println
("hello world"))

threadB.start() ;

<< lava Class=>

(9 Thread

N

Create & start threadB

from within threadA

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called

Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ; \\\\\

This lambda expression plays the
role of the run() hook method!

<< lava Class=>

(9 Thread

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

\

<< lava Class=>

(9 Thread

threadA’s call to the threadB.start() method (&
associated changes it made to any shared state) will
“happen before” threadB’s run() hook method is called

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

10

Java Thread “"Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

« Starting a thread “happens-before” the run() hook
method of the thread is called
Thread threadB =
new Thread(() ->

System.out.println
("hello world"));

threadB.start() ;

\

<< lava Class=>

(9 Thread

Likewise, the state of threadB will be consistent &
visible before the run() hook method begins to execute

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

11

Java Thread “"Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>

before” relationships @ Thread

& yield()void
& currentThread(): Thread
& sleep(long)void

« The termination of a thread “happens-before” a ﬁ?LﬁZiﬂE‘}”g'm‘}”“

jOin() with the terminated thread & Thread(Runnable)

@ Thread(String)

Thread A Thread B @ start()-void

| e)| @ run():void

Thread threadB = new Thread(..); public void run{){ = exit():void

statement 1, @ interrupt()-void

& interrupted():boolean

threadB.jain(); } @ isInterrupted():-boolean

statement 1, I & isAlive()boolean

finishing of run P) & setPriority(int)-void
method of B & getPriority():int

happened before join(long)-void
Nt & join{long.int)-void

& join()-void

& setDaemon(boolean):void

& isDaemon()-boolean

threadB.start();

12

Java Thread “Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships @ Thread

& yield()void
& currentThread(): Thread
& sleep(long)void

« The termination of a thread “happens-before” a Eﬁ%ﬂ;gllijl?}ﬂg-int}:vnid
jOin() with the terminated thread & Thread(Runnable)
@ Thread(String)

Thread threadB =

new Thread(() -> Eiﬁaiﬁf
System.out.println = exit()void
("hello world")); @ interrupt()-vaid
threadB.start () ; & interrupted()-boolean

@ isInterrupted():boolean

& isAlive()boolean

& setPriority(int)-void

o getPriority():int
threadB. join() ; join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

13

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-

before” relationships

« The termination of a thread “happens-before” a

join() with the terminated thread

System.out.println
("hello world"));
threadB.start() ;

threadB. join() ;

<< lava Class=>

(9 Thread

Thread threadB =
new Thread(() ->
threadB terminates after its lambda
expression run() processing completes

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

14

Java Thread “Happens-Before” Relationships

 Methods in the Java Thread class establish “happen- <<Java Class>>
before” relationships @ Thread

& yield()void
& currentThread(): Thread
& sleep(long)void

: . \\ " 2 int)-val
o The termination of a thread “happens-before” a Efrizﬂ?}”g-'””-””'d
jOin() with the terminated thread {fThread[RUﬁnable}
Thread threadB = -:fThread[S.trmg}
@ start()void
new Thread(() -> ® run{)-void

("hello world"))
threadB.start() ;

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int

threadB. join() ; join(long)-void
& join{long.int)-void
\ & join()-void
- . {}FsetDaemnn[buulean}:uuid
threadA waiting on join() only resumes o isDaemon{)-bonlean

its processing after threadB terminates

15

Java Thread “Happens-Before” Relationships

« Methods in the Java Thread class establish “happen-
before” relationships

System.out.println
("hello world")) ;

« The termination of a thread “happens-before” a
threadB.start() ;
threadB. join() ;

join() with the terminated thread

<< lava Class=>

(9 Thread

Thread threadB =
new Thread(() ->

After join() returns threadA must see all changes made to

| shared state by threadB that "happened before” it exited

& yield()void

& currentThread(): Thread
& sleep(long)void

& sleep(long.int)-void

@ Thread()

@ Thread(Runnable)

@ Thread(String)

@ start()void

@ run()-void

= exit()void

@ interrupt():void

& interrupted():boolean
@ isInterrupted():boolean
& isAlive()boolean

& setPriority(int)-void

o getPriority():int
 join(long)-void

& join{long.int)-void

& join()-void

& setDaemon(boolean):void
& isDaemon()-boolean

16

Java Collections "Happens-
Before” Relationships

17

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships <interfacess

Queue<E>

' 1 I <<interface>>
. .
I
I

I
I
[PriorityQueue<E> /\
I

ConcurrentLinkedQueue<E>

LinkedList<E>

|
| HashMap<K,V> q.l SynchronousQueue<E> i
1
|
<<interfaces>> | LinkedHashMap<K,V> ArrayBlockingQueue<E> [§§ — 1
Map<K,V> 4‘ ______ I :
A I_ WeakHashMap<K,V> LinkedBlockingQueue<E> - —,

|
:_ J 1dentityHashMap<k,v> PriorityBlockingQueue<E>
I
I

DelayQueue<E> fll = = = = =

- | EnumMap<K,v>

-1 Hashtable<K,V>

<<interfaces>
ConcurrentMap<K,V> I

ConcurrentHashMap<K,V>

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/package-summary.html#MemoryVisibility

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/package-summary.html#MemoryVisibility

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

Thread A Thread B

synchronized (lock) { | synchronized (lock) {

release lock by
A happened
before B got it

release lock by

B happened
before A got it

\

e.g., a ReentrantLock or exiting a
synchronized method/statement

See www.logicbig.com/tutorials/core-java-tutorial/
java-multi-threading/happens-before.html

http://www.logicbig.com/tutorials/core-java-tutorial/java-multi-threading/happens-before.html

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B
class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
N N
public void put(E e) ... { public E take() ... {
. .. final ReentrantLock lock
final ReentrantLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly () ; try {
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}

20

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B
class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
R R
public void put(E e) ... { public E take() ... {
- final /ReentrantLock lock
final ReentrantlLock lock = = this.lock;
this.lock; lock.lockInterruptibly() ;
lock.lockInterruptibly () ; try { .
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

}
}

Consider the put() & take() methods in ArrayBlockingQueue

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject’

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

« The release of a monitor lock “happens-before” every subsequent acquire
on the same lock

// Thread A // Thread B

class ArrayBlockingQueue<E> class ArrayBlockingQueue<E>
oo { ... N

public void put(E e) ... { public E take() ... {
. .. final ReentrantLock lock
final ReentrantLock lock = = this.lock;
this.lock; lock.lockInterruptibly () ;
lock.lockInterruptibly () ; try {
try { ... } finally {
} finally { lock.unlock() ;
lock.unlock () ; }

} \
}

Actions prior to "releasing” the ReentrantLock must happen-
before actions subsequent to a successtul "acquiring” of this lock

See earlier lessons on “Java ReentrantLock” & “Java ConditionObject’

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value = concurrentMap.get("key") ;

See upcoming lesson on “Java Concurrent Collections”

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value = concurrentMap.get("key") ;

Consider a ConcurrentHashMap that supports concurrent
retrievals & high expected concurrency for updates

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentHashMap.html

Java Collections “Happens-Before” Relationships

« Methods in java.util.concurrent package classes also establish “happen-
before” relationships

 Actions in a thread prior to placing an object into any concurrent collection
“happen-before” actions subsequent to the access or removal of that
element from the collection in another thread

Map<String, String> concurrentMap = new ConcurrentHashMap<>() ;

// Thread tl
concurrentMap.put ("key", "value");

// Thread t2
String value =|concurrentMap.get("key") ;

Placing a "key/value” element into a ConcurrentHashMap must
happen-before accessing or removing this element from the map

25

Java Collections “"Happens-Before” Relationships

- Java’s class libraries are responsible | S Langnge
for ensuring these “happens-before”| ™ s maic wt o jaar
relationships are preserved - |

3 ; Concurrency
‘ lang and util Collections Utilities JAR

Preferences

26

Java Collections “"Happens-Before” Relationships

» Java’s class libraries are responsible Java Language
for ensuring these happens-before B R
relationships are preserved

Concurrency
Utilities et

lang and util Collections Logging Management

Preferences Ref Reflection Regular

API Objects Expressions Ve'Sning Zp Instrumentation

You don’t need to understand all the nitty-gritty details of Java’s memory
model — you just need to understand how to use synchronizers properly!

End of "Happens-Before”
Relationships: Examples

28

