
Java ExecutorService:

Evaluating Pros & Cons

Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Professor of Computer Science

Institute for Software

Integrated Systems

Vanderbilt University

Nashville, Tennessee, USA

mailto:d.schmidt@vanderbilt.edu

2

Learning Objectives in this Part of the Lesson
• Recognize the powerful features defined

in the Java ExecutorService interface

• Understand other interfaces related to
ExecutorService

• Know the key methods provided by
ExecutorService

• Be aware of how ThreadPoolExecutor
implements ExecutorService

• Learn how to program the PrimeChecker
app using ExecutorService

• Evaluate the pros & cons of this version of the PrimeChecker app

3

Evaluating this Version of
the PrimeChecker App

4

• ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker

Evaluating this Version of the PrimeChecker App

5

• ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

• Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

public class PrimeCallable

implements Callable<PrimeResult> {

...

public PrimeCallable(long PrimeCandidate) { ... }

public PrimeResult call() {

return new PrimeResult(mPrimeCandidate,

isPrime(mPrimeCandidate));

} ...

This decoupling simplifies runtime configuration changes

MainActivity appears nowhere in PrimeCallable class..

Evaluating this Version of the PrimeChecker App

6

• ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

• Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

• Lifecycle operations enable task interruptions

Shutting down an executor service interrupts all threads running tasks

void interruptComputations() {

mRetainedState.mExecutorService

.shutdownNow();

mRetainedState.mThread.interrupt();

...

mRetainedState

.mExecutorService.awaitTermination

(500, TimeUnit.MILLISECONDS);

Evaluating this Version of the PrimeChecker App

7

long isPrime(long n) {

if (n > 3)

for (long factor = 2;

factor <= n / 2; ++factor)

if (Thread.interrupted()) break;

else if (n / factor * factor == n)

return factor;

return 0L;

}

• ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

• Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

• Lifecycle operations enable task interruptions

Evaluating this Version of the PrimeChecker App

The isPrime() method repeatedly checks to see if it’s been interrupted

8

• ExecutorService version of PrimeChecker app fixes
problems with earlier Executor PrimeChecker, e.g.

• Two-way semantics of Java callables decouple
PrimeCallable & MainActivity

• Lifecycle operations enable task interruptions

• Runtime configuration changes handled gracefully

Running tasks execute & update the GUI until they finish or are interrupted

Evaluating this Version of the PrimeChecker App

9

• However, there are still some limitations

Evaluating this Version of the PrimeChecker App

10

• However, there are still some limitations, e.g.

• future::get blocks the thread, even if other futures may have completed

private class FutureRunnable

implements Runnable {

MainActivity mActivity; ...

public void run() {

mFutures.forEach(future -> {

PrimeCallable.PrimeResult pr =

rethrowSupplier(future::get).get();

if (pr.mSmallestFactor != 0) ...

else ...

mActivity.done(); ...

We fix this problem in an upcoming lesson on “Java ExecutorCompletionService”!

This problem is inherent with the
“synchronous future” processing model

Evaluating this Version of the PrimeChecker App

11

• However, there are still some limitations, e.g.

• future::get blocks the thread, even if other futures may have completed

• isPrime() tightly coupled with PrimeCallable

Fixed by Memoizer in an upcoming lesson on “Java ExecutorCompletionService”!

public class PrimeCallable ... {

long isPrime(long n) {

if (n > 3)

for (long factor = 2; factor <= n / 2; ++factor)

if (Thread.interrupted())

break;

else if (n / factor * factor == n)

return factor;

return 0L;

} ...

The “brute force” primality
checker always runs, even if

results were computed earlier

Evaluating this Version of the PrimeChecker App

12

End of Java ExecutorService:
Evaluating the Pros & Cons

