Java GonditionObhject:
The Guarded Suspension Pattern

Dougias C. Schmidt
d.schmidt@uanderhilt.edu
www.dre.vanderhilt.edu/~schmidt

Institute for Software
Integrated Systems
Vanderhilt University
Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Know what pattern condition variables implement

Message get message () {

r.. . "
Client 1 thread
| ## Acquire Tock and try to get a message, if awailabe.

Calling the get method

7

on an empty queue , Tock.acquire ();
| suspends the client 7 while (empty ()) ## Suspend thread while queue is empty.
| - | thread. , not_empty.condition.wait (); <= - - - — — — A
Client 1 (i) ’ Message m = get message impl (); ## Get the message.
, ! _
L — — — 1 py ## ... I
: - Tock.release (); ## Release Tock |
get_message } I
|
[
put_message |[-|— —>{ Message put _message (Message m) { |
L ## Acquire lTock and put a message into the queue. | wakes
" Client 2 thread’ Message queue lTock.acquire ()3 | up
| | @ : o | waiting
Executing the put method put_message impl (m); | thread
wakes up the waiting thread I

Wake up threads waiting to get a message.

|
| Client2 |
L _J

to continue the execution of
the get method where it’s
suspended.

not_empty condition.notify ();

lock.release (); ## Release lock.

—_

Implementing Guarded
Suspension with CVs

Implementing Guarded Suspension with CVs

« CVs are most often used to implement the Guarded Suspension pattern

r... ... "
Client 1 thread _ Message get_message () {
| Calling the get method %' ## Acquire Tock and try to get a message, if awailabe.
on an empty queue , Tock.acquire ();
| suspends the client e while (empty ()) ## Suspend thread while queue is empty.
| . | thread. , not_empty.condition.wait (); = - - - - — - -
Client 1 ('D / Message m = get message_impl (); ## Get the message. |
L — — _— 1 P oL I
' - lock.release (); ## Release lock |
get_message } |
|
|
put_message |-|— —{ Message put message (Message m) { |
o | ## Acquir(_e lock and put a message into the queue. | wakes
" Client 2 thread’ Message queue lock.acquire () | up
| |(2) . #o... | waiting
Executing the put method put_message impl (m); | thread
| wakes up the waiting thread ## Wake up threads waiting to get a message. |
to continue the execution of not empty condition.notify (); - — — — — — — — — —a
| Client2 | the get method where it’s lTock.release (); ## Release Tock.
}

L — — — 4 suspended. \

PATTERN-ORIENTED
SOFTWARE

Require both a lock to be acquired & a precondition
to be satisfied before an operation can be executed

ARCHITECTURE

A Pattern Language for
Distributed Object Computing

See en.wikipedia.org/wiki/Guarded suspension

http://en.wikipedia.org/wiki/Guarded_suspension

Implementing Guarded Suspension with CVs

 This pattern is applied to operations

that can run only when a condition
is satisfied

Ty

=<

ConditionVariable

|

await()
signal()
signalAll()

-

Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing ()

Implementing Guarded Suspension with CVs

 This pattern is applied to operations

Lock

that can run only when a condition T |
. gy 1 ock()
Is satisfied, e.g., unlock()

* a lock is acquired . —>§ /
uses

ConditionVariable

N

await()
signal()
signalAll()

-

Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing ()

S

A condition variable is a/ways associated with a lock

Implementing Guarded Suspension with CVs

 This pattern is applied to operations

s Lock
that can run only when a condition T 10ck0) =
is satisfied, e.qg., : unlock()

* a precondition holds ConditionVariable ~ YS€°
await()
signal()
signalAll()

|

-

Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing ()

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to Lock
suspend its execution until thread T, T lock()
notifies it that shared state it's waiting . | - unlock()

on /may now be satisfied

YOU SHALL

NOT PASS

ConditionVariable USes

await()
signal()
signalAll()

N

-

Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

1l.lock()

while (conditionNotSatisfied())
cond.await ()

doOperationProcessing ()
.

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. : : Lock
suspend its execution until thread T, T o0 Ok
notifies it that shared state it's waiting : unlock()
on may now be satisfied — _>§ /

ConditionVariable {~ Y5
await()

signal()

signalAll()

N

-

Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperationProcessing ()

S

Note the tentative nature of “may”..

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. : : Lock
suspend its execution until thread T, T 10ck()
notifies it that shared state it's waiting . | : unlock()
on may now be satisfied - _>§ /

ConditionVariable Uses
await()
signal()
signalAll()
First. a lock must be acquired.. Lock 1 = new Lock()
Condition cond =
\\\\\\\ 1l .newCondition ()
O
1l.lock()

while (conditionNotSatisfied())
cond.await ()
doOperationProcessing()

S

10

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. : : Lock
suspend its execution until thread T, T o0 Ok
notifies it that shared state it's waiting ’ unlock()
on may now be satisfied — _>§ /

ConditionVariable {~ Y5
await()

signal()

signalAll()

N

-

Lock 1 = new Lock()

Second, a condition is checked Condition cond =
(in a loop) with the lock held.. 1.newCondition ()
1.lock()

~while (conditionNotSatisfied())
cond.await ()
doOperationProcessing()

S

11

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to Lock
suspend its execution until thread T, T 10ck0
notifies it that shared state it's waiting .| : unlock()
on may now be satisfied - —>§ /

A condition can be arbitrarily ConditionVariable uses
complex
await()
signal()
signalAll()

N

P
Lock 1 = new Lock()
Condition cond =
1l.newCondition|()
l.lock()
while (conditionNotSatisfied())

cond.await ()

e A DA N doOperationProcessing ()
-

12

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

Ty

lock()

on /may now be satisfied

A condition can be arbitrarily
complex

e.g., a method call, an expression
that involves shared state, etc.

unlock()

=<

ConditionVariable

Ases

await()
signal()
signalAll()
[Lock 1l = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

"while (conditionNotSatisfied())

cond.await ()

doOperationProcessing ()
“

Any state shared between threads must be
protected by a lock associated with the CV

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on /may now be satisfied

A condition can be arbitrarily
complex

Lock

T, lock()

unlock()

=<

ConditionVariable

Ases

(possibly repeatedly) while the
condition is not satisfied (await()
atomically releases the lock)

1.

¥

await()
signal()
signalAll()
The calling thread will block (1ock 1 = new Lock O

Condition cond =

1l .newCondition ()

iock()

\whilsafconditionNotSatisfied())
cond: await ()

doOperationProcessing ()

14

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. . . Lock
suspend its execution until thread T, T 10ck0) o=
notifies it that shared state it's waiting ! unlock()
on may now be satisfied = _>§
A condition can be arbitrarily ConditionVariable Ases

complex :
await()
—>§ signal()
signalAll()
ﬂ - \
[Lock 1l = new Lock()
cond.signal () Condition cond =

\\\\ , 1l.newCondition|()

- — 1l.lock()
Another thread can signal condition

while (conditionNotSatisfied())
when shared state may now be true cond.await ()

doOperationProcessing ()

15

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting

Lock

Ty

lock()

on /may now be satisfied

A condition can be arbitrarily
complex

await() reacquires the lock &
condition is rechecked in loop

T

unlock()

=<

ConditionVariable

//{;es

await()
signal()
signalAll()
[Lock 1l = new Lock()

Condition cond =
1l .newCondition ()

l.lock()
~while (conditionNotSatisfied())
cond.await ()

doOperationProcessing ()
.

16

Implementing Guarded Suspension with CVs

In this example thread T, uses a CV to]

. : : ock
suspend its execution until thread T, T 10ck0)
notifies it that shared state it's waiting ! unlock()
on may now be satisfied = _>§ /

ConditionVariable Uses
- await()
» Waiting on a CV releases the lock signal()
& suspends the thread atomically signalAll()

|

P
Lock 1 = new Lock()

Condition cond =
1l.newCondition|()

l.lock()

while (conditionNotSatisfied())

cond.await ()
doOperatidQ?rocessing()

&

The lock is released when the
thread is suspended on the CV

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on /may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomically

« Thread T, is suspended until
thread T, signals the CV

Lock

lock()
unlock()

ConditionVariable

Ases

await()
signal()
signalAll()

18

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

suspend its execution until thread T,

notifies it that shared state it's waiting

on /may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomnically

« Thread T, is suspended until
thread T, signals the CV

cond.signal ()

Lock

LI lock()
s unlock()
= —>§ /
ConditionVariable USes
await()
signal()
signalAll()

5

When a thread is signaled it wakes up
& must re-acquire its associated lock

19

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on /may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomnically

« Thread T, is suspended until
thread T, signals the CV

Lock

Ty

lock()
unlock()

await()
signal()
signalAll()

N

< 7
ConditionVariable USES

-

1.

¥

Lock 1 = new Lock()
Condition cond =

1l .newCondition ()

iock()

After lock is re-acquired _the while (conditionNotSatisfied())
thread can reevaluate its cond.await ()
o . "y . . / °
condition to see If it’s satisfied doOperationProcessing ()

20

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to

. : : Lock
suspend its execution until thread T, T 0ck0) ==
notifies it that shared state it's waiting ! unlock()
on may now be satisfied - _>§ /

ConditionVariable Uses
- await()
» Waiting on a CV releases the lock signal()
& suspends the thread atomically signalAll()
« Thread T, is suspended until \
thread T, signals the CV .

Lock 1 = new Lock()
Condition cond =
1l .newCondition ()

If condiition is not satisfied the 1l.lock()
thread must wait (which while (conditionNotSatisfied())
releases the lock atomically) cond.await ()

doOperationProcessing ()

21

Implementing Guarded Suspension with CVs

« In this example thread T, uses a CV to
suspend its execution until thread T,
notifies it that shared state it's waiting
on /may now be satisfied

« Waiting on a CV releases the lock
& suspends the thread atomnically

« Thread T, is suspended until
thread T, signals the CV

Lock

Ty

lock()
unlock()

await()
signal()
signalAll()

N

< 7
ConditionVariable USes

-

After the lock is re-acquired & the
condition is satisfied the operation
can proceed (with lock held)

1.

e

¥

Lock 1 = new Lock()
Condition cond =

1l.newCondition|()
lock ()

cond.await ()

while (conditionNotSatisfied())

doOperationProcessing ()

22

End of Java ConditionObject:
The Guarded Suspension
Pattern

23

