Java ConditionObject: The Guarded Suspension Pattern

Douglas C. Schmidt

<u>d.schmidt@vanderbilt.edu</u>

www.dre.vanderbilt.edu/~schmidt

Institute for Software Integrated Systems Vanderbilt University Nashville, Tennessee, USA

Learning Objectives in this Part of the Lesson

- Understand what condition variables are
- Note a human known use of condition variables
- Know what pattern condition variables implement

CVs are most often used to implement the Guarded Suspension pattern

See en.wikipedia.org/wiki/Guarded_suspension

 This pattern is applied to operations that can run only when a condition is satisfied

- This pattern is applied to operations that can run only when a condition is satisfied, e.g.,
 - a lock is acquired

A condition variable is *always* associated with a lock

- This pattern is applied to operations that can run only when a condition is satisfied, e.g.,
 - a lock is acquired
 - a precondition holds

 In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied

 In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied

while (conditionNotSatisfied())

Note the tentative nature of "may"...

1.lock()

cond.await()

doOperationProcessing()

 In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied

doOperationProcessing()

First, a lock must be acquired..

 In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied

Second, a condition is checked (in a loop) with the lock held..

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex

e.g., a method call, an expression that involves shared state, etc.

Any state shared between threads must be protected by a lock associated with the CV

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex

The calling thread will block (possibly repeatedly) while the condition is not satisfied (await() atomically releases the lock)

```
Lock
                          lock()
                          unlock()
                           uses
     ConditionVariable
     await()
     signal()
     signalAll()
Lock l = new Lock()
Condition cond =
  1.newCondition()
1.lock()
while (conditionNotSatisfied())
  cond.await()
```

doOperationProcessing()

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex

Another thread can signal condition when shared state may now be true

```
Lock
                          lock()
                          unlock()
                          uses
     ConditionVariable
     await()
     signal()
     signalAll()
Lock l = new Lock()
Condition cond =
  l.newCondition()
1.lock()
while (conditionNotSatisfied())
  cond.await()
doOperationProcessing()
```

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex

```
Lock
                          lock()
                          unlock()
                          uses
     ConditionVariable
     await()
     signal()
     signalAll()
Lock l = new Lock()
Condition cond =
  1.newCondition()
1.lock()
while (conditionNotSatisfied())
  cond.await()
doOperationProcessing()
```

await() reacquires the lock & condition is rechecked in loop

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically


```
Lock 1 = new Lock()
Condition cond =
    l.newCondition()
...
l.lock()
while (conditionNotSatisfied())
    cond.await()
doOperationProcessing()
```

The lock is released when the thread is suspended on the CV

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically
 - Thread T₁ is suspended until thread T_n signals the CV


```
Lock l = new Lock()
Condition cond =
   l.newCondition()
...
l.lock()
while (conditionNotSatisfied())
   cond.await()
doOperationProcessing()
```

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically
 - Thread T₁ is suspended until thread T_n signals the CV

cond.signal()

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically
 - Thread T₁ is suspended until thread T_n signals the CV

After lock is re-acquired the thread can reevaluate its condition to see if it's satisfied

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically
 - Thread T₁ is suspended until thread T_n signals the CV

If condition is not satisfied the thread must wait (which releases the lock atomically)

- In this example thread T₁ uses a CV to suspend its execution until thread T_n notifies it that shared state it's waiting on *may* now be satisfied
 - A condition can be arbitrarily complex
 - Waiting on a CV releases the lock
 & suspends the thread atomically
 - Thread T₁ is suspended until thread T_n signals the CV

After the lock is re-acquired & the condition is satisfied the operation can proceed (with lock held)

End of Java ConditionObject: The Guarded Suspension Pattern