Douglas C. Schmidt
@ d.schmidt@uanderhilt.edu
- www.dre.vanderhilt.edu/~schmidt

E 7 Institute for Software
Integrated Systems
Vanderhilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

Consumer Producer

<< \ /! <
wke0 \ /' pue <

« Recognize common use cases where condition pE—
variables are applied Queue
g put()
£ LE take()
T uses ’ Q uses
Acquire /oc/(T3 —>Z 2
! Ty ConditionVariable |
- ! Wait on condition await() uses Lock
TS Runnin, signal() | lock()
Gritical Section Thread signalAll() unlock()

Monitor object

Synchronization -
A client ——— | mechanism — A client

| é@%ﬂé@> |
method_2 synchronize method_2 block until object
— | S —
b

\ ecomes avdailable

A client Client-thread-specific A client
thread monitor object instances thread

\

2

Applying Condition
Variables in Practice

Applying Condition Varlables in Practlce

« CVs are powerful, but [
can be hard to grok &
apply correctly

-

39 r"
/,- g -~
" L .
’
:

See en.wikipedia.org/wiki/Grok

https://en.wikipedia.org/wiki/Grok

Applying Condition Varia

hles in Practice

« CVs are powerful, but
can be hard to grok &
apply correctly, e.qg.

« The protocol for using
CVs involves several
“moving parts”

CAUTION|
BE ALERT!!
MOVING PARTS

iClient Client Monitor lonjtor Monitor
Thread1 Thread2 Object Lock Condition
| sync_method1() | acquire()
—F
= — — — -
p dowork()
l:‘_“) wait()
-
the OS thread scheduler W
automatically suspends [<
'/ the client thread
-l +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically)
resumes L ,
the client ‘- notify()
thread and the -
synchronized release
method —&
¢ _ | ===

-t release()

=——

& [
Wl: dowork()

Vo5

| the OS thread scheduler
R atomically reacquires
the monitor lock

Applying Condition Variables in Practice

« CVsare pOWEI‘fUl but .Client Client Monitor ~Monitor : Monitor
Thread1 Thread2 Object Lock Condition
can be hard to grok & | |
thod1 ;
apply correctly, e.qg. e meledl acquire)
- — — — A
« The protocol for using > 000
- — "-) ¥ .t
CVs involves several - e
“movi rs” the OS tread scheduler WV -
mOVIng par S < '/rhe cﬁenrrhr};ad P E +
¢ |.e., d COndItlon sync_method2() acquire() the OS thread sclhedur‘er
. . [atomically releases
varia ble & d IOCk g@i&igﬁad — — — the monitor lock
automatically } dowork()
rﬁsun?es P notify()
gh?egé‘egéd the & |
synchronized release
method —&
| ¢ _ | ==
K S
“ L
L W‘: dowork() + |
- S rf}e oS z}?read scheduler
atomically reacquires
-t release() the monfi?ér foc!?
B == ‘
v |

Applying Condltlon Varlables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky

Thread1 Thread2 Object Lock Condition
| sync_method1() | acduire
- quire()
= — — — -
‘.)dowork{}
_. o wait()
-
the OS thread scheduler 7
automatically suspends [}7
'/ the client thread +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically ?
resumes L ,
the client -< notify()
thread and the -
synchronized release“
-] =———-

method ¢

K

4’-)

release()

B
dowork()

R

the monitor lock

=——

the OS thread scheduler
atomically reacquires

See en.wikipedia.org/wiki/Nondeterministic algorithm

https://en.wikipedia.org/wiki/Nondeterministic_algorithm

Applying Condltlon Varlables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky

* i.e., a loop may be
needed to ensure a
resource is available

Thread1 Thread2 Object Lock Condition
| sync_method1() | acduire
- quire()
= — — — -
‘.)dowork{}
_. o wait()
-
the OS thread scheduler 7
automatically suspends [<
/ the client thread +
|
sync_method2() acquire() the OS thread scheduler
> [atomically releases
the OS thread — — — the monitor lock
scheduler dowork()
automatically ?
resumes L ,
the client -< notify()
thread and the -
synchronized release“
-] =———-

method ¢

K

4’-)

release()

B

B
dowork()

=——

boh

the OS thread scheduler
atomically reacquires
the monitor lock

See stackoverflow.com/a/38313778

https://stackoverflow.com/a/38313778

Applying Condition Varlables in Practlce

« CVs are therefore often not used
directly by apps, but instead are
“hidden” within other abstractions

Applying Condition Variables in Practice

« CVs are therefore often not used
directly by apps, but instead are Additional Frameworks & Languages
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java '

Threading & Synchronization Packages

Java Virtual Machine

Operating System Kernel

System Libraries

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/AbstractQueuedSynchronizer.ConditionObject.html

Applying Condition Varlables |n Practlce

CVs are therefore often not used
directly by apps, but instead are »e-. i)
“hidden” within other abstractions p=a\ i 7

0 “ i / / / Qi’r»—““ N ,‘ \,/ :
 CVs form the basis for higher- 8 / e ﬁ ulll , W

level synchronizers in Java, e.q.

= ' TR v
- Blocking queues & deques in ? > 4 ,,,,,;::;'/:_,..w
Java. il concurrent® packages » N ’”Ilum\\\\\\\.\m\‘\\\- S
< ".\:‘; . ','”’T{hlal i \‘

N

See docs.oracle.com/javase/tutoriaI/coIIections/ implementations/queue.html

https://docs.oracle.com/javase/tutorial/collections/implementations/queue.html

Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are Consumer Producer
“hidden” within other abstractions

« CVs form the basis for higher- —> \ / —>§
level synchronizers in Java, e.g. take() \ % put()
 Blocking queues & deques in ArrayBlocking

java.util.concurrent* packages Queue
« e.g., ArrayBlockingQueue put()
take()

uses ’ Q uses
2

ConditionObject |
await() uses |ReentrantLock
signal() | lock()
signalAll() unlock()

See upcoming discussion in “Java ConditionObject: Example Application’”

Applying Condition Variables in Practice

« CVs are therefore often not used

—
directly by apps, but instead are § - ‘I Ta
“hidden” within other abstractions dcquire lock 12 ‘ _,Z
. CVs form the basis for higher- | g "
level synchronizers in Java, e.q. A Z Wait on conditior
Running
Critical Section Thread

« Java built-in monitor objects

See upcoming lesson on “Java Built-in Monitor Objects”

Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java, e.q.

i Rl

PATTERN-ORIENTED
SOFTWARE

ARCHITECTURE
LTI} Fatterns lor Eencarrent

Bara Ve e

and Hetwarked Oblects

« The Monitor Object pattern

A client

A client
thread

Monitor object

Synchronization

mwore —= method_1

A

method_2

mechanism

A client

synchronize

method_1
method_2

¥

Client-thread-specific
monitor object instances

k block until object
b

ecomes avdailable

A client
thread

See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

http://www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

End of Java ConditionObject:
Common Use Cases

15

