Evaluating Pros & Gons

Douglas G. Schmidt
id.schmidt@uanderhiit.edu
www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software
Integrated Systems

Vanderbilt University
Nashuille, Tennessee, USA

vV

mailto:d.schmidt@vanderbilt.edu

Learning Objectives in this Part of the Lesson

« Evaluate the pros & cons of this version of the PrimeChecker app

Evaluating this Version of
the PrimeChecker App

Evaluating this Version of the PrimeChecker App

« ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker

Evaluating this Version of the PrimeChecker App

 ExecutorService version of PrimeChecker app fixes

problems with earlier Executor PrimeChecker, e.g.
MainActivity appears nowhere in PrimeCallable class..

« Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

public class PrimeCallable
implements Callable<PrimeResult> {

/
public PrimeCallable (long PrimeCandidate) { ... }

public PrimeResult call() ({
return new PrimeResult (mPrimeCandidate,
isPrime (mPrimeCandidate)) ;

This decoupling simplifies runtime configuration changes

Evaluating this Version of the PrimeChecker App

» ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.q.

» Lifecycle operations enable task interruptions

void interruptComputations () ({
mRetainedState.mExecutorService
.shutdownNow () ;

mRetainedState.mThread.interrupt() ;
mRetainedState
.mExecutorService.awaitTermination
(500, TimeUnit.MILLISECONDS) ;

) 4 UE 12:51
9223372036854775757 is not prime with smallest factor 149
9223372036854775770 is not prime with smallest factor 2
9223372036854775788 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775724 is not prime with smallest factor 2
9223372036854775769 is not prime with smallest factor 31
9223372036854775769 is not prime with smallest factor 31
9223372036854775775 is not prime with smallest factor 5
9223372036854775789 is not prime with smallest factor 11
9223372036854775710 is not prime with smallest factor 2
9223372036854775728 is not prime with smallest factor 2
9223372036854775716 is not prime with smallest factor 2
9223372036854775718 is not prime with smallest factor 2
9223372036854775787 is not prime with smallest factor 13
9223372036854775735 is not prime with smallest factor 5
9223372036854775737 is not prime with smallest factor 3
9223372036854775714 is not prime with smallest factor 2
0223372036854775775 is not prime with smallest factor 5
0223372036854775733 is not prime with smallest factor 19
0223372036854775779 is not prime with smallest factor 3
9223372036854775796 is not prime with smallest factor 2
0223372036854775771 is not prime with smallest factor 19
9223372036854775780 is not prime with smallest factor 2
9223372036854775803 is not prime with smallest factor 3
9223372036854775800 is not prime with smallest factor 2
9223372036854775735 is not prime with smallest factor 5
0223372036854775748 is not prime with smallest factor 2
9223372036854775767 is not prime with smallest factor 3

Shutting down an executor service interrupts a// threads running tasks

Evaluating this Version of the PrimeChecker App

» ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.] ameais

9223372036854775757 is not prime with smallest factor 149
9223372036854775770 is not prime with smallest factor 2
9223372036854775788 is not prime with smallest factor 2
9223372036854775775 is not prime with smallest factor 5
9223372036854775724 is not prime with smallest factor 2
9223372036854775769 is not prime with smallest factor 31
9223372036854775769 is not prime with smallest factor 31
9223372036854775775 is not prime with smallest factor 5
9223372036854775789 is not prime with smallest factor 11
9223372036854775710 is not prime with smallest factor 2
H H H H 9223372036854775728 is not prime with smallest factor 2
 Lifecycle ope rations enable task interru pt| ons 1224572036854775715 15 ot prime with smallet factr 2
9223372036854775718 is not prime with smallest factor 2
9223372036854775787 is not prime with smallest factor 13
9223372036854775735 is not prime with smallest factor 5
9223372036854775737 is not prime with smallest factor 3
9223372036854775714 is not prime with smallest factor 2
0223372036854775775 is not prime with smallest factor 5
0223372036854775733 is not prime with smallest factor 19
0223372036854775779 is not prime with smallest factor 3
9223372036854775796 is not prime with smallest factor 2
0223372036854775771 is not prime with smallest factor 19
9223372036854775780 is not prime with smallest factor 2
9223372036854775803 is not prime with smallest factor 3
9223372036854775800 is not prime with smallest factor 2
9223372036854775735 is not prime with smallest factor 5
0223372036854775748 is not prime with smallest factor 2
9223372036854775767 is not prime with smallest factor 3

long isPrime (long n) ({
if (n > 3)
for (long factor = 2;
factor <= n / 2; ++factor)
if (Thread.interrupted()) break;
else if (n / factor * factor == n)
return factor;
return OL;

100

}

The isPrime() method repeatedly checks to see if it's been interrupted

Evaluating this Version of the PrimeChecker App

« ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

« Runtime configuration changes handled gracefully

KEEP

CALM

AND

EMBRACE
CHANGE

100000000

tarting primality computations
863137601 is not prime with smallest factor 67
181858090 is not prime with smallest factor 2
074979154 is not prime with smallest factor 2
1870407455 is not prime with smallest factor 5
833235127 is not prime with smallest factor 17
651621695 is not prime with smallest factor 5
1311987041 is not prime with smallest factor 971
703018233 is not prime with smallest factor 3
1055928155 18 not prime with smallest factor 5
833102181 is not prime with smallest factor 3
1030676473 is not prime with smallest factor 619
127457798 is not prime with smallest factor 2
(@5B3326869 is prime
16682593 is not prime with smallest factor 11
(509282196 is not prime with smallest factor 2
755195772 is not prime with smallest factor 2
1320523007 is not prime with smallest facter 37
W587637322 is not prime with smallest factor 2
1766004629 is prime
28824527 is not prime with smallest factor 79
4461966 is not prime with smallest factor 2
1679873625 is not prime with smallest factor 3
139079501 is not prime with smallest factor 11
1699167856 is not prime with smallest factor 2
1563413821 is prime
Finished primality computations

Running tasks execute & update the GUI until they finish or are interrupted

Evaluating this Version of the PrimeChecker App
« However, there are still some limitations

fstarting primality computations

me with smallest factor 5
7 is nat prime with smallest factor 17
fa

ot prime with small
rime with smallost fa
15 NOT Prime With smallest factor
 Fa

16682593 Is not prime with sm
nat prime with smallest fa,
with smallest s
re with smallest factor 37
37322 is not prime with smallest factor 2
1766004528 is prime
nat prime with smallest factor 79

Evaluating this Version of the PrimeChecker App

« However, there are still some limitations, e.g.
« future::get blocks the thread, even if other futures may have completed

private class FutureRunnable

implements Runnable {

This problem is inherent with the
MainActivity mActivity;

"synchronous future” processing mode/

public void run() {
mFutures. forEach (future -> {
PrimeCallable.PrimeResult pr =
rethrowSupplier (future: :get) .get () ;

if (pr.mSmallestFactor != 0)
else ...
mActivity.done () ;

We fix this problem in an upcoming lesson on “Java ExecutorCompletionService”

Evaluating this Version of the PrimeChecker App

» However, there are still some limitations, e.g.

* isPrime() tightly coupled with PrimeCallable The “brute force” primality

public class PrimeCallable ... checker always runs, even if

long isPrime (long n) / results were computed earlier
if (n > 3)

for (long factor = 2; factor <= n / 2; ++factor)
if (Thread.interrupted())
break;
else if (n / factor * factor == n)
return factor;

return O0L;

Fixed by Memoizer in an upcoming lesson on “Java ExecutorCompletionService”

End of Java ExecutorService:
Evaluating the Pros & Cons

12

