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Learning Objectives in this Part of the Lesson
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Applying Condition
Variables in Practice




Applying Condition Varlables in Practlce

« CVs are powerful, but [
can be hard to grok &
apply correctly
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See en.wikipedia.org/wiki/Grok
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Applying Condltlon Varlables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky
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Applying Condltlon Varlables in Practice

« CVs are powerful, but
can be hard to grok &

apply correctly, e.qg.

« The non-determinism
of concurrency is tricky
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See stackoverflow.com/a/38313778
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Applying Condition Varlables in Practlce

« CVs are therefore often not used
directly by apps, but instead are
“hidden” within other abstractions




Applying Condition Variables in Practice

« CVs are therefore often not used
directly by apps, but instead are Additional Frameworks & Languages
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java '

Threading & Synchronization Packages

Java Virtual Machine

Operating System Kernel

System Libraries

See docs.oracle.com/javase/8/docs/api/java/util/concurrent/
locks/AbstractQueuedSynchronizer.ConditionObject.html
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Applying Condition Variables in Practice

« CVs are therefore often not used

directly by apps, but instead are Consumer Producer
“hidden” within other abstractions

« CVs form the basis for higher- —> \ / —>§
level synchronizers in Java, e.g. take() \ % put()
 Blocking queues & deques in ArrayBlocking
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See upcoming discussion in “Java ConditionObject: Example Application’”




Applying Condition Variables in Practice

« CVs are therefore often not used
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« Java built-in monitor objects

See upcoming lesson on “Java Built-in Monitor Objects”
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« CVs are therefore often not used

directly by apps, but instead are
“hidden” within other abstractions

« CVs form the basis for higher-
level synchronizers in Java, e.q.
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See www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf



http://www.dre.vanderbilt.edu/~schmidt/PDF/monitor.pdf

End of Java ConditionObject:
Common Use Cases
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