
Java ConditionObject:

Structure & Functionality

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Institute for Software 

Integrated Systems 

Vanderbilt University 

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu


2

• Understand what condition variables are 

• Note a human known use of condition variables

• Know what pattern they implement

• Recognize common use cases where condition 
variables are applied

• Recognize the structure & functionality of 
Java ConditionObject

Learning Objectives in this Part of the Lesson



3

Overview of Java 
ConditionObject



4

• ConditionObject provides the 
condition variable abstraction

Overview of Java ConditionObject
public class ConditionObject

implements Condition, 

java.io.Serializable {

...

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html


5

• ConditionObject provides the 
condition variable abstraction

• Implements Condition interface

Overview of Java ConditionObject

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html

public class ConditionObject

implements Condition, 

java.io.Serializable {

...

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Condition.html


6

0..*

• ConditionObject is nested within the AbstractQueuedSynchronizer class

• This framework is used by Java synchronizers 
that rely on FIFO wait queues

++

Overview of Java ConditionObject

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/AbstractQueuedSynchronizer.html

http://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.html


7

+

0..*

• A ConditionObject provides a “wait queue” of nodes

Overview of Java ConditionObject

+

See gee.cs.oswego.edu/dl/papers/aqs.pdf

http://gee.cs.oswego.edu/dl/papers/aqs.pdf


8

+

0..*

• A ConditionObject provides a “wait queue” of nodes

• Enables a set of threads (i.e., the “wait set”) 
to coordinate their interactions

Overview of Java ConditionObject

T3 T2 T1

+



9

+

0..*

• A ConditionObject provides a “wait queue” of nodes

• Enables a set of threads (i.e., the “wait set”) 
to coordinate their interactions

• e.g., by selecting the order & conditions 
under which they run

Overview of Java ConditionObject

T3 T2 T1

+



10

• A ConditionObject is always used with a lock

Overview of Java ConditionObject

See earlier part on “Java ReentrantLock”

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



11

• A ConditionObject is always used with a lock

• This lock protects shared state 
in a condition expression from 
concurrent manipulation

Overview of Java ConditionObject

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



12

• A ConditionObject is always used with a lock

• This lock protects shared state 
in a condition expression from 
concurrent manipulation

See docs.oracle.com/javase/8/docs/api/java/util/
concurrent/locks/ReentrantLock.html#newCondition

Overview of Java ConditionObject

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>

newCondition() is a factory method that returns 
a ConditionObject that can be used with this lock

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html#newCondition--


13

• Both ReentrantLock & ConditionObject have internal queues

Overview of Java ConditionObject

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



14

• Both ReentrantLock & ConditionObject have internal queues

Overview of Java ConditionObject

Queues up threads that are 
waiting to acquire the lock

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



15

• Both ReentrantLock & ConditionObject have internal queues

Overview of Java ConditionObject

Queues up threads waiting for 
some condition(s) to become true

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



16

• User-defined Java objects can have multiple ConditionObjects (COs)

Overview of Java ConditionObject

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>Two COs: notEmpty & notFull



17

• User-defined Java objects can have multiple ConditionObjects (COs)

• Multiple COs enable more 
sophisticated & efficient ways 
to coordinate multiple threads

Overview of Java ConditionObject

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Reentrant

Lock

lock()
unlock()
newCondition()

<<uses>><<uses>>



18

• User-defined Java objects can have multiple ConditionObjects (COs)

• Multiple COs enable more 
sophisticated & efficient ways 
to coordinate multiple threads

• e.g., multiple wait-sets per
user object that share a lock & 
are notified on different conditions

<<uses>><<uses>>

2

ArrayBlocking

Queue

put()
take()

take()

put()

ProducerConsumer

uses
ConditionObject

await()
signal()
signalAll()

Overview of Java ConditionObject

See stackoverflow.com/questions/18490636/condition-
give-the-effect-of-having-multiple-wait-sets-per-object

Reentrant

Lock

lock()
unlock()
newCondition()

http://stackoverflow.com/questions/18490636/condition-give-the-effect-of-having-multiple-wait-sets-per-object
http://stackoverflow.com/questions/18490636/condition-give-the-effect-of-having-multiple-wait-sets-per-object


19

• In contrast, Java’s built-in monitor objects only support one monitor condition 

Overview of Java ConditionObject

See github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue

<<contains>><<contains>>

1

Simple

BlockingQueue

put()
take()

take()

put()

ProducerConsumer

uses
Wait Queue

wait()
notify()
notifyAll()

Entrance

Queue

i.e., there’s just a 
single “wait queue”

https://github.com/douglascraigschmidt/LiveLessons/tree/master/SimpleBlockingQueue


20

• In contrast, Java’s built-in monitor objects only support one monitor condition 

Overview of Java ConditionObject

See upcoming lesson on “Java Built-in Monitor Objects”

<<contains>><<contains>>

1

Simple

BlockingQueue

put()
take()

take()

put()

ProducerConsumer

uses
Wait Queue

wait()
notify()
notifyAll()

Entrance

Queue

i.e., there’s just a 
single “wait queue”



21

• In contrast, Java’s built-in monitor objects only support one monitor condition

• Yields inefficient programs that
require excessive notifications 
& use of notifyAll()

See www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency

Overview of Java ConditionObject

<<contains>><<contains>>

1

Simple

BlockingQueue

put()
take()

take()

put()

ProducerConsumer

uses
Wait Queue

wait()
notify()
notifyAll()

Entrance

Queue

http://www.dre.vanderbilt.edu/~schmidt/C++2Java.html#concurrency


22

• In contrast, Java’s built-in monitor objects only support one monitor condition

• Yields inefficient programs that
require excessive notifications 
& use of notifyAll()

• e.g., producers & consumers 
must both wake up on every 
change to the queue, even if 
a given thread can’t proceed

Overview of Java ConditionObject

<<contains>><<contains>>

1

Simple

BlockingQueue

put()
take()

take()

put()

ProducerConsumer

uses
Wait Queue

wait()
notify()
notifyAll()

Entrance

Queue

See stackoverflow.com/questions/18490636/condition-
give-the-effect-of-having-multiple-wait-sets-per-object

synchronized(this) {

while (mList.isEmpty()) 

wait();

notifyAll();

return mList.poll();

}

http://stackoverflow.com/questions/18490636/condition-give-the-effect-of-having-multiple-wait-sets-per-object
http://stackoverflow.com/questions/18490636/condition-give-the-effect-of-having-multiple-wait-sets-per-object


23

End of Java ConditionObject: 
Structure & Functionality


